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Abstract

Background: Reliable information extraction applications have been a long sought goal of the
biomedical text mining community, a goal that if reached would provide valuable tools to benchside
biologists in their increasingly difficult task of assimilating the knowledge contained in the
biomedical literature. We present an integrated approach to concept recognition in biomedical
text. Concept recognition provides key information that has been largely missing from previous
biomedical information extraction efforts, namely direct links to well defined knowledge resources
that explicitly cement the concept's semantics. The BioCreative II tasks discussed in this special
issue have provided a unique opportunity to demonstrate the effectiveness of concept recognition
in the field of biomedical language processing.

Results: Through the modular construction of a protein interaction relation extraction system,
we present several use cases of concept recognition in biomedical text, and relate these use cases
to potential uses by the benchside biologist.

Conclusion: Current information extraction technologies are approaching performance
standards at which concept recognition can begin to deliver high quality data to the benchside
biologist. Our system is available as part of the BioCreative Meta-Server project and on the internet
http://bionlp.sourceforge.net.

Background
Early efforts in information extraction have focused primarily
on identification of character strings and, for the most part,
have not been adopted for use by biologists. We posit that a
prominent factor in the biologist's reluctance to rely on cur-
rent information extraction technologies is the ambiguity that

remains in these extracted strings of text. For example, there
are a multitude of tools that can extract gene names from text.
This is a classic problem in biomedical natural language
processing (BioNLP), and one that has been extensively stud-
ied [1,2]. Determining that a particular string of text in a
larger document corresponds to a gene name is a challenging
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problem, and by no means one that should be discounted.
However, from a biologist's perspective, knowing that a string
of characters is a gene name leaves much to be desired.
Among other things, it would be helpful to know exactly
which gene and from which species the identified character
string is referring. This phenomenon is not limited to the
identification of gene names in text, but applies also to many
of the common targets of biomedical information extraction,
such as cell types, diseases, tissues, and so on.

Recently, however, efforts have shifted toward the identifica-
tion of concepts as opposed to character strings [3]. Concepts
differ from character strings in that they are grounded in well
defined knowledge resources. Concept recognition provides
the key piece of information missing from a string of text - an
unambiguous semantic representation of what the characters
denote. The BioCreative II tasks have provided a platform to
evaluate concept recognition systems in the field of biomedi-
cal language processing. As a demonstration of the potential
effectiveness of integrating concept recognition, we have con-
structed a protein interaction relation extraction system, the
components of which were generated through participation
in several of the BioCreative II tasks.

We took a modular approach to the BioCreative II tasks,
building on system components from other tasks whenever
possible. To facilitate component integration, we made exten-
sive use of the Unstructured Information Management Archi-
tecture (UIMA) [4,5] framework. Four benefits accrued from
this strategy. First, the complete integration of all processing
steps allowed us to experiment quickly and easily with differ-
ent approaches to the many subtasks involved. Second, it
made it easy for us to evaluate quickly the results of these
experiments against the official datasets. Third, it provided us
with a clean interface for incorporating tools from other
groups, including LingPipe [6], A Biomedical Named Entity
Recognizer (ABNER) [7], and Schwartz and Hearst's abbrevi-
ation detection algorithm [8]. Finally, it allowed for distribu-
tion of workload over the construction of the various system
components that were created.

A key focus in our work, and for the protein-protein interac-
tion extraction task (interaction pair subtask [IPS]) in partic-
ular, was the use of a concept recognition system being
developed by our group. Called Open source Direct Memory
Access Parser (OpenDMAP), it is a modern implementation
of the DMAP paradigm first developed by Riesbeck [9], Mar-
tin [10], and Fitzgerald [11]. The earliest descriptions of the
paradigm assumed that a DMAP system would approach all
levels of linguistic analysis through a single optimization pro-
cedure. In this work we show that analysis can be modular-
ized, and even externalized, without losing the essential
semantic flavor of the DMAP paradigm. Hunter and cowork-
ers [3] have described OpenDMAP in detail.

It should be noted that the benefits of concept recognition are
not limited to information extraction tasks. Concept recogni-
tion has the potential to also contribute to such areas of
BioNLP as document retrieval and summarization. We will
touch briefly on these during our discussion of the interaction
article subtask (IAS) and the interaction sentence subtask
(ISS), respectively.

Identifying the concepts: the gene mention task
The first step to using concepts in any information extraction
task is to determine the types of concepts that will be neces-
sary to identify the named entities of interest. Our ultimate
goal for this demonstration is to capture evidence of specific
protein-protein interactions from text. The concepts we will
primarily be interested in are genes and their products. This
foundational step is analogous to the gene finding task in the
biological domain. Once one has found the genes in a
sequence, then one can focus on the more complex task of
determining the function of the genes, how they are regu-
lated, and so on. Similarly, once gene mentions have been
identified in text, then further analyses can be performed, for
example, to determine whether the genes and gene products
are known to interact or participate in protein transport, or
what cell types they are expressed in. The BioCreative II gene
mention (GM) task provided a laboratory (of sorts) for devel-
oping the foundation on which to build more complex appli-
cations that rely on reliable GM detection. Identification of
gene names (or mentions) in text is a classic problem in the
field of BioNLP, and one that has been studied extensively [1].
Smith and coworkers [2] provided a detailed overview of the
challenges of this task (also known as 'gene tagging') and the
state-of-the-art in GM identification techniques. Although
the central dogma of molecular biology clearly defines the dif-
ference between genes and proteins, it is important to note
that ambiguity arises when genes and proteins are written
about, so much so that biological experts often do not agree
when a piece of text is referring to a gene or protein [12].
Throughout this paper, when speaking of extracting mentions
from text, we use the words 'gene' and 'protein'
interchangeably.

Our approach to GM identification focuses on the use of pub-
licly available gene tagging systems and simple consensus
approaches for combining their outputs. Baumgartner and
coworkers [13] also described this methodology. We used two
publicly available gene taggers [6,7] and a gene tagger devel-
oped in-house for the inaugural BioCreative GM task [14].

Two general strategies for combining gene tagger output were
used to test two distinct hypotheses. Our first hypothesis, the
'consensus hypothesis', posited that filtering the output of
multiple gene taggers by requiring agreement by two or more
of the individual systems would result in an overall precision
measure greater than or equal to the highest precision meas-
ure of the individual systems. Our second hypothesis, the
Genome Biology 2008, 9(Suppl 2):S9
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'combining hypothesis', posited that combining the output of
multiple gene taggers would result in an overall recall meas-
ure greater than or equal to the highest recall measure of the
individual systems.

We implemented two methods for combining the output of
multiple gene taggers to test these hypotheses. The Consen-
sus Hypothesis was tested by building a consensus-based fil-
ter with variable thresholds for consensus determination.
This filter implements a simple voting scheme in which each
tagger is given an equal vote. We then varied the consensus
threshold from three (all taggers agree) to two (two of the
three taggers agree). If a particular gene mention accumu-
lates the required threshold of votes, then it is kept. If the
threshold is not met, the gene mention is not returned. To test
the Combining Hypothesis, we implemented a filter that
keeps all gene mentions labeled by the individual taggers.
Unlike the consensus filter, the combining filter attempts to
deal with issues of differing boundaries in the outputs of the
individual taggers. When two gene mentions are found to
overlap, the filter keeps the longer gene mention and discards
the other, a decision motivated by the results of BioCreative
2004 GM systems that extended gene mention boundaries
[1].

Gene mention results
When evaluated against the GM task held-out test data, the
results were consistent with both hypotheses (Table 1). The
consensus filter approaches were observed to elevate preci-
sion over any of the individual gene taggers. The combining
filter also behaved as expected, by increasing the aggregate
system's overall recall measure, with the consequence being a
noticeable loss in precision. In comparison with the perform-
ances noted on the training data, the performances on the test
data were considerably lower. We believe that this is an arti-
fact of using the individual gene tagging systems as they came
'out-of-the-box'. All three gene taggers used models trained
on data released during the BioCreative I GM task. The Bio-
Creative I GM data are largely equivalent to the training data
used during the BioCreative II GM task; Smith and coworkers

[2] described changes made before BioCreative II to clean up
the corpus and make the annotations more consistent. As a
result of this similarity, symptoms of over-training were
observed, in particular for the LingPipe system, which
appeared to be trained on all of the available BioCreative I
data. It is this over-training that we feel is largely responsible
for the decrease in performance observed when evaluating
against the test dataset.

The question of the optimal number of gene tagging systems
to use for this approach remains uninvestigated. However,
our findings suggest that as few as three systems are sufficient
for gearing a gene mention identification system toward
either maximizing precision or maximizing recall, and there-
fore would enable a user to fine tune a system to the task at
hand. Although the decision to abstain from retraining on the
BioCreative II training data undoubtedly negatively affected
our performance in this evaluation, we feel that our
approaches still present an interesting argument for combin-
ing the output of multiple tools constructed for a similar task.
Furthermore, we have demonstrated that reliable GM identi-
fication is within reach, paving the way for more complex
information extraction tasks that rely on the identification of
genes.

Grounding the concepts: the gene normalization 
task
Our experiments for the GM task have demonstrated the abil-
ity to identify gene mentions in text at a relatively high level
of accuracy. Identification of mentions in text, as we noted
above, is only part of the concept recognition process. In
order to truly recognize a concept, it is necessary to normalize
(or ground) the mention to a unique entity in a well defined
knowledge source. This knowledge source typically takes the
form of a genomic database (for example, grounding a gene
mention to a particular Entrez Gene [15] identifier) or a bio-
logical ontology (for example, associating a mention describ-
ing a molecular function with a particular Gene Ontology [16]
concept). Attempts to address this problem have been met

Table 1

GM results: performances of systems and individual components on the test and training data.

Test Data Training Data

Tagger Precision Recall F-measure Precision Recall F-measure

CCP 77.30 77.74 77.52 83.68 83.48 83.58

ABNER 80.38 73.26 76.65 83.85 80.86 82.33

LingPipe 72.53 80.00 76.09 88.47 92.77 90.57

2/3 Majority 85.54 (2) 76.83 (3) 80.95 (3) 91.15 86.33 88.68

Unanimous 92.78 (1) 49.12 (4) 64.24 (4) 94.56 61.41 74.46

Overlap 66.22 (4) 83.72 (2) 73.94 (4) 79.27 91.17 84.80

Median 85.08 79.05 81.32

Presented are median scores, as supplied by organizers. Quartiles for our runs are shown in parentheses. GM, gene mention.
Genome Biology 2008, 9(Suppl 2):S9
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with limited success in the past [17,18] for a variety of rea-
sons, species ambiguity being a prominent issue. The 2006
gene normalization (GN) task took steps to isolate the nor-
malization problem by removing from the equation the often
confounding question of species identification. By limiting
the normalization procedure to human genes only, develop-
ment efforts were able to focus solely on the task of mapping
a gene mention to a lexicon of genes, namely the Entrez Gene
database. It is important to note, however, that the ability to
identify the species under discussion is just as important in
the normalization procedure as mapping the mention to a
particular gene. Elimination of this part of the GN task
increases the feasibility of the task considerably. See the
report by Morgan and coworkers [19] for further details on
the BioCreative II GN task.

Our approach to the GN task builds upon work completed for
the GM task. Briefly, gene mentions are identified and then
processed into a regularized form. An attempt to find a
unique Entrez Gene entry to map to is made, and if multiple
entries are found then a disambiguation procedure is
invoked. The primary novelty of our approach lies in the steps
that we take to deal with resolving conjunctive structures. An
iterative process was used during development of this system,
whereby the system was evaluated on the entire development
corpus (provided by the BioCreative organizers), then modi-
fied, and then evaluated again. This process was repeated
until the developer was satisfied with the performance of the
system. The results shown in the tables below reflect perform-
ance measures obtained during a post hoc analysis of the sys-
tem. Analogous to knocking out a gene in a mouse and
observing the phenotypic changes that occur, various compo-
nents of the system were disabled to see how the overall per-
formance was affected. The common performance measure
shared by Tables 2 to 5 is therefore the best performance
achieved by the system when evaluated against the develop-
ment data.

Gene mention detection
Our GM identification component was tuned toward maxi-
mizing recall by using the combining filter developed for the
GM task. We used six separate GM systems [6,7,14,20,21]
(both the BioCreative 2004 and the Natural Language
Processing in Biomedicine and its Applications [NLPBA]
models were used with the ABNER system [7]) in conjunction
with the combining filter. After manually examining the out-
put from the development data, we developed a set of nine
heuristics (Table 6) that were designed to either filter out
obvious false positives, modify gene mentions so that they
could be more easily matched to a dictionary of gene names,
or both. Application of all nine heuristics resulted in the
removal or modification of 1,086 putative gene mentions, and
an increase in precision from 0.770 to 0.829 and in recall
from 0.673 to 0.725 on the GN task development data. Two of
the heuristics (rules 4 and 5) resulted only in the modification
of the gene names, while one rule (rule 9) resulted in the

removal of a gene name if a nonhuman keyword is detected,
or modification of the gene name if it begins with a lowercase
h (for example hCB2 [PubMedID: 8679694]). All other rules
resulted in the removal of potential false-positive gene
mentions.

Conjunction resolution
Resolution of complex coordination is an unsolved problem
in general, and in BioNLP it is particularly difficult to over-
come because of the multitude of unconventional representa-
tions observed in biomedical text. Recently, Buyko and
coworkers [22] proposed a means for dealing with coordina-
tion ellipses within biological named entities. For the GN task
at hand, we noted the need to address conjunctive structures;
approximately 8% (52/640) of gene names in the develop-
ment dataset contained conjunctions, either of the general
English (for example, HMG1 and 2) or domain-specific (for
example, IL3/5) variety. To address these issues we devel-
oped a straightforward procedure for extracting individual
gene names from some of the common conjunction types
observed in the development dataset: gene names in regular
coordinated structures (for example, IL3/IL5 refers to IL3
and IL5); gene names in a series (for example, freac1-freac7
refers to freac1, freac2, freac3 ... freac7); gene subtypes trail-
ing the gene name (for example, IL3/5 refers to IL3 and IL5);
and gene subtypes appearing before the gene name (for
example, M and B creatine kinase refers to M creatine kinase
and B creatine kinase).

The algorithm first looks for two typical conjunction-indicat-
ing words ('and' and 'to') and two atypical, domain-specific
conjunction-indicating forms ('/' [forward slash] and '-'
[hyphen]). Then, the algorithm builds the individual gene
names from the conjoined structure. (See Lu [23] for further
details.)

Table 2 shows the overall improvement in performance on
the training data yielded by the conjunction resolution step. It
is slight (the F measure increased only from 0.757 to 0.774),
even though about 8% of gene tokens in the data appear in
structures requiring some processing. One reason for this
minor gain in performance is that some of the conjoined
genes are also mentioned individually within the same docu-
ment, allowing for their normalization outside of the conjunc-
tive structure. Another reason is that some conjunctions were
beyond the scope of our algorithm (for example granulocyte

Table 2

GN results: performance on the development data with and with-
out conjunction resolution.

Steps Precision Recall F measure

Without conjunction resolution 0.836 0.691 0.757

With conjunction resolution 0.827 0.727 0.774

GN, gene normalization.
Genome Biology 2008, 9(Suppl 2):S9
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[G-] and granulocyte-macrophage [GM-] colony-stimulating
factor [CSF]). Demonstration of at least a minimal capacity
for handling coordinated structures is an important step,
however, because this issue is commonplace in the field of
BioNLP, and must be addressed, as we discuss below.

Dictionary construction
Our GN algorithm relies on a lexicon of gene names as a target
for matching identified gene mentions. To create this lexicon,
we extracted the gene symbol, synonyms, and full name from
Entrez Gene (Homo_sapiens.ags.gz file available at [24]) for
each human gene. In addition to Entrez Gene, we also inves-
tigated other databases such as UniProt [25] and a combina-
tion of the two databases. We found the Entrez Gene database
to be the best resource for gene dictionary construction for
the current task (Table 3). This result is consistent with the
conclusions reported by Cohen [26].

Examination of the dictionary entries showed that some
entries could be removed without affecting system perform-
ance because they are of no use for GN tasks. See the report
by Baumgartner and coworkers [13] for details on the exclu-
sion of these gene entries. The dictionary used for the GN task
contained 21,206 entries.

Gene mention regularization
A set of heuristics was used to regularize all gene names and
symbols in the dictionary and all gene mentions outputted by

the GM system. These heuristics are based on earlier work
[26,27] and on previous dictionary-based systems [28]. Table
4 shows the effects of the individual rules on performance.
Use of all seven rules in sequential order resulted in a notice-
able increase in F measure from 0.586 to 0.774.

Mapping mentions to Entrez Gene identifiers
After the extracted gene mentions have been regularized and
conjunctions have been addressed, the processed mentions
are compared with all entries in the dictionary using exact
string matching. If multiple matches are found, then a disam-
biguation procedure (discussed below) is invoked.

In addition to exact string matching, we also investigated
some approximate string matching techniques. Like Fang and
coworkers [28], we found that approximate matching notice-
ably increased search time but did not markedly improve
performance.

Gene name disambiguation
Gene names and symbols can be ambiguous across species
when identical names and/or symbols are used to refer to
orthologous genes, or within a species when a gene name or
symbol is used to represent more than one distinct gene. For
example, CHED is used as a synonym for two separate Entrez
Gene entries: CHED1 (EntrezGene: 8197) and CDC2L5 (Ent-

Table 3

GN results: performance on the development data using different online resources for lexicon construction.

Resources Genes entries Precision Recall F measure

Entrez Gene 21,206 0.827 0.727 0.774

UniProt 18,580 0.834 0.591 0.692

Entrez Gene + UniProt 24,182 0.827 0.708 0.762

GN, gene normalization.

Table 4

GN results: performance impact of the seven heuristics used to normalize gene names on the development data.

Rule Example P R F

0 0.783 0.469 0.586

1 Substitution: Roman letters > arabic numerals carbonic andydrase XI to carbonic andydrase 11 0.778 0.492 0.603

2 Substitution: Greek letters > single letters AP-2alpha to AP-2a 0.779 0.497 0.607

3 Normalization of case CAMK2A to camk2a 0.787 0.619 0.693

4 Removal: parenthesized materials sialyltransferase 1 (beta-galactoside alpha-2,6-sialytransferase) to 
sialyltransferase 1

0.782 0.623 0.694

5 Removal: punctuation VLA-2 to VLA2 0.768 0.667 0.714

6 Removal: spaces calcineurin B to calcineurinB 0.784 0.742 0.762

7 Removal: strings < 2 characters P 0.827 0.727 0.774

Presented are the seven heuristics used to normalize gene names in both lexicon construction and during processing of the gene tagger output, and 
the performance on the development data after each step was performed. GN, gene normalization.
Genome Biology 2008, 9(Suppl 2):S9
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rezGene: 8621). Because the species question has been essen-
tially removed from the equation for the task described here,
we are concerned with only the latter. It has been estimated
that more than 5% of terms for a single organism are ambig-
uous and that approximately 85% of terms are ambiguous
across species [29,30]. For the (single-species) GN task, we
developed two approaches to gene name disambiguation. The
first method attempts to identify 'definitions' of gene sym-
bols, using the Schwartz and Hearst algorithm [8], which
identifies abbreviations and their long forms in text. Our sec-
ond approach, similar to that of Lesk [31], examines the five
tokens that appear before and after the ambiguous gene. We
then calculate the Dice coefficient between both the abbrevi-
ation definitions and flanking tokens and the full name of
each gene candidate, as given in Entrez Gene. The gene with
the highest nonzero Dice coefficient is returned. If the Dice
coefficients are all zero, we return nothing.

Our results indicate that finding unabbreviated gene names
or flanking words plays an important role in resolving ambig-
uous terms (Table 5). Moreover, this gene name disambigua-
tion procedure can provide evidence for a term being a false

gene mention. For example, STS (PMID: 11210186) is recog-
nized as a gene mention, but its surrounding words, content
mapping, and RH (Radiation Hybrid) analysis indicate that
it is an experimental method. We assembled a list of words
suggesting nonprotein terms such as sequence or analysis.
When they were matched to a gene's unabbreviated name or
its flanking words, the gene was considered a false mention.

Even with the improvement yielded by this disambiguation
procedure, gene name ambiguity remains a key contributor to
system error. On the development data, our precision for
mentions that only matched a single Entrez entry was 0.85,
whereas for ambiguous entries it was only 0.63. (Recall is dif-
ficult to compute for the two cases, because we do not know
how many mentions in the gold standard are ambiguous.)

Other techniques applied
To further enhance system performance, especially with
regard to false-positive gene mention identification, we
assembled stop word lists consisting of common English
words, protein family terms, nonprotein molecules, and
experimental methods. The common English stop word list
included 5,000 words derived by word frequency in the
Brown corpus [32]. The protein family terms were derived
from an in-house manual annotation project, which anno-
tated protein families. A list of small molecules (for example,
Ca) was also added. Words found in these lists were never rec-
ognized as gene names, even if they appear in the gene
dictionary.

Gene normalization results
Performance for three different runs submitted for the GN
task are shown in Table 7. The F measure for all three runs is

Table 5

GN results: performance with and without the gene name disam-
biguation procedure when evaluated against the development 
data.

Steps Precision Recall F measure

Without disambiguation 0.848 0.689 0.760

Use abbreviations only 0.825 0.722 0.770

Use abbreviations and flanking regions 0.827 0.727 0.774

GN, gene normalization.

Table 6

GN results: performance of nine heuristics used to filter false-positive gene mentions or modify gene mentions to improve dictionary 
matching performance.

Presence of ... Example P R F Modified

0 0.770 0.673 0.718 0

1 Gene chromosome location 3p11-3p12.1 0.772 0.673 0.719 34

2 Single, short lowercase word heme 0.778 0.672 0.721 112

3 Strings of only numbers &/or punct 9+/-76 0.779 0.672 0.722 206

4 Extra preceding words protein SNF to SNF 0.790 0.681 0.731 225a

5 Extra trailing words SNF protein to SNF 0.812 0.723 0.765 419a

6 Amino acids Ser-119 0.815 0.723 0.766 460

7 Protein families Bcl-2 family proteins 0.816 0.722 0.766 701

8 Protein domains, motifs, fusion SNH domain 0.828 0.722 0.771 883

9 Nonhuman keywords rat IFN gamma 0.829 0.725 0.774 1,086a

Results depicted here are from the development dataset. Step 0 indicates performance before application of any rules. At each step, the rules of 
preceding steps are also applied. Modified refers to the cumulative number of gene mentions removed or altered. aRules 4 and 5 result in 
modification of gene mentions only. Rule 9 can result in either modification or removal of gene mentions. All other rules result in removal of gene 
mentions. GN, gene normalization.
Genome Biology 2008, 9(Suppl 2):S9
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comparable to the highest F measure (0.79) for the GN task in
mouse (the most comparable of the three species examined)
in the BioCreative I GN task [17].

The ability of our system to handle simple cases of complex
coordination as well as the straightforward mention regulari-
zation procedure and disambiguation techniques provide the
basis for the concept recognition system that we will use for
the more complex task of identifying and extracting protein
interaction relations.

Concept recognition for document retrieval: the 
protein interaction article subtask
There are various levels of extracted information that a bench
biologist may be interested in. On a scale from broad to nar-
row in terms of scope, types of information extracted may be
documents, informative sentences, and specific relations. The
default choice for searching for documents relevant to a par-
ticular topic is PubMed. An alternative to the search engine
approach is a machine learning (ML) approach, in which a
statistical model of a document class is constructed and then
used to find similar documents. The disadvantage to using a
ML approach is the need for training data with which to build
the model. However, if such training data are available, then
the ML approach has the advantage of potentially identifying
features in the text that are relevant to a particular class of
documents but perhaps not obvious to the reader. For the IAS
task, we take this ML approach, employing mainly linguistic
features extracted from the training data.

Although some manner of concept recognition is used for this
task in the form of interactions detected by our IPS system
(described below), concept recognition is not used to its full-
est extent and, as we discuss at the end of this section, turns
out to be a weakness in our methodology. We use this exam-
ple to demonstrate how the absence of concept recognition
detrimentally affects the performance of our system.

We utilized the WEKA toolkit [33] to construct the ML-based
classifiers. The linguistic features employed were n-grams
(with n ranging from 1 to 5) of stemmed words. The concep-
tual features used were the presence/absence of protein inter-
action relations extracted by the system described in the IPS
section (see below). Table 8 summarizes the characteristics of
the three classifiers that were built. An attempt to balance the

number of positive and negative examples in the training data
was made for one of the classifiers, but the effect of this bal-
ancing was inconclusive. The report by Baumgartner and
coworkers [13] provides further details of this aspect of our
system.

Interaction article subtask results
All three classifiers constructed achieved F measures roughly
equivalent to one another, and above, but within one stand-
ard deviation of, the overall mean performances for all groups
that participated. As in our cross-validation experiments on
the training data, our first run achieved the best F measure on
the test data, but the difference in F measures between the
three are relatively small. The support vector machine classi-
fiers (runs 1 and 3) appear to achieve a higher precision and
lower recall than the Naïve Bayes classifier, a characteristic
that we have noticed in other document classification work
where we compared these classification algorithms [34].

Interestingly, however, we note that our IAS classifiers
achieved much higher performance in cross-validation on
training data than on the test data. For example, our run 1
classifier achieved a precision of 0.951, a recall of 0.945, and
an F measure of 0.948 in tenfold cross-validation of training
data, which is a difference of 0.20 when compared with the F
measure achieved on the test data. Cross-validation experi-
ments are designed to minimize the effects of over-fitting, and
our past experiences suggest that it is typically more success-
ful than was indicated by this experiment. This suggests that
a difference exists between the data compiled for the training
set and the test set.

We analyzed the corpora and found that the publication years
of the articles in the different sets showed that all of the posi-
tive training articles were published in either 2005 or 2006,
whereas the negative training articles came from a wider dis-
tribution of publication years, centered around 2001. Only
about 10% of the negative training articles were published in
2005 or 2006, and so it is possible that our classifiers dis-
criminated partially based on the publication years (possibly
represented in the feature sets, for example, by a bias in the
types of experimental procedures mentioned). Our run 1 sys-
tem expressed a bias toward positive classification on the test
set (458 positive classifications and 292 negative classifica-
tions), where 91% of the articles were published in 2006.

Table 7

GN results: performance on the GN test data.

Run True positives False positives False negatives Precision Recall F measure Quartile

1 576 109 209 0.841 0.734 0.784 1

2 583 120 202 0.829 0.743 0.784 1

3 587 129 198 0.820 0.748 0.782 1

GN, gene normalization.
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Cohen and coworkers [35] noted a similar phenomenon in the
Text Retrieval Conference (TREC) 2004 Genomics track data.
Our analysis supports the findings of their more extensive
study. The difference that they noted was substantially
smaller than the one that we report here - about 12% versus
the approximately 20% that we report - suggesting that the
training/test data for the BioCreative IAS task might repre-
sent a good dataset for working on this problem.

Although this apparent publication year bias appears to be an
issue with the construction of the training and test corpora, it
brings to light a real-world problem that warrants our atten-
tion. The most likely use for document classification systems
is to train on currently available data, and apply the model to
literature as it is published. However, this approach requires
that the system not be affected by the type of bias observed in
our IAS study. A concept-based approach, in which terms are
recognized and mapped to an ontology, as opposed to a purely
linguistic-based approach, as we employed for these classifi-
ers for the most part, might help avoid over-fitting of classifi-
ers to development datasets. For example, we found that
terms describing experimental approaches for detecting pro-
tein-protein interactions (for example, yeast two hybrid, two-
dimensional gel electrophoresis, co-immunoprecipitation,
and matrix-assisted laser desorption ionization time-of-flight
mass spectrometry [MALDI-TOF]) were among the most
important features in discriminating positive from negative
articles. The useful information in these features is not the
mention of a specific experimental method, but the fact that a
technique for recognizing protein-protein interactions was
mentioned. (As one reviewer of our workshop paper [13] sug-
gested, this points out the value of having a knowledge model
that reflects the curation criteria for the reference databases,
because they only contain experimentally confirmed interac-
tions.) This is consistent with the hypothesis (advanced by us
and others elsewhere, for example [26,34,36]) that a better
approach when training classifiers is to attempt to map words
to their underlying concepts. Using this approach, we hypoth-
esize that future systems would be more scalable and robust.

Concept recognition for sentence retrieval: the 
protein interaction sentences subtask
The next level of increasing scope a bench biologist may be
interested in is extraction of information at the sentence level.

Sentences with high information content could potentially be
used as a document summarization methodology, thus saving
researchers time needed to hunt through articles to find these
nuggets of a particular type of information. We, in fact, mod-
eled the ISS subtask as a summarization task, using an
approach similar to the Edmundsonian paradigm [37]; we
created a scoring scheme to rate sentences as either contain-
ing an interaction mention, or not. This approach has also
been used for selecting candidate GeneRIFs (Gene Refer-
ences Into Function) from Medline abstracts [38], which are
analogous to sentences with high information content.

Development of our ISS system was based on a development
set of 29 full-text articles with 53 gold standard sentences
selected by IntAct [39] and MINT [40] database curators [41].
The system was iteratively adjusted by using feedback from
evaluating on this development dataset.

Sentence selection and scoring
The selection of a candidate interaction sentence is a two step
process. The sentence must first meet certain eligibility
requirements before it can be scored and considered a poten-
tial interaction sentence. The criteria for gauging eligibility
and the features used for scoring the sentence are different as
shown in Table 9. The eligibility and scoring criteria also dif-
fer depending on the location of the sentence in the document
(section-specific usefulness and error rates have been noted
in other BioNLP application areas, for example [21]).

Table 8

IAS methods: the three classifiers used for the IAS subtask.

Name Classifier IG threshold

Run 1 SVM RBF kernel, complexity factor 100, gamma 0.001 0.0001

Run 2 Naïve Bayes kernel estimation enabled 0.001

Run 3 SVM with balanced ± RBF kernel, complexity factor 100, gamma 0.001 0.0001

IG threshold is the information gain feature selection threshold. IAS, interaction article subtask; RBF, radial basis function; SVM, support vector 
machine.

Table 9

ISS methods: scoring requirements.

Requires Scored on

Location P N G X I P N G X I

Abstract × × × ×

Figure/table caption × × × × × ×

Section/subsection heading × × × ×

Othera × × × × × ×

Column definitions: P = has positive cue words; N = does not have 
negative cue words; G = has > 0 gene mentions; X = has experimental 
methods; I = has interaction key word. aIf a sentence includes a 
reference to a figure or table, the score for the caption is added to the 
score for the sentence. ISS, interaction sentence subtask.
Genome Biology 2008, 9(Suppl 2):S9
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When a sentence is deemed eligible for scoring, a straightfor-
ward calculation is made to determine the score. For each
mention of an experimental method for detecting protein-
protein interaction that is present in the sentence, ten points
are added to the sentence score. For each interaction keyword
or positive cue term observed in the sentence, the number of
points added to the sentence score equals the number of
tokens present in the keyword or term observed. Here, we
define token as any string of characters separated by white
space in the interaction keyword or positive cue term. If a sen-
tence includes a reference to a figure or table, then the score
for the referenced figure or table caption is added to the score
for the sentence. The lists of cue words, interaction keywords,
and experimental methods are available upon request.

Scoreable features
Our system scores each sentence in a full-text article with
respect to the following features:

1. Frequent words. Words used with high frequency in the
gold standard sentences are likely to be related to protein-
protein interaction. For instance, the word 'interact' and the
phrase 'interaction of' are the most frequent unigram and
bigram, respectively.

2. Location. Most gold standard passages are located in the
results section, and a few in the title, abstract, or introduction
sections. Some sections are never observed to yield a
sentence.

3. Mentions of gene/protein names. Because the sentences
make assertions about protein-protein interaction, protein
mentions are a necessary component of these sentences.

4. Summary-indicative cue words. These are words (for
example, 'confirm') or phrases (for example, 'data establish')
that indicate that a sentence is likely to be an information-
rich sentence.

5. Mentions of experimental methods. Protein-protein inter-
action detection methods (for example, two hybrid array) are
frequently mentioned in the gold standard passages.

6. Figure/table mention. Many gold standard passages refer-
ence a table or figure.

Preprocessing
The methods used for HTML parsing and gene name tagging
were the same as used for the IPS task (see the following sec-
tion). In an attempt to remove false positives before process-
ing, we implemented a document zoning filter that excluded
sentences associated with certain document sections. The
excluded document sections were chosen from manual
inspection of the training data. The sections include the fol-
lowing: materials and methods, acknowledgments, discus-
sion, reference, table of contents, disclosures, and glossary.

Interaction sentence subtask results
We submitted two runs for the ISS task. The runs differed
only in the passage length returned for each 'interaction sen-
tence'. For our first submission, the returned passage was
limited to a single sentence. This restriction was loosened for
the second submission, permitting multiple consecutive high-
scoring sentences to be returned. Our results show that loos-
ening the passage length restriction permitted the extraction
of 39.2% more passages than had been preselected by the
human curators when compared with our single-sentence run
(Table 10). This suggests that informative sentences regard-
ing protein interactions in full text are likely to be found in
close proximity. This contrasts with the case of abstracts, in
which such sentences tend to be found at opposite ends of the
text [38].

Concept recognition for relation extraction: the 
protein interaction pairs subtask
Finally, the most detailed level of information that may inter-
est a bench biologist is the extracted interaction data itself.
This information could be presented to the biologist as the
results of a literature search. Alternatively, the methods used
to extract the data could be used to support database expan-
sion and management. For the IPS subtask [42] we used
OpenDMAP, which is a concept recognition system that has
been developed by our group. As is typical for concept recog-
nizers using manually constructed grammars, our system is
geared toward optimizing precision. The procedure begins
with preprocessing the HTML, and then moves to species rec-
ognition, entity tagging and part of speech tagging, followed

Table 10

ISS results: interaction passages extracted from the ISS task test data.

Run Passages TP Unique U_TP TP/Passages U_TP/Unique MRR

Run #1 372 51 361 51 13.71 14.13 1.0

Run #2 372 71 361 70 19.09 19.39 1.0

Column headings: Passages = the total number of passages evaluated; TP = the number of evaluated passages that were preselected by human 
curators; Unique = the number of unique passages evaluated; U_TP, the number of unique passages that were pre-selected; MRR = mean reciprocal 
rank of the correct passages. ISS, interaction sentence subtask.
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by extraction of protein-protein interactions. Our approach
for detecting interacting protein pairs relies heavily on the
systems generated for the GM and GN tasks.

Preprocessing
HTML parsing
The HTML parser developed to process the raw HTML docu-
ments was an extension of a similar parser developed for the
TREC Genomics 2006 task [36]. The title, abstract, para-
graphs, sentences, section headings, and subsection headings
were extracted for each document. Document sections were
inferred based on the section heading text. Sentence bounda-
ries were detected using the LingPipe sentence chunker [6].
Sentences were mapped back to the original HTML using a
dynamic programming approach.

Protein mention tagging
We used a variant of the system developed for the GM task to
tag genes/proteins in which the outputs of ABNER [7] (both
models) and LingPipe [6] (BioCreative04 model) were com-
bined using the combining filter (see the section on GM,
above). As we pointed out in the GM task introduction, the
distinction between gene and protein mentions in text is often
vague, and therefore for the purposes of the analyses con-
ducted in this paper we consider them to be equivalent.

Linguistic tagging
Part of speech (POS) tagging was done using the GENIA POS
Tagger [43].

Species classification
Species classification was done using a modified dictionary
search. The species dictionary was constructed from the
intersection of words from the National Center for Biotech-
nology Information (NCBI) names.dmp file (a list of all
known scientific names and synonyms for organisms) and the
set of NCBI taxonomy identifiers present in the IPS training
set. These words were then combined into a single regular
expression pattern for each species. In the flanking region of
± 50 characters around each detected species, we searched for
bigrams that would further indicate a particular species in
order to filter out false positive identifications. This set of
'indicator bigrams' was created by calculating the frequency
of bigrams in the flanking region of the IPS training data.
Each indicator bigram was assigned a log-odds score using
the formula:

Log-odds scores were summed to determine the score of a
single species match. The total score for a given species clas-
sification for a single article was calculated by combining the
number of times a species match was made and the sum of the
log-odds for indicator bigrams per match. Once scored, the
species for a given document was returned in rank order. We

experimented with the optimal number of species results to
return and found the best results when the maximum number
of species returned from the ranked list was two.

Protein mention normalization
Gene/protein lexicon construction
Dictionaries were constructed for each species that was
observed in the IPS training data by extracting information
from the uniprot_light_table_updated.txt file supplied by
the BioCreative organizers.

Protein mention normalization
Each gene/protein mention was normalized using the proce-
dure described above for the GN task, using the dictionary for
the identified species. We experimented with the optimal
number of normalized identifiers to return and found the best
results when we limited the output to one normalized entry
per gene mention in text.

OpenDMAP and conceptual patterns
We extracted protein-protein interaction pairs by applying
OpenDMAP [3], an open source, ontology-based concept rec-
ognition system available at [44]. It works by associating
manually written patterns to concepts in free text. The pat-
terns combine information about concepts, keywords, parts
of speech, phrase types, and other syntactic features into sin-
gle patterns.

OpenDMAP patterns are written in a regular grammar syntax
that consists of nonterminal elements on the left-hand side
and terminal and nonterminal elements on the right. Nonter-
minal elements are linked to a Protégé ontology [45], which
describes the protein-protein interaction frame with an inter-
action class that has two slots: interactor1 and interactor2. An
example of an OpenDMAP pattern for the IPS task looks like
the following expression:

{interaction}:= [interactor1] interacts with [interactor2]

Where elements presented in {braces} represent classes in
the ontology, elements in [brackets] correspond to slots of the
class on the left-hand side of the pattern, and bare strings are
terminals. The slots are constrained in the ontology to have
specific features; for the IPS task, the slot elements
[interactor1] and [interactor2] are constrained to be proteins.

When a sentence is input to the system, OpenDMAP recog-
nizes that the marked proteins tagged by our GM system
match the constraints on the frame slots [interactor1] and
[interactor2]. When OpenDMAP matches the rest of the pat-
tern elements, an instance of a protein-protein interaction
frame is created. The interactor1 and interactor2 slots are
filled with the protein instances from text that matched the
pattern. The output is a protein-protein interaction frame
from the ontology, filled in with instances of the interactors

P(bigram TP species match)
P(bigram FP species match)
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found in the text. See Figure 1 for a step-by-step representa-
tion of this process.

We used a variety of discovery procedures to build the pat-
terns, including interview sessions with 'native speakers'
(scientists with expertise in biology), and examination of cor-
pora for pattern elements. The interviews were used to deter-
mine the set of predicates that described protein-protein
interaction. Biologists were given a set of sentences in varying
constructions (active, passive, and so on) and asked to deter-
mine whether plugging in the verbs from a list would result in
a sentence denoting physical protein-protein interaction.

The corpus investigation uncovered frequently occurring n-
grams and frequently occurring strings between protein men-
tions [46]. We used the BioCreative 2006 IPS, ISS, and IAS
training data; the PICorpus (available at [47]) [48,49]; mate-
rial generated by Jörg Hakenberg [50] and Anna Veuthey;
and the Prodisen corpus (available at [51]).

The final grammar consisted of 67 rules. The patterns used in
the IPS task are available at [44]. The grammar handles ver-
bal and nominalization constructions, and various forms of
conjunction, but not negation. We experimented with using
unbounded wildcards, the results of which were higher recall
but very low precision. We also experimented with the inser-
tion of various parts of speech and phrase types between the
protein slot pattern elements, with the result that the final
pattern set includes adjective, adverb, and determiner POS
elements, as well as various prepositional phrase types.

Results
There was a marked difference between our performance on
the training data and on the test data. Our results on the train-
ing data were P = 0.364, R = 0.044, and F = 0.078, returning
385 pairs. However, we achieved recall as high as 0.31 on the
test data (seven times higher than on the training data), and
recall higher than the median on two of five measures (see

IPS: steps of the protein-protein interaction extraction systemFigure 1
IPS: steps of the protein-protein interaction extraction system. IPS, interaction pair subtask.
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Tables 11 and 12). Our F measure was above the median more
often than it was below it.

Analysis of the submission data show that 60% of the true
positive protein-protein interaction assertions were
expressed with a nominalization phrase, and 40% were
expressed with a verbal phrase. By far the most common
predicate was 'interact/interaction'; 66% of the nominalized
PPI assertions and 39% of the verbal PPI assertions employed
this predicate. The predicates used in the remainder of the
assertions were spread among 11 other predicates, as shown
in Table 13.

Results for the normalization portion of this task are shown in
Table 12. The precision of the method is competitive at 57%.
The normalization recall of 12%, however, is detrimental for
the output of the system as a whole. Note that the results of
the gene normalization portion of the PPI task are far lower
than those of the GN task because of the extra step of species
disambiguation required in the former.

Discussion
One goal of this work was to extend the OpenDMAP concept
recognition system. We were able to do so, incorporating a
number of third-party linguistic and semantic analysis tools
without surrendering an essential characteristic of the DMAP
paradigm: complete integration of semantic and linguistic

knowledge, without segregating lexical and domain knowl-
edge into separate components.

Our use of UIMA [4,5] as a framework for integrating the var-
ious software components used throughout our BioCreative
II submissions was integral to the performances we were able
to achieve. For each major component, a UIMA wrapper was
created so that it could be plugged into the system. By using a
standardized framework, we were not only able to distribute
the tasks of development with the assurance that the pieces
would work in concert once combined, but we were also able
to design our systems in such a way that as they became suc-
cessively more complicated, evaluation remained quick, easy,
and modular. Not only was it possible to incorporate infra-
structure constructed expressly for the BioCreative tasks, but
it was just as easy to utilize external tools developed before
the BioCreative tasks and/or by third-parties. This allowed us
to benefit from LingPipe, Schwartz and Hearst's abbrevia-
tion-defining algorithm, ABNER, KeX, ABGene, and the
GENIA POS tagger (op cit). Utilizing this framework provided
not only a robust development architecture and production-
ready execution environment, but also tremendous time
savings.

The major goal of our work on this shared task, however, was
to explore the integration of concept recognition in biomedi-
cal information extraction systems. The potential for infor-
mation extraction is undeniable. As the breadth of knowledge
in the biomedical literature continues to expand, it has
become increasingly difficult for a single person to keep up
with even a single specific research topic. Concept recognition
techniques provide a potential remedy for this situation. As
we discussed in the IAS section, the use of conceptual features
could greatly benefit information retrieval as well as docu-
ment classification systems. For the case of classifying protein
interaction documents, defining a concept for 'experimental
protein interaction detection methods' could potentially
resolve some of the bias we encountered due to differences in
the publication years among the training and test sets. It
should be noted that there have been some contradictory
reports on the benefits of using concepts, in particular in the

Table 11

IPS results: comparison of interaction pairs results on the IPS 
task test data.

Calculated by interaction Calculated by article

P R F P R F

Run 1 0.38 0.06 0.11 0.39 0.31 0.29

Task median 0.06 0.11 0.07 0.08 0.20 0.08

'Calculated by interaction' indicates each interaction pair extracted was 
given equal weight. 'Calculated by article' indicates the measure was 
calculated by averaging over articles. Run1 was tuned to maximize 
precision. IPS, interaction pair subtask.

Table 12

IPS results: comparison of normalization results on the IPS task test data.

Calculated by interactor Calculated by article Calculated by article with interactions

P R F P R F P R F

Run 1 0.57 0.12 0.19 0.15 0.13 0.13 0.56 0.46 0.48

Median 0.18 0.25 0.19 0.16 0.28 0.17 0.21 0.39 0.24

'Calculated by interactor' indicates each interactor extracted was given equal weight. 'Calculated by article' means the measure was calculated by 
averaging over articles. 'Calculated by article with interactions' means that only articles in which at least a single prediction submitted by a team was 
considered in the calculation. IPS, interaction pair subtask.
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domain of information retrieval. Results from the TREC
Genomics ad hoc retrieval task in 2003 [52] pointed to the
use of multiple concepts - MeSH headings, substance name
fields in Medline, and species - as accounting for elevated per-
formance. On the contrary, results from TREC Genomics
2004 [53] indicated that "[retrieval] approaches that
attempted to map to controlled vocabulary terms did not fare
as well." For proponents of concept recognition, this may first
appear mildly disconcerting, but a closer examination of the
TREC Genomics 2004 findings shows a number of factors
that may be responsible for the poor performance. In partic-
ular, the systems classified as 'conceptual' simply were not
very good at concept recognition, or made a poor choice of
concepts by relying solely on a single conceptual type. In
short, the role of concepts in these systems is somewhat over-
stated; thus, the conclusions regarding the influence of con-
cept use should be tempered.

Integrating concept recognition into tasks other than infor-
mation retrieval or document classification also has direct
implications for the benchside biologist, among others. The
merging of the many genomic databases by creating new links
among their respective entities has the potential to uncover
previously unknown information, or make known informa-
tion more accessible to a wider population of scientists. The
ultimate goal of extracting different relation types from text
and generating links among concepts could be the potential

for hypothesis generation and testing over the known 'facts' of
biomedicine. This is certainly a lofty goal, but concept recog-
nition is a key component to achieving automatic hypothesis
generation and testing, and we, as a community, have taken
the first steps down this path.

As detection of currently untapped conceptual types
improves, so will the benefits of integrating conceptual recog-
nition into current information gathering technologies. The
BioCreative II tasks have provided a snapshot of the state of
conceptual recognition in BioNLP, and all indications are that
progress is being made. However, the potential of conceptu-
ally based systems will not be fully realized until concepts can
be accurately, reliably, and unambiguously extracted from
text.
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Table 13

IPS results: distribution of the predicates of the true positive pro-
tein-protein interactions extracted from the IPS task test data.

Verbs/nominalizations Predicate Count

Verbs Interact 26

Co-localize 9

Bind 7

Regulate 7

Inhibit 6

Associate 5

Co-immunoprecipitate 2

Suppress 2

Co-precipitate 2

Modulate 1

Total 67

Nominalizations Interaction 68

Association 29

Binding 20

Co-localization 2

Phosphorylation 1

Total 103

IPS, interaction pair subtask.
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