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Abstract

Background: The tasks in BioCreative II were designed to approximate some of the laborious
work involved in curating biomedical research papers. The approach to these tasks taken by the
University of Edinburgh team was to adapt and extend the existing natural language processing
(NLP) system that we have developed as part of a commercial curation assistant. Although this
paper concentrates on using NLP to assist with curation, the system can be equally employed to
extract types of information from the literature that is immediately relevant to biologists in general.

Results: Our system was among the highest performing on the interaction subtasks, and
competitive performance on the gene mention task was achieved with minimal development effort.
For the gene normalization task, a string matching technique that can be quickly applied to new
domains was shown to perform close to average.

Conclusion: The technologies being developed were shown to be readily adapted to the
BioCreative II tasks. Although high performance may be obtained on individual tasks such as gene
mention recognition and normalization, and document classification, tasks in which a number of
components must be combined, such as detection and normalization of interacting protein pairs,
are still challenging for NLP systems.

Background
Curating biomedical literature into relational databases is a
laborious task, in view of the quantity of biomedical research
papers that are published on a daily basis. It is widely argued
that text mining could simplify and speed up this task [1-3].
In this report we describe how a text mining system devel-
oped for a commercial curation project was adapted for the
BioCreative II competition. Our submission (team 6) to this
competition is based on research carried out as part of the
Text Mining (TXM) program, a 3-year project aimed at pro-
ducing natural language processing (NLP) tools to assist in

the curation of biomedical papers. The principal product of
this project is an information extraction (IE) pipeline,
designed to extract named entities (NEs) and relations rele-
vant to the biomedical domain, and to normalize the NEs to
appropriate ontologies (Figure 1). Although the TXM pipeline
is designed to assist specialized users, such as curators, it can
equally be employed to extract information from the litera-
ture that is immediately relevant to biologists in general. For
example, it can be used to automatically create large-scale
databases or to generate protein-protein interaction net-
works.
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In our BioCreative II submissions, we used the first release of
the TXM pipeline, which identifies proteins, normalizes them
to a RefSeq derived lexicon, and extracts mentions of protein-
protein interactions (PPIs). Since then the pipeline has been
extended to identify a wider range of NEs, including proteins,
protein complexes, fragments and mutants, modifications,
experimental methods, and cell lines. The latest pipeline can
predict nested as well as non-nested entities [4]; in other
words, it can predict entities that contain, or are contained in,
other entities. Furthermore, the PPIs have been enriched [5]
with additional information of biological interest, for example
whether the PPI is direct or indirect, or what experimental
method is used to detect the interaction. In order to demon-
strate its adaptability, and to satisfy the needs of the commer-
cial partner, the TXM pipeline was also adapted to the tissue
expression domain. In this adaptation, the pipeline was fur-
ther extended to recognize and normalize an appropriate set
of NEs for that domain, such as tissue, protein, mRNA/cDNA,
and gene, and to extract and enrich relations that indicate
which proteins are expressed in which tissue types.

The TXM pipeline includes both rule-based linguistic pre-
processing as well as machine learning (ML)-based IE com-
ponents, trained on corpora annotated as part of the project.
Greater detail regarding the exact implementation of the
components is provided in the Materials and methods section
(below). The partial reliance on ML is intended to make the
pipeline more adaptable, so that it can be easily ported to a
different domain if an annotated corpus is available. This
adaptability is further enhanced by the use of string distance
measures for term normalization, providing a generic method
of rapidly comparing the textual form of entities with lexicon
entries. Because the pipeline is designed to predict candidate
NEs, their normalizations, and PPIs, BioCreative II provided
an ideal testing ground to investigate how the pipeline gener-
alizes from its training set. Indeed, one of the largest contri-
butions of BioCreative II is providing training corpora to the
research community. These annotated corpora provide com-
mon evaluation sets for fair comparison of different text min-
ing algorithms, and provide the means for researchers to
develop new ML methods and to encourage researchers in

other domains to apply their ML methods to the biological
domain.

Our team participated in the following tasks of the competi-
tion: gene mention (GM; recognizing gene names); gene nor-
malization (GN; normalizing gene names to EntrezGene
identifiers); interaction article subtask (IAS; selecting articles
containing curatable PPIs); interaction pair subtask (IPS;
extracting curatable PPIs); and interaction sentence subtask
(ISS; extracting sentences with evidence for curatable PPIs).

For BioCreative II, and particularly so for the interaction-
related tasks, the pipeline could not be used as is, but required
certain extensions and modifications. For the IPS subtask,
this was because of a fundamental difference between the
pipeline's view of a PPI and the PPIs that were to be extracted
for BioCreative II. Because the pipeline is intended to be used
as a curation assistant, it just attempts to identify the candi-
date PPI mentions in a document, relying on the human cura-
tor to select the curatable PPIs. The definition of a curatable
PPI may be somewhat dependent on the curation guidelines
in force, but normally refers to PPIs that are experimentally
proven in the work described in the paper, as opposed to PPIs
that are merely referenced or posited. For the IPS subtask,
only curatable PPIs were to be returned, and so additional
functionality was implemented on top of the TXM pipeline
PPI extraction to remove any extracted but noncuratable
PPIs, and to collapse identical PPIs into one.

In the next section we summarize the results of our submis-
sions on each task, and we give some analysis of the perform-
ance. This is followed by conclusions drawn from the
BioCreative II experience and a description of each of the
methods employed. For a comparison of the methods used by
all of the participating teams, including our team, see the task
overview papers [6-8].

Results and discussion
Results
The aim of the GM task was to identify mentions of genes and
gene products in sentences extracted from Medline abstracts.

The TXM PipelineFigure 1
The TXM Pipeline.
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As described in the Materials and methods section (below),
the submission for the GM task compared two different ML
techniques in the three runs, using the same feature set. Runs
1 and 3 employed conditional random fields (CRFs) [9] with
different settings of the Gaussian prior, whereas run 2 used a
bidirectional maximum entropy Markov model (BMEMM)
[10]. (The Gaussian prior is a regularization term applied dur-
ing learning, to prevent over-fitting. Its value is usually tuned
empirically on a held-out set.) The performance of each sys-
tem, measured by held-out testing on 20% of the training set,
and on the test set, is shown in the Table 1.

The following is an example of the output of the GM system,
with the predicted gene mentions highlighted in bold. In this
example, the system predicted precisely the same gene men-
tions as identified by the annotators.

''The STP1 locus is located on chromosome IV, close to at
least two other genes involved in RNA splicing: PRP3 and
SPP41.''

For the GN task, teams were asked to provide a list of Entrez-
Gene identifiers for all of the human genes mentioned in a set
of Medline abstracts. We used a string similarity based
approximate search algorithm for generating candidate
matches for the genes marked up by our GM system. In runs
1 and 2, two variants of an ML-based filter were tested,
whereas run 3 used a heuristic filter. The matching and filter-
ing algorithms are described in the Materials and methods
section (see below), and Table 2 shows the results obtained on
the held-out (20%) training dataset and the test set.

Submissions were made for three of the four PPI subtasks: the
IAS, the IPS, and the ISS. All of these tasks were related to the
identification of interactions in articles from PubMed. In the
IAS, teams were asked to select abstracts that described
curatable interactions; in the IPS teams had to use the full
papers to extract pairs of normalized proteins corresponding
to the curatable interactions in the paper; and in the ISS, the
aim was to identify the sentences in the full texts that
described such interactions.

For IAS only one run was submitted, and the performance on
the test set is shown in Table 3.

For IPS, the three submitted runs varied both in the original
data format of the article (HTML or PDF), and the algorithm
used to generate the UniProt identifier matches (exact or
fuzzy). The performances of each configuration, measured
using fivefold cross-validation on the training set, and on the
test set, are shown in Tables 4 and 5. Note that the scoring
algorithm used on the training set is stricter in that it includes
all gold (annotated) interactions, whereas scoring on the test
set only includes interactions where protein identifiers are
drawn from SwissProt.

Table 1

Performance in the GM task

Run Method Heldout Test

Precision Recall F1 Precision Recall F1

1 CRF 0.8594 0.8211 0.8398 0.8697 0.8255 0.8470

2 BMEMM 0.8597 0.7982 0.8278 0.8638 0.8041 0.8329

3 CRF 0.8463 0.8297 0.8379 0.8649 0.8248 0.8444

BMEMM, bidirectional maximum entropy Markov model; CRF, conditional random field; GM, gene mention.

Table 2

Performance in the GN task

Run Method Heldout Test

Precision Recall F1 Precision Recall F1

1 ML filter 1 0.681 0.561 0.612 0.767 0.601 0.674

2 ML filter 2 0.674 0.561 0.615 0.767 0.606 0.677

3 Heuristics filter 0.531 0.605 0.566 0.597 0.782 0.677

GN, gene normalization; ML, machine learning.

Table 3

Performance in the IAS task

AUC Precision Recall F1 Accuracy

0.8554 0.7080 0.8609 0.7770 0.7533

AUC, area under the curve; IAS, interaction article subtask.
Genome Biology 2008, 9(Suppl 2):S10
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To see examples of correctly predicted interactions (true pos-
itives) and incorrectly predicted interactions (false positives),
consider the document with PubMed identifier 10713104. The
system correctly predicted an interaction between
LYN_MOUSE and HCLS1_MOUSE, and incorrectly pre-
dicted an interaction between LYN_HUMAN and
HCLS1_HUMAN. In the document, there are many sentences
in which the pipeline marked an interaction between the two
proteins 'Lyn' and 'HS1', for example in the following:

''Here we show that the hemopoietic-specific protein HS1
interacted directly with the SH3 domain of Lyn, via its pro-
line-rich region.''

The UniProt lexicon contains three different possible exact
matches for each of the proteins 'Lyn' and 'HS1', with different
species, and so the system had to try to determine which par-
ticular species the protein mentions referred to. Out of the
five species mentioned in the text (Escherichia coli, Homo
sapiens, Mus musculus, Oryctolagus cuniculus, and Saccha-
romyces cerevisiae), the system chose M. musculus (cor-
rectly) for some of the interaction mentions and H. sapiens
(incorrectly) for other interaction mentions.

Finally, for ISS the performance of the one submitted run is
shown in Table 6. A sample sentence identified by the system,
from PubMed document 14506250, as showing an interac-
tion between MO4L1_HUMAN and RB_HUMAN, is as
follows:

''We confirmed the association of MRGX with HDAC1 by
immunoprecipitation/Western analysis and determined that
MRGX complexes had HDAC activity.''

The comparison between this sentence and the one selected
by the curators attained a similarity score of 0.9574 (on a
scale from 0 to 1).

Discussion
The main observation to be made regarding the results for the
GM task is that CRF outperforms BMEMM, using the same
feature set, and either evaluated on the official test set or
cross-validated on the training set. Although the difference in
F1 is small (1.2 to 1.4 percentage points), it is noted in [11] that
differences of this order can be significant on this dataset. The
overall performance of the T6 system on recognizing gene
names is competitive with the other submitted systems,
although several systems performed significantly better.
However, our submission involved a straightforward applica-
tion of existing technology, there are many easily used CRF

Table 4

Performance in the IPS task, using tenfold cross-validation on the training set

Run File type Normalizer Micro-averaged Macro-averaged

Precision Recall F1 Precision Recall F1

1 PDF Exact 0.2680 0.1712 0.2089 0.1945 0.2162 0.1784

2 HTML Exact 0.2552 0.1692 0.2035 0.1840 0.2100 0.1708

3 PDF Fuzzy 0.2336 0.1766 0.2011 0.1901 0.2211 0.1757

IPS, interaction pair subtask.

Table 5

Performance in the IPS task, on the test set

Run File type Normalizer Micro-averaged Macro-averaged

Precision Recall F1 Precision Recall F1

1 PDF Exact 0.2302 0.1283 0.1648 0.2757 0.3011 0.2532

2 HTML Exact 0.2003 0.1204 0.1504 0.2218 0.2592 0.2066

3 PDF Fuzzy 0.2131 0.1496 0.1758 0.2392 0.3035 0.2272

IPS, interaction pair subtask.

Table 6

Performance in the ISS task

Description Value

Number of evaluated predicted passages 2,497

Number of evaluated unique passages 2,072

Number of evaluated matches to previously selected 147

Number of evaluated unique matches to previously selected 117

Fraction correct (best) from predicted passages 0.0589

Fraction correct (best) from unique passages 0.0565

Mean reciprocal rank of correct passages 0.5525

ISS, interaction sentence subtask.
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implementations available, and the feature set could be
assembled and optimized rapidly.

The GN system identifies the entity mentions that have been
marked up by GM. Therefore, the recall of the GM system sets
an upper-bound for the recall of the GN. It is likely that a GM
system optimized toward recall would improve performance
of GN. In other words, if GM failed to recognize a gene entity,
then there was no way that GN could find an identifier for that
gene. Our GM system achieved a recall of 83% on a set of
held-out GM training data (see Table 1), and therefore we
would expect that the maximum recall of the GN system
should be close to that number.

We applied an improved JaroWinkler measure to the GN
training dataset and achieved a recall of 85% and a precision
of 15%. The JaroWinkler measure is described in the Materi-
als and methods section [below]. To maximize recall, we used
a threshold confidence of 0 and took the top two matches. We
could not test our GM system on the same dataset for a direct
comparison, because gene entities were not marked up in the
GN data.

The filter was ML based, and the features that we used in the
submitted system are described in the the Materials and
methods section (below). We also experimented with other
features that were not included in our final system. For exam-
ple, we obtained 'Google counts' for every name in the sup-
plied gene lexicon, and then assigned Google counts to each
identifier by summing up the gene names that associate with
the identifier. The assumption was that the Google counts
might indicate the popularity of the identifiers, and the less
popular ones should be filtered out because they probably
occurred rarely in the literature. We also tried the nearest
'species word' as a feature, which might help in filtering out
the non-human genes. These features, however, did not
improve performance of GN and therefore were not inte-
grated into the final system. One reason that the Google count
feature was not helpful was that the world-wide web is noisy,
and many gene names are also English common words or
other types of proper names, and therefore the counts did not
accurately reflect the frequency of occurrences of the gene
names. Counts obtained from large biomedical corpora, on
the other hand, might help, but more experiments are needed
to reach conclusions.

For IAS, the primary goal was to improve the results for arti-
cle selection by extending the traditional bag-of-words model
of text categorization to include features based on NLP. Table
7 compares results of a bag-of-words baseline system to the
bag-of-NLP system. For the purposes of comparison, the
results are presented for the original test set [see Table 3].
They differ slightly from those obtained for the official test
set, which is still to be released by BioCreative II. The baseline
system only used the 'word' and 'bigram' features but is oth-
erwise identical to the bag-of-NLP system. The results, pre-

sented both for fivefold cross-validation on the training set
and for the test set, indicate that the NLP-based features can
provide small performance gains. Thus, in comprehensive
curation systems that include both an article selection com-
ponent and an NLP-based assisted curation component,
there can be benefits from preprocessing all documents with
NLP before article selection as a means of improving the arti-
cle selection phase. The downside is that a bag-of-NLP system
is significantly slower than a bag-of-words system (in our case
it is two orders of magnitude slower), although much of the
processing can be done off-line.

For IPS, several pre-existing TXM pipeline components were
used and combined with additional steps to normalize pro-
tein names to the UniProt lexicon and to remove noncurata-
ble PPIs. The pipeline is described in detail in the Materials
and methods section (see below), but conceptually it can be
considered as consisting of the following stages (see Figure 2).

1. Preprocessing: linguistic preprocessing includes tokeniza-
tion and sentence splitting, lemmatization, chunking, and
part-of-speech tagging.

2. Named entity recognition (NER): in this stage all mentions
of proteins in the text are identified.

3. In relation extraction (RE), each pair of proteins occurring
in the same sentence is examined, and whether the sentence
refers to an interaction (PPI) between them is determined.

4. Normalization: in this stage a set of possible UniProt iden-
tifiers is generated for each protein mention.

The modification to the TXM Pipeline for the BioCreative IPS TaskFigure 2
The modification to the TXM Pipeline for the BioCreative IPS Task.
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5. The disambiguation stage ranks the set of identifiers pro-
duced by the normalization stage, using species information
in the text, in order to identify the most likely identifier for
each protein.

6. Finally, the curation filter combines the outputs of normal-
ization and RE at a document level to give a list of pairs of
UniProt identifiers, representing the PPIs mentioned in the
document. The curation filter aims to remove the noncurata-
ble PPIs from this list.

Because the overall system is comprised of several different
stages, it would be useful to gain some idea of the perform-
ance of each stage to see where improvements could be made.

One way to consider the operation of the pipeline is that the
preprocessing, NER, and normalization stages generate a set
of possible UniProt identifier pairs, representing curatable
interactions, which must then be filtered down by the subse-
quent three stages. It would therefore be useful to measure
the performance of generating curatable PPIs at each stage to
determine where improvements can be made. The initial set
of UniProt identifier pairs are generated by considering all
possible pairs of all possible matches generated for all the
proteins found by NER. Consequently, an indication of the
recall of each component can be estimated by measuring the
number of correct interactions lost at each stage. The normal-
ization requirement in IPS complicates any error analysis,
because the gold data, in the form of pairs of UniProt identi-
fiers, are not directly linked to surface forms in the text. How-
ever, a certain amount of information about the error sources
is available.

In Tables 8 to 11, the results quoted use a version of the IPS
training set with all papers with more than 30 interactions
removed, which contains 2,039 gold (human curated) inter-
actions. It is expected that similar error patterns would be
observed when testing on the test set. Each of the tables
shows the number of correctly predicted interactions,
together with the total number of predicted interactions, so
that the filtering process may be observed as it reduces the
number of predictions by removing incorrect interactions,
and as a side-effect removes some correct interactions. It is
felt that these measures illustrate the filtering process better
than the traditional true and false positive and false negative
counts, although these counts can easily be derived from the
information in Tables 8 to 11.

Table 8 shows the percentage of gold interactions for which
NER and normalization successfully predicted the identifiers
of both participants. Note that the total number of predicted
interactions at this point would be equivalent to the count of
all pairs of predicted normalizations, and hence is too large to
show in the table.

The fuzzy match normalizer generates a much larger number
of correct matches than the exact matcher, resulting in

Table 7

Overall results

System Fivefold cross-validation Test

AUC Precision Recall F1 Accuracy AUC Precision Recall F1 Accuracy

Baseline 0.9757 0.9452 0.9420 0.9436 0.9276 0.8188 0.6898 0.8480 0.7608 0.7333

Bag-of-NLP 0.9777 0.9550 0.9474 0.9512 0.9374 0.8483 0.6994 0.8747 0.7773 0.7493

AUC, area under the curve; NLP, natural language processing.

Table 8

Recall of NER and normalization within IPS

File type Normalization Correct interactions % of gold

PDF Exact 1,204 59.0

HTML Exact 1,196 58.7

PDF Fuzzy 1,503 73.7

IPS, interaction pair subtask; NER, named entity recognition.

Table 9

Recall of RE within IPS

File type Normalization Total interactions Correct interactions % of gold Estimated recall

PDF Exact 2,052,605 744 36.5 61.7

HTML Exact 1,916,527 737 36.1 61.6

PDF Fuzzy 17,583,994 1,002 49.1 66.7

RE, relation extraction; IPS, interaction pair subtask.
Genome Biology 2008, 9(Suppl 2):S10
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increased recall at this stage, although it also generates
around ten times more false positives, making the filtering
task much harder for the later stages. It is not possible to cal-
culate separate recall figures for the NER and normalizer,
because this would require linking each of the gold PPIs to the
text, in order to determine whether the NER component had
successfully recognized the proteins. Testing of the NER com-
ponent on the held-out proportion of the TXM corpus gives a
recall of about 80% on protein mentions, but the NER task
within IPS is different because it only requires the identifica-
tion of proteins involved in curatable interactions.

The next stage in the pipeline is RE, which takes the output of
NER and normalization, examines each pair of proteins, and
decides whether the text states that the two proteins interact.
Table 9 shows the proportion of gold PPIs that are still
extracted after RE, and the total number of proposed PPIs,
considering all matches generated by normalization. Further-
more, the estimated recall of RE is given by comparing the
number of correct interactions before and after RE. The
number of proposed PPIs is large, especially in the fuzzy
match configuration, because all possible UniProt matches
for each protein have been retained. This means that, for
example, if a pair of proteins each has two possible UniProt
identifiers, then a total of four different candidate interac-
tions will be generated between them.

In the next stage, the disambiguator chooses the single most
likely identifier for each protein mention, using the species
information in the text. Table 10 shows the numbers of pro-
posed PPIs, the number of correct and percentage of the gold
interactions that are identified, and an estimate of the recall
for the disambiguator. It can be seen that the recall of the dis-
ambiguator in the fuzzy match configuration is worse; in

other words, it throws away more of the correct answers in
this configuration. However, it should be remembered that
the disambiguator has a much harder task in this case
because the number of false positives is much higher, by
nearly an order of magnitude. At this point, the difference
between the TXM pipeline, which extracts all PPIs, and the
task of the BioCreative II challenge of identifying curatable
interactions becomes apparent.

The final stage in the pipeline is the curation filter, which is
designed to remove noncuratable PPIs from the set of pro-
posed PPIs. Because the curation filter is an ML component
trained on the BioCreative II data, fivefold cross-validation
was used in the experiments. Its performance is shown in
Table 11.

The preceding analysis illustrates one of the issues with the
pipeline architecture. Although it provides modularity, which
eases development, errors produced by early stages of the
pipeline are passed down the pipeline and not corrected by
later stages. For example, the disambiguator guesses the spe-
cies associated with each protein and uses this species to
choose the most likely UniProt identifier for the protein from
the list proposed by the normalizer. However, if the disam-
biguator's choices result in a proposed PPI where there is a
mis-match between the species of the participating proteins,
then that proposed PPI is likely to be discarded by the cura-
tion filter. Ideally, the curation filter should be able to feed
back to the disambiguator to ask it for alternative identifiers
with compatible species. Another example is the interplay
between NER and RE. If NER does not predict proteins in a
particular sentence, then RE cannot predict a PPI, even if the
sentence provides strong linguistic evidence of one. If RE

Table 10

Recall of disambiguator within IPS

File type Normalization Total interactions Correct interactions % of gold Estimated recall

PDF Exact 9,015 495 24.3 66.5

HTML Exact 8,394 485 23.8 65.8

PDF Fuzzy 15,383 550 27.0 54.9

IPS, interaction pair subtask.

Table 11

Recall of curation filter within IPS

File type Normalization Total interactions Correct interactions % of gold Estimated recall

PDF Exact 953 349 17.1 70.5

HTML Exact 1,007 345 16.9 71.1

PDF Fuzzy 1,186 371 18.2 67.5

IPS, interaction pair subtask.
Genome Biology 2008, 9(Suppl 2):S10
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could feedback to NER, then NER would be able to reconsider
its decision. However, the possible downside of introducing
such feedback between components is that it tends to make
the system less modular, and therefore less flexible and
maintainable.

In general, the performances of the systems submitted for IPS
were low, with no team scoring above 0.3 on macro-averaged
F1. No equivalent human score, such as an inter-curator
agreement, is reported in the literature for comparison. Nev-
ertheless, the level of performance appears to be too low to be
usable for unassisted automatic curation. So the question
arises, why is the extraction of curatable PPIs so difficult? The
above analysis does not single out any component as being
especially weak, but suggests that it is the aggregation of
errors across the different components that is the problem.
The IPS performances should be contrasted to those reported
on evaluations that focus on a single task, often making sim-
plifying assumptions, such as only considering human pro-
teins in GN, where performance levels of around 80 to 90% of
human performance are often reported.

For ISS the T6 results were quite low, with only 5% of sen-
tences identified agreeing with those selected by the curators.
However, it should be noted that the scoring criteria in this
subtask are quite strict, in that credit is only given when the
system chooses the same evidence sentence as the curator,
when it is possible that other sentences from the document
would also be appropriate. In order to accurately assess the
ISS performance of the submitted systems, it would be neces-
sary to perform an expensive manual examination of all the
sentences provided.

Conclusion
For the PPI subtasks (IPS, ISS, and IAS), the IE pipeline
developed for the TXM program proved effective because it
addressed related problems (identification of proteins and
their interactions) and was trained on similar data to those
used in BioCreative II. For IPS the pipeline architecture was
easily extended with two extra components (normalization
and curation filtering) specific to the requirements of the sub-
task, showing the flexibility of this architecture. The exten-
sion also required a change of emphasis, from a system that
aims to assist curators by indicating possible interactions, to
a system that attempts to populate a curated database.

Our approach to normalization, based on a string distance
measure and ML disambiguation, has the advantage of being
more easily adaptable to other types of entities (for example,
tissues and cell lines) than the approaches based on manually
created matching rules. Given that it is very hard to predict
automatically the single correct identifier for a biomedical
named entity, it would be interesting to explore the relative
merits of approaches that generate a ranked list of candidate

identifiers, and also provide the users with fuzzy matching
tools to help in searching ontologies more intelligently.

Our submission for IPS involved trying to reconstruct curated
information from interactions mentioned explicitly in the
text. However, it is not known what proportion of curated
data can be obtained this way. In other words, are all or most
curatable interactions mentioned explicitly in the text as an
interaction between two named proteins? Recent work by
Stevenson [12] showed that a significant proportion of facts in
the Message Understanding Conference (MUC) evaluations
are distributed across several sentences, and similar results
appear likely to apply in the biomedical domain. Although the
low overall scores in IPS show that NLP techniques are not yet
ready to replace manual curation, they may be nevertheless
able to aid curators in their work. Alternatively, they may be
used to produce large volume, noisy data, which may be of
benefit to biologists as evidenced by databases as such as
TrEMBL, a computer-annotated database that supplements
the manually curated SwissProt database [13].

Materials and methods
The TXM pipeline
The Team 6 system for BioCreative II made use of an IE pipe-
line developed for the TXM project. The TXM pipeline con-
sists of a series of NLP tools, integrated within the LT-XML2
architecture [14]. The development of the pipeline used a cor-
pus of 151 full texts and 749 abstracts selected from PubMed
and PubMedCentral as containing experimentally deter-
mined protein-protein interactions. The corpus was anno-
tated by trained biologists for proteins and related entities,
protein normalizations (to an in-house word list derived from
RefSeq), and protein-protein interactions. Around 80% of the
documents were used for training and optimizing the pipe-
line, whereas the other 20% were held back for testing.

The pipeline consists of the following components (see Figure
1).

Preprocessing
The preprocessing component comprises tokenization, sen-
tence boundary detection, lemmatization, part-of-speech tag-
ging, species word identification, abbreviation detection, and
chunking. The part-of-speech tagging uses the Curran and
Clark maximum entropy Markov model tagger [15] trained on
MedPost data [16], whereas the other preprocessing stages
are all rule-based. The tokenization, sentence boundary
detection, species word identification, and chunking compo-
nents were implemented with the LT-XML2 tools. The
Schwartz and Hearst abbreviation extractor [17] was used for
abbreviation detection and morpha [18] for lemmatization.

Named entity recognition
In the pipeline, NER of proteins is performed using the Cur-
ran and Clark classifier [15], augmented with extra features
Genome Biology 2008, 9(Suppl 2):S10
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tailored to the biomedical domain. The pipeline NER compo-
nent was not used in the GM submission, because the pipeline
component is trained to detect proteins, and the GM task was
concerned with gene products.

Term normalization
The term normalization task in the pipeline involves choosing
the correct identifier for each protein mention in the text,
where the identifiers are drawn from a lexicon based on Ref-
Seq. A set of candidate identifiers is generated using hand-
written fuzzy matching rules, from which a single best identi-
fier is chosen using an ML-based species tagger, and a set of
heuristics to break ties. The term normalization component
of the pipeline was not used directly in BioCreative II because
they employ different protein lexicons.

Relation extraction
To find the PPI mentions in the text, a maximum entropy
relation extractor was trained using shallow linguistic fea-
tures [19]. The features include context words, parts-of-
speech, chunk information, interaction words, and interac-
tion patterns culled from the literature. The relation extractor
examines each pair of proteins mentioned in the text, and
occurring less than a configurable number of sentences apart,
and assigns a confidence value that indicates the degree to
which the mention is an interaction. All mentions with a con-
fidence value above a given threshold are considered interac-
tions, whereas those below the threshold are not. Although
the relation extractor can theoretically recognize both inter-
sentential and intra-sentential relations, because both types
of candidate relations are considered, in practice very few
inter-sentential relations are correctly recognized. Only
around 5% of annotated relations are inter-sentential, and it
is likely that using exactly the same techniques as on the
intra-sentential relations is not optimal, especially because
many of the inter-sentential relations use co-references. The
detection of inter-sentential relations is the subject of ongo-
ing research.

The remainder of this section describes how this pipeline was
extended and adapted for BioCreative II (see Figure 2),
resulting in the best performance per task. Although some
time was spent on optimizing parameters and features, the
overall infrastructure of the individual TXM pipeline compo-
nents was applied immediately without significant changes.

Gene mention
To address the GM task, our team employed two different ML
methods using similar feature sets. Runs 1 and 3 used CRFs
[9], whereas run 2 used a BMEMM [10]. Both CRF and
BMEMM are methods for labeling sequences of words that
model conditional probabilities, so that a wide variety of pos-
sibly inter-dependent features can be used. The named entity
recognition problem is represented as a sequential word tag-
ging problem using the BIO encoding, as in CoNLL (Confer-
ence on Computational Natural Language Learning) 2003

[20]. In BMEMM, a log-linear feature-based model repre-
sents the conditional probability of each tag, given the word
and the preceding and succeeding tags. In CRF, however, the
conditional probability of the whole sequence of tags (in one
sentence), given the words, is represented using a log-linear
model. Both methods have been shown to give state-of-the-
art performance in sequential labeling tasks such as chunk-
ing, part-of-speech-tagging, and named entity recognition
[10,21-23]. The CRF tagger was implemented with CRF++
[24] and the BMEMM tagger was based on Zhang Le's Max-
Ent Toolkit [25].

Gene mention preprocessing
Before training or tagging the documents with the machine
learner, they were passed through the preprocessing stages of
the TXM pipeline (as described above).

Gene mention features
For the machine learners, the following features were
extracted for each word.

1. Word: the word itself is added as a feature, plus the four
preceding words and four succeeding words, with their posi-
tions marked.

2. Headword: the headwords of noun and verb phrases are
determined by the chunker, and, for all words contained in
noun phrases, the head noun is added as a feature.

3. Affix: the affix feature includes all character n-grams with
lengths between two and four (inclusive), and either starting
at the first character, or ending at the last character of the
word.

4. Gazetteer: the gazetteer features are calculated using an in-
house list of protein synonyms derived from RefSeq. To add
the gazetteer features to each word in a given sentence, the
gazetteer is first used to generate a set of matched terms for
the sentence, where each word is only allowed to be in one
matched term and earlier starting, longer terms take prece-
dence. The unigram gazetteer feature for each word has value
B, I, or O, depending on whether the word is at the beginning,
inside, or outside of a gazetteer matched term. The bigram
gazetteer feature is also added, and this is the concatenation
of the previous and current word's gazetteer feature.

5. Character: for each of the regular expressions listed in
Table 12, the character feature indicates whether the word
matches the regular expression. These regular expressions
were derived from lists published in previous work on bio-
medical and newswire NER [15,26]. The length of the word is
also included as a character feature.

6. Postag: this feature includes the current word's part-of-
speech (POS) tag and the POS tags for the two preceding and
succeeding words. Also added are the bigram of the current
Genome Biology 2008, 9(Suppl 2):S10
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and previous word's POS tag, and the trigram of the current
and previous two words' POS tags.

7. Wordshape: the word shape feature consists of the word
type feature of [15], and a variant of this feature that only col-
lapses runs of greater than two characters in a word, and
bigrams of the word type feature.

8. Abbreviation: the abbreviation feature is applied to all
abbreviations whose antecedent is found in the gazetteer.

Gene normalization
The GN system was developed with genericity in mind. In
other words, it can be ported to normalize other biological
entities (for example, disease types, experimental methods,

and so on) relatively easily, without requiring extensive
knowledge of the new domain. The approach that was
adopted combined a string similarity measure with ML tech-
niques for disambiguation.

For GN, the system first preprocesses the documents using
the preprocessing modules in the TXM pipeline, and then
uses the gene mention NER component to mark up gene and
gene product entities in the documents. A fuzzy matcher then
searches the gene lexicon provided and calculates scores of
string similarity between the mentions and the entries in the
lexicon using a measure similar to JaroWinkler [27-29].

The Jaro string similarity measure [27,28] is based on the

number and order of characters that are common to two

strings. Given strings s = a1 ... ak and t = b1 ... bl, define a char-

acter ai in s to be shared with t if there is a bj in t such that bj

= ai with i - H ≤ j ≤ i + H, where . Let 

be the characters in s that are shared with t (in the same order

as they appear in s) and let  be analogous. Now

define a transposition for s' and t' to be a position i such that

. Let Ts',t' be half the number of transpositions for s'

and t'. The Jaro similarity metric for s and t is shown in Equa-

tion 1:

A variant of the Jaro measure proposed by Winkler [29] also
uses the length P of the longest common prefix of s and t. It
rewards strings that have a common prefix. Letting P' =
max(P,4), it is defined as shown in Equation 2:

For the GN task, a variant of the JaroWinkler measure was
employed, as shown in Equation 3, which uses different
weighting parameters and takes into account the suffixes of
the strings.

Here, θ = (# CommonSuffix - # DifferentSuffix)/lengthOf-
String. The idea is to look not only at the common prefixes
but also at commonality and difference in string suffixes. A
set of equivalent suffix pairs was defined; for example, the
Arabic number 1 is defined as equivalent to the Roman
number I. The number of common suffixes and the number of
different suffixes (1 and 2 or 1 and II would count as different

Table 12

The (Java) regular expressions used for the character feature in 
the GM task

Description Regexp

Capitals, lower case, hyphen then digit [A-Z]+[a-z]*-[0-9]

Capitals followed by digit [A-Z]{2,}[0-9]+

Single capital [A-Z]

Single Greek character \ p{InGreek}

Letters followed by digits [A-Za-z]+[0-9]+

Lower case, hyphen then capitals [a-z]+-[A-Z]+

Single digit [0-9]

Two digits [0-9][0-9]

Four digits [0-9][0-9][0-9][0-9]

Two capitals [A-Z][A-Z]

Three capitals [A-Z][A-Z][A-Z]

Four capitals [A-Z]{4}

Five or more capitals [A-Z]{5,}

Digit then hyphen [0-9]+-

All lower case [a-z]+

All digits [0-9]+

Nucleotide [AGCT]{3,}

Capital, lower case then digit [A-Z][a-z]{2,}[0-9]

Lower case, capitals then any [a-z][A-Z][A-Z].*

Greek letter name Match any Greek letter name

Roman digit [IVXLC]+

Capital, lower, capital and any [A-Z][a-z][A-Z].*

Contains digit .*[0-9].*

Contains capital .*[A-Z].*

Contains hyphen .*-.*

Contains period .*\ ..*

Contains punctuation .*\ p{Punct}.*

All digits [0-9]+

All capitals [A-Z]+

Is a personal title (Mr|Mrs|Miss|Dr|Ms)

Looks like an acronym ([A-Za-z]\.)+

GM, gene mention.

H s t= min(| |,| |)
2

′ = ′ ′ ′s a ak1...

′ = ′ ′′t b bl1...
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s
s

t
t
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s
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| | | | | | ,

| |
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′
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suffixes) is counted, and strings with common suffixes are
rewarded whereas those with different ones are penalized.

At the end of the fuzzy matching stage, each mention recog-
nized by NER is associated with the single highest scoring
match from the gene lexicon, where the score indicates the
string similarity. Note that each match is associated with one
or more identifiers (in cases where ambiguity occurs) from
the gene lexicon.

The GN system then collects all of the gene identifiers gener-
ated by the fuzzy matcher, and pairs each gene identifier with
a set of features in order to use an ML-based disambiguator.
These identifier-feature set pairs are used as training data to
learn a model that predicts the most probable identifier out of
a pool of candidates returned by the fuzzy matcher. The fea-
ture set consists of both simple features such as the contextual
text properties surrounding the gene mentions (for example,
their part-of-speech tags and so on), and complex features
such as the distance scores between the mentions in text and
the matches returned by the fuzzy matcher. It was found that
the complex features are particularly helpful in terms of
increasing the F1 score.

In more detail, all the identifiers in a document found by the
fuzzy matcher were collected, then the ones that are correct
according to the answer file were used as positive examples
and the others were used as negative ones. In summary, each
identifier was associated with a set of features as follows.

1. Fuzzy-confidence: confidence scores from the fuzzy
matcher. (Only those matches with confidence scores higher
than 0.80 were considered.)

2. Synonym-similarity: the averaged confidence score of the
similarity between all synonyms linked to the gene identifier
and the match.

3. Context-similarity: the similarity between descriptions

(synonyms) associated with a gene identifier and all gene

entities in the current document recognized by the NER. The

similarity is calculated by two measures: dice coefficient and

tf·idf. Dice coefficient is defined as twice the number of com-

mon terms in the two sets of tokens to compare, divided by

the total number of tokens in both sets:

. tf·idf is defined as the

product of term frequency (tf) and inverse document fre-

quency (idf). , where ni is the number of occur-

rences of the considered term and the denominator is the

number of occurrences of all terms. , where

|D| is the total number of documents and the denominator is

the number of documents where the term appears.

4. NER confidence: confidence score generated by the NER
tagger.

5. Context: local features, including contextual words (± 10),
lemmas (± 4), POS tags (± 2), species words (± 10) and
bigrams (± 5). (The numbers in parentheses denote the size of
the context window.)

6. Length: length of the gene mention and length of the
match.

With the positive and negative examples extracted, determin-
ing the correct normalizations becomes a standard ML task.
We trained a support vector machine (SVM) classifier, using
SVM light [30], on the examples extracted from the BioCrea-
tive II GN training data, and used it as a disambiguator to fil-
ter out false-positive identifiers.

Interaction articles subtask
The IAS was treated as a standard document classification
problem [31,32], where abstracts were classified as curatable
if they contained curatable protein interaction information
and noncuratable otherwise. Document classification tech-
niques typically use a bag-of-words approach, which ignores
the word order in the document. This approach was extended
by using a 'bag-of-NLP' approach, where, in addition to
words, a variety of features derived from the output of the
TXM pipeline were added to the bag. The classification was
performed with SVM light using the linear kernel with the
default parameters. The documents were ordered based on
the output from the SVM classifier.

Pipeline processing
Before the documents were passed to the machine learner for
training or classification, they were first passed through the
the TXM pipeline. In addition, each of the named entities and
compound nouns in the document were marked as phrases.

Features
The features extracted for each document are described
below. Only features that occurred at least twice in the train-
ing data were used and each feature was given a binary
weight. Each feature was converted to lower case and words
found in a custom stop-word list were ignored. For each word
a backoff version was also calculated by converting all num-
bers to a single '#' symbol and removing all punctuation, and
a backoff-stemmed version was calculated by first lemmatiz-
ing and then performing the same substitutions.

1. Word: the word itself.

2. Word-backoff: the backoff version of the word.

3. Bigram: the bigrams of the backoff feature. The bigrams
were not allowed to cross sentence boundaries.

Dice commonTokens
tokensInSet tokensInSet

= ×
+

2
1 2

(# )
# #
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nkk
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∑
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4. Chunk: the concatenation of the backoff-stemmed versions
of each word in a chunk up to a maximum of seven words.

5. Phrase: the concatenation of the backoff-stemmed versions
of each word in a phrase (one-word phrases were included).

6. Phrase-bigram: the bigrams of the phrase feature. All pro-
teins were converted to the token 'nerprotein'. The bigrams
were not allowed to cross sentence boundaries.

7. Chunk-headword-bigram: the bigrams of the backoff-
stemmed version of each headword of successive chunks.
Chunks containing negative phrases (for instance, does not
interact) were indicated by prefixing the bigram with 'neg'.

8. Chunk-headword-trigram: the trigrams of the backoff-
stemmed version of each headword of successive chunks. All
proteins were converted to the token 'nerprotein'. Chunks
containing negative phrases were indicated by prefixing the
trigram with 'neg'.

9. Protein: added if the document contained at least one
protein.

10. Two-proteins: added if the document contained at least
two unique proteins.

11. No-proteins: added if the document did not contain any
proteins.

12. Title-proteins: added if the document contained two
unique proteins in the title.

Interaction pairs subtask
The T6 IPS system made use of the TXM IE pipeline to iden-
tify mentions of PPIs, together with additional components to
normalize proteins to UniProt and to identify the curatable
interactions from among the interaction mentions.

Data preparation
Two methods of data preparation were used. In runs 1 and 3,
the supplied pdftotext converted files were converted to the
XML input format required by the pipeline, essentially by just
wrapping the text in <text> and <document> elements and
removing illegal characters. (These were ASCII control char-
acters inserted by pdftotext, which are not legal in XML. They
were all removed except for ASCII OxOC, which was con-
verted to a double new line.) In run 2, however, the supplied
HTML files were used, having been first run through an in-
house HTML to XML converter.

PPI extraction
The NER and RE stages of the TXM pipeline were used to
identify mentions of PPIs.

UniProt normalization
Neither the pipeline normalizer nor the GN system could be
used directly for normalization: the former because it nor-
malizes to RefSeq, and the latter because it was concerned
with genes rather than proteins, and because the IPS required
species disambiguation, which was not required for GN. Two
approaches were used to assign UniProt identifiers to protein
mentions: exact matching (in runs 1 and 2) and fuzzy match-
ing (in run 3). In exact matching, the protein name in the text
is compared against each protein synonym in the UniProt lex-
icon using a case-insensitive match, in order to obtain a list of
possible identifiers. If no possible identifiers are found, and
the protein name is the long or short form of an abbreviation
identified by the abbreviation extractor, then the correspond-
ing (short or long) form is also looked up in the lexicon. In
order to filter the list of identifiers, each identifier is weighted
according to how often its corresponding species name is
mentioned in the text, with species name mentions closer to
the protein mention receiving higher weights than those far-
ther away. The identifier with the highest weight is then
chosen.

The fuzzy match protein normalizer uses a string distance
measure (as described in the GN method description) to find
the set of protein names in the lexicon that are closest to the
protein mention in the text. These distances are then
weighted according to the species word mentions, as for exact
matching, and the highest weighted identifier chosen.

Curation filter
The curation filter takes as its input the set of UniProt identi-
fier pairs representing the interactions found in the text by
the pipeline, with their UniProt normalizations, and outputs
the set of normalized, curatable interactions. The filter was
implemented with an SVM classifier (using [30] with an RBF
kernel), trained on the supplied training data, using the fol-
lowing set of features.

1. Relation count: this feature counts the number of times that
the interaction is mentioned in the document.

2. Inter-sentential: this indicates whether the majority of the
mentions of the interaction are inter-sentential relations
between proteins, or intra-sentential. As noted in the TXM
pipeline description, the relation extractor does not perform
well on inter-sentential relations, and so very few of these are
predicted (only 15 in the training corpus).

3. Relation confidence: each interaction mention found by the
pipeline has an associated confidence. The value of this fea-
ture is the maximum confidence assigned to an interaction's
mentions.

4. Position: this feature specifies the relative position within
the document of the first and last mentions of the interaction.
Genome Biology 2008, 9(Suppl 2):S10
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In addition, the mean relative position of the interaction
mentions is included, for each interaction.

5. Species: the species feature indicates whether the proteins
in the proposed interaction have different species.

6. Title: this feature indicates whether the interaction is men-
tioned in the title.

7. Normalization confidence: when using the fuzzy-matched
normalizations, this feature indicates how close a match has
been found during normalization of the protein mention.

As recommended in the IPS task instructions, any documents
containing more than 30 interactions were excluded from the
training set.

Interaction sentences subtask
To identify the interaction sentences, the T6 system used the
same sequence of steps as for IPS. For each interaction pair
predicted, the top five corresponding PPI mentions were
returned, where PPI mentions were ranked according to the
confidence output by the relation extractor. In order to be
able to track back the sentences to the original document, the
HTML converted data were used (as in IPS run 2), because
the HTML to XML converter provided a mapping between the
original and converted versions.
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