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Abstract

Background: The goal of text mining is to make the information conveyed in scientific publications
accessible to structured search and automatic analysis. Two important subtasks of text mining are
entity mention normalization - to identify biomedical objects in text - and extraction of qualified
relationships between those objects.

Results: We present solutions to gene mention normalization and extraction of protein-protein
interactions. For the first task, we identify genes by using background knowledge on each gene,
namely annotations related to function, location, disease, and so on. Our approach currently
achieves an f-measure of 86.4% on the BioCreative Il gene normalization data. For the extraction
of protein-protein interactions, we pursue an approach that builds on classical sequence analysis:
motifs derived from multiple sequence alignments. The method achieves an f-measure of
24.4%(micro-average) in the BioCreative Il interaction pair subtask.

Conclusion: For gene mention normalization, our approach outperforms strategies that utilize
only the matching of genes names against dictionaries, without invoking further knowledge on each
gene. Motifs derived from alignments of sentences are successful at identifying protein interactions
in text; the approach we present in this report is fully automated and performs similarly to systems
that require human intervention at one or more stages.

Availability: Our methods for gene, protein, and species identification, and extraction of protein-
protein interactions are available as part of the BioCreative Meta Services (BCMS), see http://
bems.bioinfo.cnio.es/.
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Background

Gene mention normalization and extraction of relationships
such as protein interactions from scientific literature are
important for three areas. First and foremost, sequence,
structure, and other databases are often manually curated
based on evidence from literature. With novel high-through-
put data generation techniques, however, manual curation is
no longer sufficient [1]. Second, interpretation of high-
throughput screens such as gene expression or RNA interfer-
ence screens typically generate large clusters of genes with
similar phenotype. Identifying relationships within such clus-
ters such as protein interactions or shared functions, proc-
esses, diseases and so on are important for gaining deeper
insight. Third, text mining per se can serve to cluster genes by
phenotype. For example, Lage and coworkers [2] identify
candidate genes for diseases by clustering genes based on
phenotype terminology extracted from a database with text
mining.

Gene mention normalization and context models

All of these tasks require the identification of genes, terminol-
ogy, and relationships from text. Finding gene names in text
is trivial when a standardized, unambiguous name appears
literally in text, but this is rarely the case because authors use
different names for a gene, spell names in many ways, or even
introduce completely new names. Additionally, gene names
are often ambiguous, because they often are abbreviations
('ATF"), reflect a function ('negative factor"), the weight of the
protein ('p54"), a disease ("Huntingtin'), a cell type ('CD4"), a
person (‘Wolf-Hirschhorn"), or other properties that are not
unique to the gene. These variants and ambiguities make
gene name identification a difficult computational problem.
However, biologists reading articles usually do not have a
problem identifying genes in text. There are some key differ-
ences. Humans do not process millions of articles and gene
names, but focus on a limited scope of interest. They do not
'process' articles in isolation, but have background knowledge
consisting of detailed knowledge of the genes of interest,
including their functions, roles, biological processes, and so
on, as well as articles related to the one at hand.

In our approach to gene identification, we try to mimic the
human approach. Two key steps are the definition of textual
context and gene context. Both contexts capture terms refer-
ring to functions, processes, locations, tissue specificities, and
so on. Textual context identifies these terms in the article
under consideration together with related articles, thus
enlarging the text base. Gene context contains the above
terms for a gene as documented in high-quality databases.
With these context models, gene mention normalization
becomes the problem of matching the textual context to the
gene context. The two types of context serve opposing pur-
poses. Although textual context extends the text base, thus
increasing the potential for high recall, the gene context
makes candidate matches unambiguous, thus increasing the
potential of high precision. As an example, consider Figure 1.

Genome Biology 2008,

Volume 9, Suppl 2, Article S14

A gene encding a putative human RNA helicase, p54, has been
cloned and mapped to the band gq23.3 of chromosome 11. The
predicted amino acid sequence shares a striking homology (75%
identical) with the female germline-specific RNA helicase ME31B
gene of Drosophila. Unlike ME31B, however, the new gene
expresses an abundant transcript in a large number of adult
tissues and its 5' non-coding region was found split in a t(11;14)
(923.3;932.3) cell line from a diffuse large B-cell lymphoma.

P54 RCK; HLR2
Species: H. sapiens

5] NMT55, NRB54
Species: H. sapiens
Chromosome 11g23.3 Chromosome Xq13.1
GO: RNA helicase GO: RNA splicing

P54; FKBPS1, PPlase
Species: H. sapiens
Chromosome 6p21.3-2
GO: isomerase activity

S4; dRpt2, (5% p56
Species: D. melanogaster
Chromosome 3R;85C13
GO: Proteolysis

Figure |

Example for gene mention normalization using context models.
Disambiguation in gene mention normalization. Terminology relating to
function, location, disease, and so on is explained in the text and defines
the textual context, which is matched against potential gene contexts.
Although there are four contexts for the gene name 'p54', only one
encodes a human RNA helicase and is located on band q23.3 of
chromosome | |, as described in the text.

For 'p54' in the text, there are four potentially matching
genes. The textual context consists of terms such as 'RNA hel-
icase', 'human' and 'chromosome 11', and best matches the
gene context of only one of the four candidate genes.

Extracting protein-protein interactions with motifs
Gene mention normalization is a prerequisite for the identifi-
cation of protein interactions in text. Current experimental
high-throughput methods for the detection of interactions are
still error prone, whereas interactions found in text document
high-quality, low-throughput interactions; these carry the
potential to improve the overall quality of data. For example,
consider the complete set of complexes in the yeast Saccharo-
myces cerevisiae mapped out by Gavin and coworkers [3].
Combining this large-scale dataset with data from a small-
scale study reported by King and colleagues [4], investigating
nuclear transport, reveals that an interaction between
Nup116 of the nuclear pore complex and the Kariopherin
Kapos (a transporter) is not present in the data reported by
Gavin and coworkers [3]. Text mining can identify such inter-
actions in text and thus complement experimental large-scale
protein interaction studies. Extracting interactions from liter-
ature is more difficult than gene mention normalization,
because the latter is a first step toward solving the former. If
identifying one gene can be achieved with a success rate of
80%, then the rate of correctly extracting a pair of genes is
reduced to an expected 64% when we ignore the specific prob-
lems of finding real interactions. The rate at which a complete
triplet of two genes and their relation can be extracted is thus
likely to be well below 50%.

We tackle the problem of extracting interactions by leverag-
ing a well known approach from sequence analysis: motifs
derived from multiple sequence alignments. In sequence
analysis, functional sites and key residues can be identified by
aligning multiple proteins across different species and
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extracting highly conserved residues. Examples are the NPA-
motif in aquaporin or the P-Loop motif for G-proteins. Two
key problems in such an approach are the computational
complexity and the selection of data. Comparing two
sequences of length n with dynamic programming is propor-
tional to n2. Extending this to m sequences increases the com-
plexity to nm. To avoid such prohibitive computations,
multiple sequence alignments are often approximated by
computing pair-wise alignments, and subsequent clustering
leads to polynomial complexity [5]. The second problem
relates to the choice of sequences. If the sequences are too
closely related, then the motifs will be overfitted; if they are
too distant, then there will be no motifs.

In our approach to protein-protein interaction (PPI) extrac-
tion, we create multiple sequence alignments of selected sen-
tences and then derive motifs. Because we are interested in
general motifs depicting how authors write about interac-
tions, we replace specific occurrences of concrete protein
names by a place holder. As in classical multiple sequence
alignments, we approximate the optimum with a clustering-
based approach and we carefully select sentences that are not
too closely and not too distantly related. An example of a
motif is given in Figure 2, in form of a sequence logo. This
motif was derived form four different (parts of) sentences and
reflects the commonalities between them.

In the following discussion, we give a brief overview of the
various steps of the approaches we take to gene mention nor-
malization and extraction of PPIs. We then present quantita-
tive and qualitative results for each approach. We discuss all
results and draw conclusions from our work. In the last part
of this report we present all of our methods in more detail. To
better assess the findings that we present, we recommend
reading of the Materials and methods section (below) before
the Results and Discussion sections (also below). We present
related work where applicable; please also refer to the over-
view articles on BioCreative II [6-8] for discussions of related
work.

PTN interacts with PTN
PTN binds the PTN
PTN interacts with the PTN
4“1 PTN bound to PTN
3
2,
P = P
0 R - -? -
Figure 2

Multiple aligned sentences define a consensus pattern. Logo for a motif
derived from multiple sequence alignments that can be applied to
sentences of unknown content. PTN represents arbitrary protein names,
as does P. V and W are interaction verbs in present and past form,
respectively; E is a preposition and D a determiner.
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Gene mention normalization

Most systems for gene mention normalization consist of four
major building blocks: the acquisition and processing of data
(texts and information on genes), the recognition of named
entities, and their identification. A similar scheme is pre-
sented in the BioCreative II GN task overview article; see the
report by Morgan and coworkers [7], where detailed explana-
tions can also be found.

Data acquisition

The first stage is the acquisition of knowledge about the enti-
ties sought. In the case of gene mention normalization, lexica
contain all known names for each gene, and databases con-
tain detailed background knowledge about each gene and
links to texts related to each gene. Lexica help in the search
for genes based on the pure syntax; background knowledge
and text examples help with gathering semantic information
about each gene, which can also be searched for.

Data processing

In the second stage, data from the first are processed. We ana-
lyze known gene names to learn about typical variations
(which are currently unknown in the lexicon but might occur
in the literature).

Entity mention recognition

The third stage handles the actual search for names in a text.
From the analysis of known gene names, a search strategy is
derived to find these names even if the authors use a non-
standard name.

Entity identification

In the fourth stage, all names found in a text are identified.
For a gene mention, this refers to finding the database identi-
fier for the gene referenced by the mention. This can be done
on a syntactic level (string matching), by searching for the
known name from the lexicon that is most similar to the cur-
rent mention. It can also be done on a semantic level, by com-
paring information known about each (candidate) gene with
the current text.

Extraction of protein-protein interactions

The simplest systems for extracting PPIs from text look for
pairs of proteins that appear together in one sentence. This
typically leads to high recall but low precision, because co-
occurrence of proteins in one sentence is an almost necessary
but not sufficient condition for PPIs. Approaches using
machine learning require large, well annotated training cor-
pora, few of which are available for PPIs. Sophisticated natu-
ral language processing techniques achieve very good
precision, but they often fail when confronted with complex
sentences. One approach to finding PPIs is by matching the
text against predefined patterns, that is, expressions over
words or word stems, pre-recognized tokens, linguistic infor-
mation, or combinations of those [9-11]. The entire workflow
is divided into four stages.
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Training sample

In the first stage, a training sample is collected from which
information on frequent patterns can be drawn. This collec-
tion is either done manually, which leads to high-quality data,
but is generally time-consuming and results in comparatively
small samples. We present a method in this report to collect a
very large sample automatically. Note that this sample is
independent of any problem-specific training data; instead, it
must be computed only once to solve the PPI extraction prob-
lem on any corpus.

Generating patterns

In the second stage, the sample is used to infer patterns.
These patterns cover frequent textual descriptions of PPIs,
mostly using sequences of part-of-speech (POS) tags and
word lists to generalize observed sentences. We use a mixture
of sentence clustering and multiple sentence alignment to
derive patterns from sentence examples.

Pattern matching

The third stage handles the matching of patterns against new
text. Multiple strategies exist, with use of patterns such as
regular expressions being the most prominent one. In our
approach, we take a bioinformatics approach and use sen-
tence alignment to allow for and quantify inexact matches.

Table |
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Identification of proteins

Stage four identifies the proteins found as partners in PPL.
This identification builds on the same ideas described in the
previous section on gene mention normalization.

Results

Gene mention normalization

We show all quantitative results in Tables 1 to 5. In addition
to the initial results on the training and test sets, we show per-
formance of the current system, which contains improve-
ments added after the BioCreative II workshop. For the
workshop our best F measure was 81%; the current system
achives 86.4% on the test set. Our maximum recall values
were between 87.5% and 92.7% (test and training set, respec-
tively). Table 5 shows the impact of using different context
types on the performance. Chromosomal locations have the
greatest impact on precision (+64.5%), but of course not all
abstracts contain such information on all ambiguous genes.
To maintain high recall, Gene Ontology (GO) terms are well
suited (losing only 9.9% in recall, but gaining 36.6% in preci-
sion). The hidden Markov model based context filtering
(wrong species and so on) was able to increase the F measure
by 45.9%, losing 10.3% in recall.

Results for gene mention normalization

Short description of the submitted run Precision Recall F measure (%) True positives (n)  False positives (n)  False negatives (n)
Training set 82.1 81.6 81.8 522 114 118

Training set, no filtering, no disambiguation 20.2 92.7 33.1 593 2,348 47

Test set 789 83.3 81.0 654 175 131

Test set, no disambiguation 49.6 87.5 63.3 687 699 98

Test set, unextended lexicon 70.7 725 71.6 569 236 216

Test set, current performance 90.7 82.4 86.4 647 66 138

Performance of the gene mention normalization component on the BioCreative | | gene normalization sets. Each run includes the extended gene
name lexicon, all false-positive filters, and the disambiguation, unless indicated otherwise. Results on the test set reflect official results achieved in the
external evaluation; the last row shows the current performance, resulting from improvements added in the aftermath of BioCreative II.

Table 2

Performance for gene mention normalization for mouse, yeast, and fruit fly datasets

Short description of the submitted run Precision  Recall F measure (%) True positives (n)  False positives (n)  False negatives (n)
Mouse, training set 86.6 69.2 77.0 322 50 143

Yeast, training set 89.0 84.0 86.4 219 27 42

Fly, training set 87.9 55.6 68.1 124 17 99

Mouse, test set 91.6 72.6 81.0 355 36 149

Yeast, test set 94.9 84.8 89.6 520 28 93

Fly, test set 82.1 69.5 753 298 65 131

Current performance of the gene mention normalization component on the BioCreative | gene normalization sets. Each run includes an extended
gene name lexicon (based on BioCreative | data and with additional synonyms from EntrezGene), all false positive filters, and the disambiguation.
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Table 3
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Performance of the IPS system on the BioCreative Il data

Short description Precision Recall Micro-F Macro-F
m=2;g1=0.83;ld=3;ids=2;sr=a h,m,y,* 1.8 43.7 3.5 3.1
m=1;gl=0.83;Id = 3;ids = |; sr = a* 252 233 24.2 21.1
m=1;gl=0.75Id = 5; ids = |; sr = a,* 22.8 21.6 222 19.7

Results for different strategies using the IntAct pattern collection on the BioCreative |l test set. gl, guide list cut-off; ids, number of submitted IDs per
protein; IPS, interaction pair subtask; Id, maximum length difference; m, minimum of identified interactions per pair and article required; sr, species
resolution (pick first species from abstract [a], pick human [h], mouse [m], yeast [y], or from best scored protein [*], in the given order; see text for

explanations on these parameters).

Table 4

Performance of PPl extraction on the spies corpus

Corpus Short description of the submitted run Precision Recall F measure
Spies Initial pattern set 85.8 15.2 258
Spies CP, single layer (POS tag including entity) 76.6 47.1 583
Spies CP, multilayer (token, POS tag, stem, entity) 78.7 51.9 62.6
Spies CP, optimized for precision +1 -4 60.1
Spies CP, optimized for recall -5 +5 63.9

Performance of our approach to protein-protein interaction (PPI) extraction on other external corpora. We also show the influence of using part-
of-speech (POS) tags only compared with multilayer alignments, and results for optimization towards a single metric (precision or recall). Note that
these evaluations do not require the identification of proteins, as in BioCreative ll, so figures are higher in general. CP, consensus patterns resulting

from clustering and multiple sentence alignment.

Table 5

Impact of different context types on human gene mention normalization

Context type Precision Recall F measure
Baseline: NER only 9.7 91.1 17.5
NER + GeneRifs 50.8 783 61.6
NER + GO terms 46.3 81.2 59.0
NER + EntrezGene summaries 49.0 66.7 56.5
NER + diseases 22.7 43.9 29.9
NER + functions 50.8 72.5 59.7
NER + keywords 53.0 53.6 533
NER + locations 742 14.8 247
NER + tissues 394 29.1 334
NER + immediate context filter (heuristics) 235 89.8 372
NER + immediate context filter (HMM) 529 80.8 63.4
NER + PMIDs 96.2 50.8 66.4

Starting from a baseline configuration (pure recognition of named entities; see text), each context type was evaluated separately. In addition, we
present the impact of filtering by the immediate context: excluding genes from wrong species, abbreviations, and similar heuristics, and using an
hidden Markov model (HMM) learned from the training data. Using PubMed IDs (PMIDs) curated for each gene (for instance, via GeneRIFs, Gene
Ontology [GO] annotation, and UniProt) would be the best way to ensure high precision and F measure, although these data were not used for the
BioCreative Il evaluation. NER, named entity recognition.

Genome Biology 2008, 9(Suppl 2):S14
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Protein-protein interactions

On the BioCreative II interaction pair subtask (IPS) test set,
our best F measure was 24% (see Table 3); we achieved the
highest recall among all participants (43.7%), but with a low
precision. These figures include the extraction of the interac-
tion as well as the identification of all participating proteins
(two in most cases). Our system yields a maximum recall of
69% for the identification of single proteins, which was the
best reported among all participating systems; our highest
precision here was 45% and the F measure was 41%. Given
that the F measure for gene identification (32,975 human
genes) was around 80%, the upper bound for the correct iden-
tification of a protein pair would be 64% accordingly (but is
actually much lower because the IPS task included more than
300,000 proteins from different species). To measure the
performance without the task of protein identification, we
tested our system on the Spies corpus [10] (see Table 4). For
this task, our best F measure was 63.9%, but the task did not
include the identification of proteins.

As described in the Materials and methods section (below),
our approach first computes initial patterns from example
sentences and then merges them to more general consensus
pattern to increase recall. We tested both using the initial pat-
terns directly (and expected good precision but low recall) as
well as using the consensus patterns. Starting with an initial
pattern set, automatically collected from Medline, we achieve
a precision of 85.8% at a recall of 15.2% on Spies.

Table 6

Genome Biology 2008,
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Generalization of the pattern set by multiple sentence align-
ment to find consensus pattern increases the recall to a max-
imum of 56.9% at 73.7% precision. Note that prior to our and
other systems presented at BioCreative II, approaches pro-
posed for extracting PPIs stopped after the third stage (see
section on PPIs under Background, above); predicted evi-
dence for PPIs were reduced to protein names as they
appeared in the text, rather than exact identifiers. Thus,
results presented on previous benchmarks (such as the Spies
corpus) often range between 70% and 90% F measure, but on
a much simpler task [9-13].

Analysis of errors during gene mention normalization
For the gene normalization task, we analyzed the types of
error - 175 false positives and 131 false negatives - made on the
test set. Table 6 provides a detailed view of errors that cause
false negatives or false positives, sorted by error type.

False negatives

The most abundant type of false negatives (66 cases) are due
to the successive filtering steps and are a consequence of pre-
cision-recall tradeoffs. The second most common error was
due to unrecognized gene name variations, which account for
35 cases. For example, 'progelatinase A' is in the abstract
whereas the most relevant synonym is 'gelatinase A'. Such
variations were either lexical, structural, orthographic, or
morphologic variations. In 24 cases, additional tokens found
in the known synonyms hindered the recognition. For

Sources of errors for the gene mention normalization

n Cause

Evidence or examples

False negatives

Evidence from abstract/closest lexicon entry

24 Polluting tokens

35 Unrecognized variations (orthographic,
lexical, structural, morphological)
Segmentation of name failed

2 Syntactically unrelated

66 Removed by filtering step

spectrin betalV/spectrin beta non-erythrocytic
DCoHm/DCOHM

prothrombin/thrombin

hOBP (lIb)/hOBPIIb

polycomblike/PHD finger protein

False positives

Examples, with EntrezGene ID

30 Triggered by wrong name boundary

30 Context filtering (reference to cell etc.)
22 TF*IDF filter

11 Disambiguation picked wrong gene

8 Abbreviation resolution failed

4 Wrong species

Overlap of names not recognized
NER missed correct ID
26 Multiple identifiers for one name
40 Other

type Il IL-1 receptor

CD4+

five EGF-like domains; ARC complex
Nup358 (440872 instead of 5903)
Wolf-Hirschhorn syndrome (WHS)

Notch! (...) murine tissues

TR2 (8740 instead of 10587)

Analysis of errors that occurred during gene identification, false negatives and false positives, and examples of errors. Words in italics are the parts

recognized in longer compound names. NER, named entity recognition.
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example, 'spectrin betalV' is in the abstract, but the closest
synonym is 'spectrin beta non-erythrocytic'. In most cases,
such tokens refer to descriptions, as in the example. (At the
time of writing this report, EntrezGene contains the synonym
'betalV spectrin'.) The segmentation of gene names at strong
and weak bonds failed in four cases, one of which involved
parentheses; the mention 'hOBP (IIb)' is in the abstract but
the closest synonym in the lexicon list was "hOBPIIb'. Finally,
only two gene mentions had no syntactic similarity with any
of the synonyms of the valid EntrezGene identifiers, for
instance the name 'polycomblike' - a syntactically unrelated
name for the PHD finger protein 'PHF'. Given the fact that
most false negatives are due to unknown syntactic variations,
the recall can be further improved through better coverage of
gene name variations. As shown in the 'betalV spectrin’
example, however, the curation of the gene name lexicon also
plays an important role; high-coverage, high-quality, and up-
to-date sources of gene names are needed, especially because
recent abstracts are more likely to contain variations in gene
names that are not yet listed in databases.

One way to improve the coverage of variation rules is to learn
them automatically from the synonyms in the lexicon. An
example for which this could have helped is '5HT4sR' (3360)
-where 's' is absent from all abbreviations in the lexicon list
(for instance, '5-HT4R') - but which could have been learned
from the compound name '5-hydroxytryptamine (serotonin)
receptor 4'. We postulate that such structural, morphologic,
orthographic, and lexical variations could be learned auto-
matically from the analysis of dictionaries [14].

False positives

Most false positives were strict in the sense that they were
wrong recognitions, regions of text not referring to a gene.
Many wrong recognitions (30 cases) were due to parts of a
gene mention, such as 'IL-1 receptor' being recognized
instead of the whole mention 'type II IL-1 receptor'. Also, the
context filtering rules did not cover enough cases (another 30
false positives). For example, the mention 'ARC complex’
refers to a complex and not to the 'Apoptosis Repressor with
CARD domain' gene. Another example is 'inhibitors of PI 3-
kinase', which does not refer to the kinase itself but to its
inhibitors in general.

In 26 cases, multiple identifiers were kept for the same men-
tion; this was due to the fact that all identifiers had high and
similar scores and thus, instead of having both a false positive
and a false negative, it was deemed better to keep several can-
didates. This assumption held only for the training dataset,
though, producing much fewer false positives and resulting in
more true positives than on the test set. In 22 cases, false pos-
itives such as TNF were not filtered by TF*IDF scoring. In 11
cases the disambiguation failed to pick the right identifier,
such as the mention 'Nup358', for which a 'GRIP domain con-
taining' gene (440872) was chosen instead of the 'RAN bind-
ing protein 2' (5903). The resolution of abbreviations failed in

Genome Biology 2008,
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eight cases; in the mention 'Wolf-Hirschhorn syndrome
(WHS)', 'WHS' was confused with the gene 'Wolf-Hirschhorn
syndrome candidate 1' (7468), whereas the abstract discusses
the candidate 2 (7469). This error depicts the difficulty of dis-
tinguishing a gene mention from diseases, domains, com-
plexes, and other entities to which they are biologically
related. Finally, in two cases, the recognition missed to assign
the right identifier altogether (but assigned other candidate
IDs).

From this analysis we, learn that the strength of our system
was in tackling false positives from a semantical point of view;
few mistakes were made in choosing the right identifier from
among wrong candidates. Instead, many false positives are
due to wrongly delimited matches or to mentions of other
entities confused for genes, most of which can be detected at
the syntactical level using hints such as keywords (‘complex’,
'inhibitors', 'superfamily’) before and after a candidate men-
tion. Thus, precision can be further improved by a better syn-
tactical analysis of the text, and of the contextual clues around
candidate gene mentions.

Analysis of errors in extracting protein-protein
interactions

Because of the nature of the BioCreative II IPS benchmark,
error analysis proved not as easy as on the BioCreative II gene
normalization data. The benchmark consists of a large
number of full text articles, and annotations are available only
externally in the form 'PubMed-ID|UniProt-ID|UniProt-1D',
thus not pointing out exact evidence for the interactions.
Assessing each false positive/negative thus means reading
each full-text article and identifying proteins by hand. Here,
we describe the main sources of errors qualitatively rather
than quantifying them.

We noticed that our patterns often are not suited to fit large
enumerations, like 'A interacts with B, C, and D'. There are
two reasons for this type of error. First, sentences fitting the
given example were not contained within the initial set of core
phrases, and thus the subsequent clustering and multiple
sentence alignment failed to generate a pattern matching the
example. Second, fitting sentences were contained in the ini-
tial set, but the annotation for PPIs that came from known
IntAct pairs did not include all pairs in the sentence. For
instance, we could have a core phrase with an annotated
interaction 'A/C' and one with the interaction 'A/D', but none
with 'A/B'. Parsing of sentences to appreciate that B, C, and D
are part of the same enumeration, and thus are all related to
A in the same way, would be a way to tackle this problem.
Another option would be to include grammars to deal with list
of proteins ('PTN — PTN|PTN and PTN").

Many of our patterns are subpatterns of others. We saw that
whenever a larger pattern matches the given sentence, the
shorter pattern should not be used at all. This resulted in
errors such as in the example 'A interacts with B and C
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interacts with D', where a short pattern 'PTN interacts with
PTN and PTN' will return a false-positive interaction between
AandC.

A particular source for false positives was dangling text and
bibliographies. Although the predicted interaction might be
correct, they were not contained in the main part of the cur-
rent article and thus false. In the same manner, we found that
many false positives result from the interactions discussed,
for instance in introductory sections of an article. These were
not regarded as main statements made by the authors of that
article, but mere background information, and thus not
included in the benchmark. However, a simple filtering by the
number of occurrences of each single predicted interaction
(background information: only once; main results of the cur-
rent article: multiple times) should help to solve this issue.

Some errors, mainly affecting the protein name recognition,
resulted from poor PDF to ASCII conversion of articles. This
was necessary to make each article machine readable, but led
to names lacking Greek letters, or superscripts and sub-
scripts. In particular, Greek letters are quite often parts of
protein names. When these are missing from names of mem-
bers of protein families ('eI[FGa' through 'eIFGk' all become
reduced to 'eIFG'), recognition and, in particular, identifica-
tion are much more difficult if not impossible.

Discussion

Gene mention normalization

There are some other systems that also use gene context mod-
eling information on each gene drawn from different sources.
For example, Fundel and coworkers [15] and Xu and col-
leagues [16] search for UMLS concepts assigned to each gene
in the text surrounding ambiguous mentions. They report
comparable performances, and it remains to be seen how our
system could benefit from including UMLS terms. Instead of
comparing exhaustive descriptions for diseases or molecular
functions (such as from UniProt) to texts, recognition of plain
terms might lead to more precise mapping of gene contexts to
texts.

We calculated the performance of our system on BioCreative
I Task 1B data, where the task was to identify genes from
yeast, mouse, and fruit fly, on three separate datasets. Table 2
shows the results for these tasks. Performance was about 4%
better for yeast genes (F1 86.4% and 89.6% on training and
test set, respectively), and 4% worse for mouse genes (77%
and 81%), as compared with our results on the human data-
set. The F measure on the fruit fly data (68.1% and 75.3%) was
mainly affected by the low recall of these genes (55.6% and
69.5%). The respective top scoring systems for each of these
species in BioCreative I achieved F measures of 92, 79, and
82% on the three test datasets [17]. Gene names from yeast
are less ambiguous than names from human; on average
there are 1.01 genes per name for yeast and 1.03 for human,
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and so the disambiguation task is somewhat easier for yeast.
The same argument also holds for fruit fly data, for which
there are 1.13 genes per name, making the disambiguation
much harder (mouse: 1.02). One other explanation for the
worse performance on mouse and fruit fly data could be an
overfitting of the named entity recognition component
towards human gene names. Also, 'in-general-mentions', not
referring to any particular species, were treated as correct
mentions according to the current annotation guideline. Bio-
Creative I data were slightly less ambiguous for mentions of
genes from different organisms (data not shown). An indica-
tion for overfitting to the training data could also be the vast
difference of performance on training and test sets (up to 7%
in F measure on BioCreative I, as compared with only 0.8%
on the BioCreative II data).

Assuming perfect named entity recognition, which does not
miss any mention nor find false positive names (for instance,
wrong species), but perhaps assigns multiple candidate IDs to
a name, we noted an increase in performance by more than
10%. This scenario is close to the study conducted by Xu and
coworkers [16], who reported a precision of 92.2% at 93.8%
coverage on a simplified subset of the BioCreative II gene nor-
malization data [16] (114/262 abstracts), and leads to compa-
rable results. The search for named entities, in our approach
based on inexact matching against a dictionary, could also
draw from other approaches proposed for named entity rec-
ognition. These often build on machine learning techniques,
such as sequence models, to also spot previously unseen
named entities (see overview article on the BioCreative II
gene mention task in this supplement [18]).

Protein-protein interactions

There are several approaches to the extraction of PPIs from
text. A large number of systems uses hand-crafted pattern
sets, such as [9] and [19]. Although these systems may reach
very good precision, the effort necessary to obtain at least
acceptable recall on the sentence level is very high. Another
class of systems relies on pure machine learning and casts the
extraction task as one of classifying a sentence (or an
abstract); an example is the PreBind system [20]. However,
these systems usually can only point to a sentence describing
an interaction, but not the type and partners of it. The system
most similar to our approach was described in [10]. The
method described there learns patterns for information
extraction from an annotated corpus, which is very different
from our method. Noteably, our results on the corpus used in
this paper are only marginally worse than those of the
authors, despite the fact that we do not use any training data.
This hints toward the high robustness of our ideas. A simpler
but comparable approach to extract mentions of gene and
protein mutations was presented in [21]. Finally, the general
idea of sentence alignment in a method similar to the align-
ment of sequences has already been used in different fields of
linguistics, such as in paraphrasing [22].
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Our method for extraction of PPIs works completely inde-
pendent from the training corpus, which we did not use at any
stage. Thus, we intrinsically exclude any risk of overfitting,
and believe that our approach should work equally well for
related extraction problems, such as finding associations of
proteins with diseases.

We tried to score potential PPIs by comparing the GO anno-
tations of both partners with each other. A model for such a
comparison can be learned from the provided training data.
We used all annotated PPIs as positive examples; whenever
two proteins occur in the same publication, but were not
annotated as interacting, we took those as a negative exam-
ple. In theory, such a model should be able to tell whether two
proteins are similar enough (concerning their annotation) to
be interacting, but not too similar. For instance, two spatially
interacting proteins could be involved in the same biologic
process and thus share this annotation, but in terms of func-
tion one could be a receptor and the other a ligand; hence,
these annotations differ slightly. We found the predictive
power to be too weak, however, mainly caused by the lack of
proper negative examples. Schlicker and coworkers [23]
present a similar approach to score interactions in large-scale
datasets and subsequently identify likely false positives [23].

Sentence parsing proved to be more precise than pattern
matching approaches, as used by our system, for instance
shown in [12,13]. During the past few years, sufficiently well
performing tools for sentence parsing and resolving the
dependency structure have been proposed, and also tested on
biomedical corpora [24]. Saetre and coworkers [25] pre-
sented a system that built on patterns over dependency struc-
tures instead of mere POS tags and surface information.
Using some of the stages of our approach, it is possible to
extract large samples to also learn these types of patterns.

Conclusion

We found that comparing a gene's known context model with
the text it is potentially discussed in improves the disam-
biguation of candidates significantly compared with pure syn-
tactic approaches (that use string matching against a
dictionary). In particular, chromosomal locations, molecular
functions, and biologic processes known for a gene or its
products increase the precision. Also, the comparison of
GeneRIFs with the text at hand helps to select the right gene
from among multiple candidates.

Future work will cover automated analysis of gene name lex-
ica to identify common variation patterns. These can either be
transformed into rules to generate synonyms, or included in
the matching strategy. Such an approach could also be
applied to other domains, such as disease or drug names, or
GO terms. We plan to study the forward annotation of genes
using nearest candidate selection based on associated texts
(for example, noisy data) or z scores of the disambiguation
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component in more detail. Thus far, the predictive power of
both approaches was too low. A string matching of known
synonyms for each such predicted gene following the seman-
tic matching might help to increase performance; the string
matching could be less strict than when used as a single
component.

In addition to the gene normalization approach, we also pre-
sented a fully automated system to find and refine language
patterns (sentence motifs) for PPIs. These patterns can be
aligned to arbitrary text to extract new PPIs, or they can be
used to learn pattern sets as shown by Hao and colleagues
[10]. Our approach is applicable to other domains, as long as
high-quality databases covering relationships of interest (for
instance, gene-disease associations) are available. Current
work on the IPS task mainly is concerned with speeding up
the processes of computing consensus patterns and applying
them to new text. Our method for both steps is based on pair-
wise and multiple sentence alignment; both processes are
computationally complex. In addition to estimating likeli-
hoods based on pattern (usage) frequencies, we are also stud-
ying different strategies to recognize patterns in text, other
than alignment. One strategy in particular is direct memory
access parsing (DMAP), where we transform patterns into
grammars. These could, for instance, handle enumerations of
proteins properly (‘protein — protein | protein-list’). A pub-
licly available framework for DMAP is OpenDMAP [26].
Finally, we believe that the next generation of PPI extraction
tools will also include interactions that are described across
sentences - a frequent and common linguistic phenomenon
that is not handled by any PPI extraction tool that we are
aware of.

Materials and methods

This section presents our methods for each of the aforemen-
tioned stages of gene mention normalization and PPIs. Gene
mention normalization then forms a building block for the
identification of protein pairs.

Gene mention normalization

Data acquisition

Dictionaries

Our dictionaries were based on the lexica provided with the
BioCreative II datasets. For gene name identification, this
lexicon consisted of 32,975 human genes from EntrezGene.
For protein names, there were 323,547 entries from Swiss-
Prot. To ensure higher recall, we added more known syno-
nyms to each gene/protein. We found additional gene names
in EntrezGene's 'Other designators' field, and also retrieved
all names for each protein referenced in EntrezGene (by Uni-
Prot ID). For the protein identification (as a subtask of IPS),
we found that the same protein often had slight spelling vari-
ations concerning 'standard' names across different species.
For instance, compare the names 'Hoxb4' (human) and
'"HOXB4' (mouse). Authors use either variation to refer to one
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of these proteins. We thus combined all similar names (no
white spaces, case insensitive, no symbols) into sets of IDs.

Background knowledge

We collected background knowledge from EntrezGene, Uni-
Prot, and GO annotation (GOA) for each of the 32,975 genes
(EntrezGene: summary, GO terms, GeneRIFs, chromosomal
location, interaction partners; UniProt: diseases, keywords,
functions, protein mutations, protein length, protein
domains, GO terms, interaction partners, tissue specificity;
GOA: GO terms).

Data processing

After extending the dictionaries with additional synonyms for
each gene/protein in the way described, we transformed
every name into a regular expression to match orthographi-
cal, morphological, and some structural variations likely to be
used by authors. To generate the regular expressions, we
grouped all synonyms from the lexicon into either of four cat-
egories: database identifiers, abbreviations and acronyms,
compound names, and unlikely gene names. We treated any
instance of these four groups differently with respect to the
way in which we generated regular expressions. We filtered
out unlikely names ('AA', "ORF has no N-terminal 'Met’, it
may be non-functional", single letters, numbers) entirely and
concentrated on the other three groups instead.

In the case of database identifiers, we searched for them using
manually encoded regular expressions. A match triggered an
immediate identification of the referenced gene/protein; if it
was contained within the gene lexicon, then no further
processing was required. To generate regular expressions for
abbreviations and acronyms, we segmented each such name
into components for which we observed and thus could
express frequent variations. This segmentation was triggered
by strong and weak bonds within a name. White spaces and
hyphens are strong bonds, weak bonds occur for every other
change in the flow of characters (between upper and lower
case letters; between letters and digits). We introduced weak
bonds also for every first and last letter in a sequence of let-
ters. For each segment, we generated potential variations
based on observations in the lexicon list and training data. In
general, variations allowed for changes in the surface pattern
of the following: letter sequences such as MYD, Myd, myd,
and MyD; switches between Roman and Arabic numbering,
such as 2, ii, and II; single letters for Greek characters such as
a, a, A, alpha; and special single letters such as R, r, or recep-
tor and L, LG, 1, or ligand.

Possible variations for each segment were combined into a
regular expression; all expressions for all segments defined
an expression for the whole abbreviation, with any kind of gap
in between. Examples are as follows: HER2 = {HER, HeR,
Her, her} [-]? {2, ii, IT}; IFN-gamma = {IFN, Ifn, IfN, ifn} [-]?
{g, G, gamma}; and MYD88 = {MYD, MyD, Myd, myd} [-]?
{88}.
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In addition, abbreviations of human gene names often feature
an additional 'h' at the beginning, so this was added as
optional to every abbreviation. We segmented compound
names at white spaces. Every segment (a token) was then
treated similar to abbreviations. Tokens that resembled Eng-
lish words (initial upper or lower case, then all lower case let-
ters) occurred in fewer variations (all lower or initial upper).
This ultimately led to a regular expression for the whole com-
pound name. Some tokens in a compound name often are left
out in free text, such as 'protein' or 'domain'. We thus encoded
all these as optional in the regular expression.

We removed names from regular expressions when they
matched one of 7,700 stop words from the BNC frequency list
[27]. Hand-crafted rules also removed matches like 'or 45'
and 'and 1', triggered by too loose regular expressions for the
gene names 'Or45' and 'And-1', respectively. For some names,
like 'protein 1' or 'antigen 2', we did not generate regular
expressions that allowed for variability, but required exact
matches.

Entity mention recognition

We preprocessed all texts to find ranges and enumerations of
(potential) gene names. Each such range was replaced with a
list of all expanded names. For example, occurrences such as
'hHR23A and -B' were replaced with hHR23A and hHR23B,
and 'freac-1 to freac-3' was replaced with 'freac-1, freac-2,
freac-3'. We combined consecutive and overlapping evidence;
overlapping names such as 'TL-1 receptor' ('IL-1' and 'TL-1
receptor' are both valid gene names) and abbreviations with
definitions such as ‘'vesicular monoamine transporter
(VMAT)' were treated as a single item of evidence. In both
cases, we retained all candidate IDs for the longer form if the
two sets did not overlap, or built the union if there was an
overlap in IDs.

We encoded all regular expressions for all gene names
together in a single finite state automaton. This automaton
had end states for every potential match, and each end state
accumulated all corresponding EntrezGene IDs (UniProt IDs
for the IPS task). A match with the automaton then triggered
a recognition with an initial set of candidate IDs for further
filtering and disambiguation. Matches required word bound-
aries around each name ({blank, (/} before the match; and
{blank, . : ; /) + - '(+'} after the match).

Identification of entities

Identification of genes was done in two steps. First, we tried
to filter out false positive names -that is, names not referring
to human genes - according to some statistics and heuristics,
which we explain in the following text. The heuristics invoked
the immediate context of a name, which might contain evi-
dence that the name refers to a different species (not human
or mammal), that it refers to a disease, that it is an unspecific
mention (of a protein family), or that it refers to a common
English word. The second step disambiguated remaining
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names by ranking all genes that were candidates. Ranking
was performed by comparing background information on
each of the candidate genes with the current text, scoring dif-
ferent types of background information, and picking the gene
that most likely is discussed in the text.

Filtering of names

After the initial recognition of potential gene names, we pro-
ceeded with filtering out or trying to identify each name. We
passed the annotated texts through several filters to reduce
the number of false positives and to find the correct diction-
ary entry. These filters checked for abbreviations defined in
the same abstract and references to wrong species, cell lines,
or diseases.

Filtering by immediate context

To distinguish between names referring to genes and names
referring to other concepts (for instance, protein families or
protein domains), we analyzed their immediate context - that
is, the two words adjacent to the current name, skipping over
the most frequent stop words. To build a statistical model, we
annotated the training data from BioCreative I and II with
dictionaries for each species (mouse, yeast, fruit fly, and
human). All matches were then separated into the two classes
'gene names' and 'other concepts' by comparison with the
gold standards. We then used these two sets to build a hidden
Markov model for each class. Each model contained three
states (left, middle/name, and right), with according token
emissions. We tested these models against the human test set
and found the log-likelihood ratio to be statistically signifi-
cant (P < 0.0003) to distinguish between human genes and
other concepts.

Abbreviations

If a gene name was found as a single token inside brackets,
then we treated it as an abbreviation and tried to resolve it to
its long form in the preceding text. In case a long form was

Table 7
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found and it did not contain, for example, 'protein’, 'gene’ or
'factor’, or ended with "*ase', or was not recognized as a gene
name itself, we treated the short form as a nongene
abbreviation.

Filtering for wrong species, cell lines, and disease names

We also checked for unwanted references (different species,
cell line) and gene names that overlap with disease names. In
general, we removed every gene name that had an adjacent
species different from human, was followed by a references to
a cell (line), or resembled a disease name. We recovered some
of such filtered names by keeping genes that mention a differ-
ent species, but also human (or general references to
mammals) somewhere in the same sentence; we kept disease
names when they were used as reference to a chromosomal
locus. Table 7 shows some examples for heuristic rules to find
such occurrences.

Filtering unspecific names

We cross-checked each name against a predefined regular
expression that matches unspecific names. It consists of
unspecific tokens (‘isoform', 'protein’, liver', and 'mem-
brane'), and we allowed for any permutation and number of
those (see the Additional data files).

Disambiguation by candidate ranking

The final component for gene name identification disam-
biguated each polysemous name. We compared background
knowledge available for each gene (gene context) with the
current text and picked the gene whose context best fitted the
current text. We collected external knowledge from Entrez-
Gene, UniProt, and GOA for each of the 32,975 genes (Entrez-
Gene: summary, GO terms, GeneRIFs, chromosomal
location, interaction partners; UniProt: diseases, keywords,
functions, protein mutations, protein length, protein
domains, GO terms, interaction partners, tissue specificity;
GOA: GO terms).

Filtering rules for species, direct references, and chromosomal locations

Species

- non-human-species <candidate name>

+ human and nonhuman-species <candidate name>

- <candidate name> {(, ,'} {a, an, the} not-human-species
<candidate name> {(, ','} {a, an, the} human
human <candidate name> {(, '’} {a, an, the}
Direct mentions, cell lines, chromosomal loci

+ <candidate name> {gene, protein}

- <candidate name> {cell(s), culture(s)}

+ {locus, loci, location, chromosome, chromosomal, gene * associated}

Examples for heuristic rules to filter out candidate names when they appear to refer to some other concept (gene from another species, cell line,
disease locus). '<candidate name>' refers to the occurrence of the potential gene name under consideration. Keep (+) or remove (-) a candidate
name when the sentence contains the pattern ('+' rules have preference). 'human' includes references to mammals.
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To calculate the similarity based on GO terms, we searched
for GO terms in the current abstract and compared them with
the set of GO terms assigned to each gene candidate. For each
potential tuple taken from the two sets (text and gene annota-
tion), we calculated a distance of the terms in the ontology
tree. These distances yielded a similarity measure for two
terms, even if they did not belong to the same sub-branch or
were immediate parents/children of each other. The distance
took into account the shortest path via the lowest common
ancestors, as well as the depth of this lowest common ances-
tor in the overall hierarchy (comparable to the report by
Schlicker and coworkers [28]). The distances for the closest
terms from each set then defined a similarity between the
gene and the text.

We compared the other annotations from each gene's context
model according to their type (terms or full texts). For terms
(such as keywords), we calculated the fraction of terms occur-
ring in the abstracts among all terms. For texts (for instance,
descriptions of a gene's implications in diseases), we calcu-
lated the cosine distance of both bag-of-word representations
(with term frequencies, TF, as weights) and the normalized
overlap (fraction of tokens from the disease description that
also occur in the abstract). We excluded 154 stop words and
other, nondiscriminative tokens such as 'protein’, 'observe’,
and 'detected'. All such comparisons yielded likelihoods stat-
ing the similarity of the current text with the knowledge avail-
able on each gene. For each type of annotation, we normalized
all likelihoods for all genes (where applicable) with the high-
est score, so that all values were between o0 and 1. We com-
bined all likelihoods for each gene into confidence measures
(between o0 and 1) and picked the EntrezGene ID with the
highest confidence score, if this was above a certain thresh-
old. Some annotations (protein mutations and chromosomal
locations), if they occur literally in the text, triggered a confi-
dence of 1.0. This was due to the fact that such annotations
were sufficient to identify a gene immediately; identical anno-
tations for different genes/proteins were highly unlikely.

Extracting protein-protein interactions

Our system for identifying pairs of interacting proteins built
on pattern matching to find evidence for interactions, and
protein identification comparable to the gene name identifi-
cation described in the section above. We searched for sen-
tences that discuss one or more PPIs using a set of language
patterns learned from a large, automatically annotated cor-
pus. For the protein identification, we construct context mod-
els from UniProt entries. Extraction of information on species
is done by Ali Baba [29], based on the National Center for Bio-
technology Information (NCBI) Taxonomy. We first describe
our notion of language patterns and how we learn a set of
these patterns without manually annotated data. We then
show how evidence is found in arbitrary text, and present
steps for protein name identification needed in addition to
the aforementioned gene name identification.
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Training sample

In a first step, we collect a corpus of sentences that probably
describe PPIs. Therefore, we scan all of Medline. Whenever
we encounter a sentence with multiple protein names, we
search for every possible pair in the IntAct database of protein
interactions [30]. If any of those pairs is contained in IntAct,
then we add the sentence to the corpus, including the posi-
tions of the interacting proteins. Note that this step requires a
sufficiently well performing protein name identification to
map candidate names to (in our case, UniProt) IDs that are
also referenced by IntAct. The dictionary we used for this step
was different from the one provided with the BioCreative 11
datasets and consisted of 195,008 UniProt names and
synonyms.

To avoid simple enumerations and 'random' co-occurrences
of proteins, we additionally require every sentence of the cor-
pus to contain at least one word referring to an interaction.
Such words may be verbs, nouns, or adjectives typically used
in the context of PPIs. Examples are verbs such as ‘phospho-
rylates' or nouns such as 'inhibitor'. We used the word lists
from Temkin and Gilder [31] and Hao and coworkers [10],
adding some more.

Generating patterns

In the most simple case, language patterns are sequences of
words that are commonly used to describe similar facts, in
our case PPIs. The words of a pattern are semantically anno-
tated to define the positions of entities (protein names), the
type of a relation (cleavage, activation), and the dependency
between agent and target (active and passive parts). Note that
the words in a pattern need not be words as they appear in
natural language, but can also be formed by linguistic tags.

Note that language patterns in our system are not regular
expressions. We allow for differences between a pattern and a
phrase by using sentence alignment, in the same manner as
sequence alignment introduces insertions, deletions, and
mismatches between DNA or protein sequences, not by intro-
ducing special characters into the pattern. Furthermore, the
decision regarding whether a term of a pattern matches a
term of a phrase is not binary. Instead, the specific term pair
is assigned a score by looking it up in a substitution table.

Extraction of initial patterns

In the next step, we extract its core phrase from each sentence
of the corpus. Recall that each sentence must contain one or
more pairs of protein names. The core phrase of a pair of pro-
tein names is the shortest subphrase to contain both partners
and the interaction word. We also add a parameterized
number of tokens to the left and right. We then substitute
names of proteins with their entity class. Based on the full
sentence, we add those annotations described above to each
position in the phrase. Each annotated core phrase now forms
an initial pattern. We provide sets of these core phrases in
[32].
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From initial patterns to consensus patterns

To identify patterns that are more general than the initial
ones, we perform several refinements. We first perform a
pairwise alignment of every pair of initial patterns using end-
space free global alignment [33] of sentences as described in
the next paragraph. We considered only pairs of patterns that
differed in length no more than a parameterizable threshold
(Id in Table 3). We end up with a matrix of pair-wise similar-
ities, called a pair-wise alignment library. We then apply
UPGMA-style hierarchical clustering to the pair-wise align-
ment library [33]. The clustering is stopped once the similar-
ity of the pair under consideration falls below a minimum
alignment score (parameter glin Table 3). This results in a set
of clusters of arbitrary size, including very large and singleton
clusters.

Next, we derive a consensus pattern for each cluster in a two-
step procedure. First, we compute a multiple sentence align-
ment for each cluster using a greedy strategy as in progressive
multiple sequence alignment algorithms such as ClustalW
[35]. For every position in the multiple sequence alignment,
we calculate the frequencies of observed annotations at this
position. These values further influence the alignment score
for the pattern aligned with unknown sentences (see figure 3).
The resulting position-specific scoring matrix forms the con-
sensus pattern of the cluster. Figure 2 shows an example of
such a motif.

Sentence alignment

Sentence alignment is used at two points in our system. First,
initial patterns are aligned against each other to form a clus-
ter. Second, a consensus pattern is aligned against a new sen-
tence to extract PPIs. We only describe the latter case,
because it is a generalization of the former.

The algorithm works very similarly to traditional sequence
alignment. For every pair of terms, a scoring function deter-
mines the costs for this particular substitution. Sequence
alignment uses scoring matrices, such as Blosum, that con-
tain costs for every possible pair of amino acids (nucleotides),
including gap penalties for inserted/deleted amino acids. In
the same manner, we use scoring matrices that contain costs
for term substitutions. If a term contains multiple annota-
tions (see the following subsection), then substitution matrix
must consider all of these values (tokens, stems, tags, entity
classes); see below in this section.

Multilayer alignment

In order to generalize patterns, most often patterns and sen-
tences become reduced to the sequence of POS and entity
tags. In fact, one can think of several annotation types that
together represent each term in a sequence. We see the differ-
ent types of annotations as layers, and use this term in the fol-
lowing. The simplest form for an annotation layer is the token
sequence. An alignment on the basis of tokens surely yields
high precision, but this model generalizes quite poorly. Using
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POS tags ensures a higher recall, with slightly reduced preci-
sion. Other possible layers are the sequence of entity classes
(separated from the POS tags), sentence parse information
(subject and object, phrases, chunks), word stems, or
lemmata.

For instance, using word stems, a switch in tense of a verb is
not particularly bad if the word stem is the same (‘inhibits’,
'inhibited"). On the other hand, a switch in both tense and
stem should be penalized ('inhibits', 'blocking"), because the
meaning is (sometimes entirely) different. Thus, if a pattern
uses a fixed token list for a certain position, for example
'inhibits' and 'induces', and the tense is fixed as well (only
present tense), a sentence containing 'inhibited' in past tense
still achieves a good score, because at least the word stem
'inhibit' is valid. For our experiments, we use tokens, word
stems, tags, and entity classes to annotate terms. For POS
tags and entity classes, we use a heuristic substitution matrix
to score about 50 different tags against each other. For tokens
and word stems, matches yield +1, replacements -1, and gaps

_3.

We calculate the multilayer alignment exactly like single-
layer alignments. The only difference is that this scoring func-
tion considers not only one substitution matrix, but several.
For each layer, there is a dedicated substitution matrix. An
example for a multilayer alignment that produces a consen-
sus patterns is shown in Figure 3.

Pattern matching

For matching patterns against texts, we first restricted texts
to sentences that contain at least two proteins. The matching
was then done using the aforementioned multilayer align-
ment of patterns with similarly represented sentences (POS
tags/proteins, tokens, and word stems). We precalculated the
maximum score that could be achieved with each pattern by
aligning it to itself. The fraction of the alignment score of pat-
terns and sentence and this maximum score then defined the
quality of a match. A parameterizable threshold decides
whether the match is good enough and the sentence is likely
to express a PPI. When a pattern matched a sentence, this
also defined the exact positions of all proteins involved. These
names were then taken to identify the actual proteins.

Identification of proteins

Once evidence for a PPI was extracted, each protein also had
to be identified. Like in the gene mention normalization, the
named entity recognition resulted in a set of potential candi-
date IDs for each name. Identification also was done as
described above. We further narrowed down the list of poten-
tial candidates by requiring both proteins of a given interac-
tion to originate from the same species. This comparison on
both sets was done on the plain UniProt accession code that
includes the species (for instance, 'FADD_HUMAN'"). We
treated all Saccharomyces and Schizosaccharomyces as
yeast in general. Once both sets had been narrowed down, we
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* / * blocked *

1 * / * block *
PTN SYM PTN IVBD PTN

* and * regulated *

2 * and * regulat *
PTN CC PTN IVBD PTN

% 7 % binds %

3 * / * bind *
PTN SYM PTN IVB PTN

* and * regulated *

4 * and * regulat *
PTN CC PTN IVBD PTN

* and * blocked *

5 * and * block *
PTN CcC PTN IVBD PTN
*5/5 and3/5|/2/5 *5/5 bindsl/5|blocked2/5\regulatedQ/g, 5/5
p *5/5 ands/s|/2/5 *5/5 bind; /5|blocky s|regulaty /5 *5/5

PTN;/5 CCs5/SYM,/5  PTNss VB, /5|[TVBD, 5 PTN; s

igure 3

Example of a multiple sentence alignment to identify consensus patterns. Here, five patterns extracted from the corpus define one consensus pattern
(bottom). Three layers are used in this example: tokens, stems, and part-of-speech (POS) tags. The weights represent the overall distributions per

positions.

applied a parameterizable heuristic to identify the correct
species. We checked the abstract for any species names first;
if no species fitting the candidate set was found, then we took
the first human/mouse/yeast variant from the set (if any), or
picked one at random (parameter sr in Table 3). Species
names in the abstract (mapped to NCBI taxonomy IDs by Ali
Baba [29]) were compared with the controlled vocabulary
provided by SwissProt/ExPASy [36]. In cases in which multi-
ple IDs per protein remained that had similiar likelihoods
assigned by the disambiguation component, we considered
sending not only the best scored candidate but multiple
(parameter ids in Table 3). Also, we used heuristics to pick a
protein if multiple species were possible (FADD_HUMAN/,
'FADD_MOUSE!', and 'FADD_RAT"); pick the (first) species
mentioned together with the protein in the abstract, pick
human, mouse, yeast, or the species of the candidate with the
best score. This order was determined by parameter sr in
Table 3.

Filtering false positives/unimportant interactions

We noticed that some mentions of PPIs were missing from
the gold standard, presumably because they did not form the
main thrust of a publication, but were rather introductory and
for better understanding of the overall setup. This was partic-
ularly true for PPIs mentioned in the introduction of an arti-

cle, but never again later. Also, we found some PPIs in
dangling text and references, which should not be reported.
We filtered pairs of interacting proteins that occurred too few
times in a single article (parameter m in Table 3). The gold
standard demanded clear evidence for physical interactions
of proteins. We treated PPIs mentioned together with any ref-
erence to large scale assays as false positives; this was indi-
cated by terms such as 'assay’, 'yeast 2-hybrid', 'beads', 'prey’,
'traits', 'biochemical’, and 'in vitro'. However, the respective
PPI could occur in the same text multiple times, without such
hints, and thus be retained.

Availability

Our methods for gene, protein, and species identification, and
PPIs are available as part of the BioCreative Meta Services;
see the overview presented in this supplement [6].

Abbreviations

DMAP, direct memory access parsing; GO, Gene Ontology;
NCBI, National Center for Biotechnology Information; IPS,
interaction pair subtask; POS, part-of-speech; PPI, protein-
protein interaction; UPGMA, Unweighted Pair Group
Method with Arithmetic Mean.
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