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Abstract

Background: Epidemiological and genetic studies indicate that ethnic/genetic background plays an
important role in susceptibility to primary open angle glaucoma (POAG). POAG is more prevalent
among the African-descent population compared to the Caucasian population. Damage in POAG
occurs at the level of the optic nerve head (ONH) and is mediated by astrocytes. Here we
investigated differences in gene expression in primary cultures of ONH astrocytes obtained from age-
matched normal and glaucomatous donors of Caucasian American (CA) and African American (AA)
populations using oligonucleotide microarrays.

Results: Gene expression data were obtained from cultured astrocytes representing |2 normal CA
and 12 normal AA eyes, 6 AA eyes with POAG and 8 CA eyes with POAG. Data were normalized
and significant differential gene expression levels detected by using empirical Bayesian shrinkage
moderated t-statistics. Gene Ontology analysis and networks of interacting proteins were
constructed using the BioGRID database. Network maps included regulation of myosin, actin, and
protein trafficking. Real-time RT-PCR, western blots, ELISA, and functional assays validated genes in
the networks.

Conclusion: Cultured AA and CA glaucomatous astrocytes retain differential expression of genes
that promote cell motility and migration, regulate cell adhesion, and are associated with structural
tissue changes that collectively contribute to neural degeneration. Key upregulated genes include
those encoding myosin light chain kinase (MYLK), transforming growth factor-f3 receptor 2 (TGFBR2),
rho-family GTPase-2 (RAC2), and versican (VCAN). These genes along with other differentially
expressed components of integrated networks may reflect functional susceptibility to chronic
elevated intraocular pressure that is enhanced in the optic nerve head of African Americans.
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Background

Glaucoma comprises a group of diseases that are character-
ized by optic neuropathy associated with optic disc cupping
and loss of visual field and, in many patients, with elevated
intraocular pressure (IOP) [1]. There are several types of glau-
coma, including juvenile and adult-onset types, primary open
angle glaucoma (POAG), narrow-angle glaucoma, and sec-
ondary glaucoma, with different pathogenic mechanisms.
POAG is more prevalent in Black Americans of African Amer-
ican (AA) ancestry than in Caucasian American (CA) popula-
tions of European ancestry (CA), with reported frequencies of
3-4% in the AA population over the age of 40 years, as com-
pared with approximately 1% in CA populations [2]. The dis-
ease is particularly frequent in Afro-Caribbean persons, with
a prevalence of 7% in Barbados and 8.8% in St Lucia [3]. On
average, African Americans have the longest duration [4] and
higher progression of disease [5] compared to other popula-
tions. In addition to racial differences, a positive family his-
tory of POAG is a major risk factor for the disease in African
Americans [6]. The Advanced Glaucoma Intervention Study
(AGIS), which compared the glaucoma outcomes in AA and
CA patients, concluded that after failure of medical therapy,
surgical trabeculectomy delayed progression of glaucoma
more effectively in CA than in AA patients [7,8].

Abnormally elevated IOP elicits a complex sequence of puta-
tive neurodestructive and neuroprotective cellular responses
in the optic nerve head (ONH) [9]. Previous studies demon-
strated that gene expression in astrocytes of the glaucoma-
tous ONH serve as the basis for these responses [10]. Here we
present evidence that primary cultures of AA and CA astro-
cytes derived from POAG donors exhibit differential gene
expression of genes that relate to reactive astrocytes and to
pathological changes that occur in the glaucomatous ONH.
Validations of changes in expression of selected genes were
done by quantitative real-time RT-PCR, western blots,
enzyme-linked immunosorbent assay (ELISA) and various
functional assays. Network analysis of gene product interac-
tions focused our findings on specific functional pathways.
Our data indicate that both normal and glaucomatous astro-
cytes from AA donors exhibit differential expression in genes
that regulate signal transduction, cell migration, intracellular
trafficking and secretory pathways.

Results and discussion

Primary cultures of ONH astrocytes from normal and
glaucomatous donors

Demographics and clinical history

Demographic characteristics of the normal AA and CA donors
used in this study are detailed in Additional data file 2. Demo-
graphic and clinical data for AA donors with glaucoma
(AAGS) and CA donors with glaucoma (CAGs) included in the
microarray analyses and other assays are detailed in Addi-
tional data file 1. Twelve eyes from ten CAG donors and six
eyes from AAG donors were used in this study. Glaucoma
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drug treatment history was available for some POAG donors.
None of the drug treatments are known to affect astrocytes in
the ONH. The degree of glaucomatous damage in donors with
POAG was assessed using histories when available and by
evaluating axon degeneration in cross-sections of the myeli-
nated optic nerve (Additional data file 1). A limitation of this
study is that only six eyes from three AAG donors were avail-
able due to the extreme rarity of these samples. Consequently,
we used all six eyes to generate primary cultures for all exper-
iments in our study. Primary cultures of samples from AAG
and CAG donors were fully characterized as ONH astrocytes
as described in detail earlier [11].

Identification of differentially expressed genes in ONH
astrocytes from AA and CA donors with POAG
Comparisons

For the comparisons amongst the four groups, our primary
focus was to establish the differentially expressed genes
between AAG and CAG donors (Additional data file 7); our
secondary focus was the comparison between normal and
glaucomatous astrocytes and our tertiary focus was to identify
differentially expressed genes within each population: AAG
versus AA and CAG versus CA.

The comparisons allowed us to identify the unique gene
expression profile in AAG astrocytes compared to CAG astro-
cytes and AAG compared to AA (Additional data file 8). In
addition, we identified a common group of genes that exhibit
a similar gene expression pattern in both AAG and CAG com-
pared to normal AA and CA astrocytes, which we named com-
mon glaucoma-related genes (Tables 1 and 2).

Eight eyes from six CAG donors were used to generate astro-
cytes for eight Hugsv2 chips. Six eyes from three AAG were
used to generate astrocytes for six Hugs5Av2 chips and six
Hu133A 2.0 chips. Eighteen Hu133 2.0 chips from nine nor-
mal AA and nine normal CA donors, and seven Hugsv2 chips
from six normal CA donors were used for comparisons within
the appropriate platform. All microarray data have been
deposited in the NCBI GEO database under the series acces-
sion number GSE9963.

The data measured by the two types of chips were normalized
separately by RMA normalization as described in Materials
and methods. Differentially expressed genes required an up
or down fold-change of more than 1.5-fold (p < 0.01, false
discovery rate < 0.05). A total of 618 genes were differentially
expressed in AAG-CAG comparisons, 484 upregulated and
134 downregulated (Additional data file 7); 509 genes were
differentially expressed in AAG compared to normal AA
astrocytes, 167 upregulated and 342 downregulated (Addi-
tional data file 5); and 195 genes were differentially expressed
in the CAG-CA comparison, 132 upregulated and 63 downreg-
ulated (Additional data file 6). We used empirical Bayesian
methods to identify differentially expressed genes; both our
results (not shown) and previous studies [12,13] have sug-
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Common genes significantly decreased in glaucomatous ONH astrocytes compared to their normal counterparts

AAG-AA (U133Av2) CAG-CA (U95Av2)

Symbol  Description CL FC p-value FC p-value
AMIGO2  Adhesion molecule with Ig-like domain 2 12q13.11 -1.52 0.0498 -2.01 0.001 1
BMP| Bone morphogenetic protein | 8p21 -1.92 0.0005 -2.08 0.0001
cD97 CD97 molecule 19p13 -1.65 0.0015 -1.36 0.0008
CRIP2 Cysteine-rich protein 2 14q32.3 -2.58 0 -1.44 0.0034
DGKA Diacylglycerol kinase, alpha 80 kDa 12q13.3 -1.54 0.0034 -1.28 0.0001
DMPK Dystrophia myotonica-protein kinase 19q13.3 -2.45 0 -1.62 0.0021
EFHDI EF-hand domain family, member D1 2q37.1 -4 0 -2.01 0.0011
GPCI glypican | 2q35-q37 -1.61 0.0032 -1.31 0.0026
MGLL Monoglyceride lipase 3q21.3 -1.52 0.0083 -1.75 0.0005
MICAL2  Microtubule associated monoxygenase, calponin and LIM domain I1pl5.3 -1.62 0.0186 -2.02 0.0013
containing 2

NPAL3 NIPA-like domain containing 3 Ip36.12-p35.1  -1.54 0.0034 -1.51 0.0079
PDGFA Platelet-derived growth factor alpha polypeptide 7p22 -1.65 0.0076 -2.21 0.0004
SLCI2A2 Solute carrier family 12, member 2 5q23.3 -1.61 0.0032 -1.51 0.0001
SLCI2A4 Solute carrier family 12, member 4 16q22.1 -2.42 0.0007 -1.19 0.0046
SMTN Smoothelin 22ql2.2 -1.79 0.0162 -1.99 0.001

WWP2  WW domain containing E3 ubiquitin protein ligase 2 16q22.1 -1.87 0.0006 -1.39 0.0029

CL, chromosome location; FC, fold change.

gested that the empirical Bayesian method has performance
similar to statistical analysis of microarrays (SAM). To reduce
batch effects, we added fold-change criteria because genes
with larger fold-change are less likely to be affected by such
effects.

Gene Ontology

Gene Ontology (GO) analysis of differential expression in
glaucomatous astrocytes was done with GoMiner [14]. There
were 33 significant categories for CAG-CA, 80 for AAG-AA,
and 67 for AAG-CAG comparisons (p < 0.01). The significant
genes in selected categories were mined using GOstats in Bio-
conductor (Additional data file 9). The phosphorylation cate-
gory (GoID: 16310) was significant in the three datasets. The
percent distribution of the genes common to all of the data-
sets in this category was determined (Additional data file 10).
For example, the genes encoding myosin light chain kinase
(MYLK) and calcium/calmodulin-dependent serine protein
kinase (CASK1) were found in all three glaucoma compari-
sons. Those encoding the regulatory subunit of phosphati-
dylinositol-3-kinase (PIK3R1), transforming growth factor
(TGF)B-receptor 2 (TGFBR2), ERBB2, and Ephrin receptor
As were some of the genes found in two datasets (AAG-CAG
and AAG-AA). Similarly, another category with overlaps
between the datasets was cell-cell signaling (Additional data
file 10). Some of the genes in this category include those
encoding latent transforming growth factor beta binding pro-
tein 4 (LTBP4), the glutamate receptor subunit (GRIK2), and
parathyroid hormone-like protein (PTHLH). As we show
below, expansion of these and other GO categories using net-

work-protein interaction software yielded three networks
that include differentially expressed GTPases, protein
kinases, transmembrane receptors, and proteins involved in
trafficking at cellular membranes. Altogether, the GO analy-
sis suggests that alterations in the signaling networks that
regulate cell motility, polarity, adhesion, and trafficking are
present in glaucomatous astrocytes. Moreover, the overlap
among the datasets in multiple categories suggests that there
is a spectrum of changes in gene expression in glaucoma.

Network analysis

Three detailed network maps were constructed from the dif-
ferential gene expression data. We focused mainly on the dif-
ferences between AAG and CAG as this difference represents
the maximal differential expression group (Additional data
file 7). The networks include regulation of myosin, actin,
TGFp signaling and protein trafficking. For the myosin net-
work, the initial node was myosin light chain kinase (MYLK)
(Figure 1b). The actin regulatory networks were initiated
using the TGFp receptors (Figure 2a), and the protein traf-
ficking networks were initiated using GOLGAS3, catenin beta1
(CTNNB1) and RAB4A as nodes (Figure 3a). These were
expanded using the BioGrid database for protein-protein
interactions. In each network graph, the differentially
expressed genes are shown by large nodes and font (red for
increased, blue for decreased expression), while the
connecting genes that are not differentially expressed are
shown by black smaller nodes and font. Expression data for
network nodes that are differentially expressed in the AAG-
CAG comparison (Additional data file 7) are included in Table
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Table 2

Differentially expressed genes in glaucomatous astrocytes*

Gene Description FC p-value CL
Genes associated with myosin regulation

CAMI Calmodulin | 223t 0.00121 14q24-q31
MYHI0 Myosin, heavy chain 2 1.64  0.00588 17p13.1
MYLK Myosin, light polypeptide kinase 2.89 0.000133 3q21
PIK3R1 Phosphoinositide-3-kinase, subunit (p85-alpha) 1.62  0.00201 5ql3.1
MYPTI Protein phosphatase |, regulator subunit 12A (PPPIR2A) 1.51  0.000775 12q15-q21
RAC2 Ras-related 2 (Rho family, Rac2) 2.34 0.001059 22ql3.1
RPS6KA3 Ribosomal protein Sé kinase, 90 kDa, polypeptide 3 1.5 0.000061 Xp22.2-p22.1
Genes associated with actin regulation

ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 .71 0.000064 13934
NCKI NCK adaptor protein | 1.64t  0.000015 3q2l
PDLIMI PDZ and LIM domain | (elfin, CLP36) 1.6l 000106 10q22-q26.3
PIK3R1 Phosphoinositide-3-kinase, regulatory subunit | 1.61 0.002012 5ql3.1
PLECI Plectin |, intermediate filament binding protein -1.82  0.00199 8q24
PTPNI I Protein tyrosine phosphatase, non-receptor type || -1.9  0.000005 12924
RAC2 Ras-related 2 (Rho family, Rac2) 2.34 0.001059 22ql3.1
SMAD3 SMAD, mothers against DPP homolog 3 1.9 0.000488 15q22.33
TGFBRI Transforming growth factor, beta receptor | -1.57 0.000038 9q22
TGFBR2 Transforming growth factor, beta receptor | 2.11 0.007253 3p22
Genes associated with protein trafficking

APPBP| Amyloid beta precursor protein binding protein | 1.62 0.001688 16q22
CCLs Chemokine (C-C motif) ligand 5 -1.74 0.002283 17ql1.2-ql2
CDH2 Cadherin 2, type |, N-cadherin (neuronal) 1.55 0.003173 18ql11.2
COL4A4 Collagen, type IV, alpha 4 1.59  0.002335 2q35-q37
CTNNB/ Catenin (cadherin-associated protein), beta |, 88 kDa 2.14 0.005445 3p2l
CTNNDI Catenin (cadherin-associated protein), delta | 1.68 0.000025 lgll
GOLGAI Golgi autoantigen, golgin subfamily a, | .51 0.00002 9q33.3
GOLGA2 Golgi autoantigen, golgin subfamily a, 2 1.77  0.000002 9q34.11
GOLGA3 Golgi autoantigen, golgin subfamily a, 3 1.97 0.000128 12q24.33
HAPLN | Hyaluronan and proteoglycan link protein | 8.04 0.001193 5ql4.3
PRSS3 Protease, serine, 3 (mesotrypsin) 2.53 0.005135 9pll.2
RABIA RABIA, member RAS oncogene family 1.51  0.000274 2pl4
RAB4A RAB4A, member RAS oncogene family 1.52  0.00035 1q42-q43
RAB5B RAB5B, member RAS oncogene family |.5% 0.0081 12q13
RAB9A RAB9A, member RAS oncogene family 1.64 0.000256 Xp22.2
RAB9P40 RAB9 effector protein with kelch motifs 1.84  0.000002 9q33.3
RABGGTB Rab geranylgeranyltransferase, beta subunit 1.76  0.000375 Ip31
TGM2 Transglutaminase 2 2.75 0.008289 20ql2
VCAN Versican (chondroitin sulfate proteoglycan 2, CSPG2) 294 0.000265 5ql4.3

*Genes differentially expressed in AAG compared to CAG (Additional data file 7) except where noted. TFrom Additional data file 5. ¥From qRT-PCR
data (Figure 3b). FC, fold change; CL, chromosome location.

3. Some network nodes were also selected from differentially
expressed genes in AAG-AA (Additional data file 5) and in

effects on function.

common AAG-AA and CAG-CA comparisons (Tables 1 and 2).
In the description of each network, we present selected exper-
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Astrocyte migration and the myosin regulatory network in glaucoma astrocytes. (a) Cell migration assay shows that AA and AAG astrocytes migrate
significantly faster than CA and CAG astrocytes. The assay was performed as described in the Materials and methods. Values represent mean optical
density (OD) * standard deviation of triplicate experiments using primary astrocyte cultures of six AA, five AAG, five CA and five CAG donors. Asterisk
indicates p-value < 0.05. (b) Schematic representation of the myosin regulatory network. Upregulated mRNAs have large red nodes and font while
downregulated mRNAs have large blue nodes and font. Small black nodes and font show genes have 'present calls' without differential expression. (c)
Confirmation of three differentially expressed genes from myosin network by qRT-PCR in human ONH astrocytes: MYLK, RAC2 and PIK3RI. Genes
were normalized to 18S RNA. Graphical representation of the relative mRNA levels in normal and glaucomatous AA and normal and glaucomatous CA

astrocytes (n = 6, two-tailed t-test). Asterisk indicates p < 0.05).

Cellular motility and migration in AAG astrocytes

Migration of reactive astrocytes is an important component in
the remodeling of the ONH in glaucoma [15,16]. In glaucoma,
reactive astrocytes migrate from the cribriform plates into the
nerve bundles [9,17] and synthesize neurotoxic mediators
such as nitric oxide and tumor necrosis factor (TNF)a, which
may be released near the axons, causing neuronal damage
[18,19]. Previous work in our laboratory demonstrated that
human ONH astrocytes in vitro respond to elevated pressure
predominantly with an increase in cell migration that may be

relevant to axonal degeneration and tissue remodeling in
glaucomatous optic neuropathy [20].

Here we provide in vitro data of differential astrocyte migra-
tion in astrocytes from AAG donors using a standardized
migration assay. As shown in Figure 1a, migration of AAG
astrocytes is significantly increased compared to CAG astro-
cytes and migration is faster in AA compared to CA astro-
cytes. Because multiple cellular processes impact cell motility

Genome Biology 2008, 9:R11|
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Figure 2

Actin regulatory network and TGFp signaling in AAG astrocytes. (@) Schematic representation of the actin and TGFp regulatory network. Upregulated
mRNAs have large red nodes and capital font, while downregulated mRNAs are shown with large blue nodes and capital font. Small black nodes and capital
font indicate genes that have 'present calls' without differential expression. The RhoA GTPase is in bold in black because of higher activity in glaucoma
astrocytes. (b) Representative western blot of the pull-down Rho activation assay demonstrated that both AAG and CAG astrocytes exhibit significantly
higher Rho activity than normal astrocytes under unstimulated conditions. (c) Densitometry analysis of the blots from Rho activation assay. Bars show
mean fold difference in density + standard error of two independent experiments. (Asterisk indicates p < 0.05)

and migration, we divided our analysis between two interact-
ing networks that regulate myosin and actin.

Mpyosin-dependent astrocyte migration

From the microarray and quantitative RT-PCR (qRT-PCR)
data, the following genes related to myosin regulation were
differentially expressed in AAG: MYLK, MYPTi, RAC2,
CALM1, RPS6KA3, MYH10, and PIK3R1. Shown in Figure 1b
is the network of proteins associated with the phosphoryla-
tion of the regulatory light chain of myosin II and activation
of myosin-ATPase (MYH10). Two network nodes are critical

for the regulation of myosin. These include MYLK, a calmod-
ulin-activated protein kinase that phosphorylates Ser19 on
the myosin regulatory light chain and MYPT1, the regulatory
subunit of myosin-light chain phosphatase, which
dephosphorylates the myosin light chain. We found that both
genes were expressed in AAG astrocytes at significantly
higher levels than in CAG astrocytes (Table 3). Similarly, cal-
modulin (CALM1), the activator of MYLK is also upregulated
in AAG astrocytes (Table 3)

Genome Biology 2008, 9:R11 |
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Intracellular trafficking networks associated with golgi, plasma membrane, and endosomes that have differentially expressed genes in glaucoma astrocytes.
(@) Schematic representation of the intracellular trafficking network. Upregulated mRNAs have a large red node and font, while downregulated genes have
a large blue node and font. Small black nodes and font indicate genes that have 'present calls' without differential expression. (b) Confirmation of four
differentially expressed genes from the trafficking network by qRT-PCR in human ONH astrocytes: RAB4A, RAB5B, HAPLN and VCAN. Genes were
normalized to 185 RNA. Graphical representation of the relative mRNA levels in normal and glaucomatous AA and normal and glaucomatous CA
astrocytes (n = 6, two-tailed t-test). Asterisk indicates p < 0.05. (c) Representative double immunofluorescent staining of versican (VCAN; red) and
astrocyte marker GFAP (green) in sections of human ONH from an AA donor (51 year old female), AAG donor (70 year old male), CA donor (70 year
old male) and CAG donor (76 year old male). Nuclei (blue) are stained with DAPI. Note staining of VCAN (red) in the cribriform plates and surrounding
the blood vessels (arrowheads). Arrows indicate versican co-localized with GFAP in astrocytes in the cribriform plates of the lamina cribrosa. VCAN
staining is stronger in astrocytes of the glaucomatous lamina cribrosa. V, blood vessel; NB, nerve bundle. Scale bar 35 um.

The upregulation of MYLK suggests that the myosin regula- other members of the Rho-family signaling network are
tory system may exhibit increased responsiveness towards  altered in AAG astrocytes (Figure 1c). These changes allow us
modulation by various cellular second messenger signaling  to predict that the myosin-regulated motility may be sensi-
systems such as Caz2+, diacylglycerol, and cyclic nucleotides  tized to signals from Ca2+, Rho GTPase, and growth/trophic
[21]. Similarly, changes in expression of RAC2 indicate that factors coupled to the activation of phosphoinositides. Within

Genome Biology 2008, 9:R11|

RINTL7



http://genomebiology.com/2008/9/7/R111

Table 3
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Common genes significantly increased in glaucomatous ONH astrocytes compared to their normal counterparts

AAG-AA (U133Av2) CAG-CA (U95Av2)

Symbol Description CL FC p-value FC p-value
ABCA8 ATP-binding cassette, sub-family A, member 8 17q24 2.34 0.0291 2.53 9.43E-05
C5o0rf30 Chromosome 5 open reading frame 30 5q21.1 1.57 0.0028 1.48 0.0042
CASK Calcium/calmodulin-dependent serine protein kinase Xpll.4 1.99 0.0064 1.31 0.002
CASP4 Caspase 4, apoptosis-related cysteine peptidase 11q22.2-q22.3 1.59 0.0007 1.9 0.0026
GSTA4 Glutathione S-transferase A4 6pl2.l 1.25 0.005 1.85 5.21E-05
GULPI GULP, engulfment adaptor PTB domain containing | 2q32.3-q33 1.89 0.0023 1.38 0.0075
HEPH Hephaestin Xqll-ql2 4.15 0.0021 1.88 0.0021
HOXB2 Homeobox B2 17q21-q22 1.59 0.0133 1.86 0.0014
KCNK2 Potassium channel, subfamily K, member 2 Iq4l 1.55 0.0489 1.52 0.0024
KIAAT199  KIAAT199 15q24 1.68 0.0152 1.94 0.0026
LMO4 LIM domain only 4 1p22.3 1.7 0.0034 1.83 0.0052
MYHI0 Myosin, heavy polypeptide 10, non-muscle 17p13 1.64 0.0012 1.57 0.0017
PYGL Phosphorylase, glycogen; liver 14q21-q22 1.47 0.0141 22 0.0025
RBPI Retinol binding protein I, cellular 3q23 22 0.0007 2.32 0.00073
SERPINGI Serpin peptidase inhibitor, clade G, member | I1ql2-ql3.1 23 0.0064 1.86 0.0014
SH3BP5 SH3-domain binding protein 5 3p24.3 1.65 0.0407 2.74 4.87E-05
SLIT2 Slit homolog 2 4pl5.2 1.6 0.0077 1.42 0.0027
TINPI TGF beta-inducible nuclear protein | 5ql3.3 1.53 7.93E-05 1.36 0.0055

CL, chromosome location; FC, fold change.

the phosphoinositide pathway, PIK3R1 is upregulated in AAG
astrocytes (Figure 1c). The PIK3R1 pathway is important for
the motility of ONH astrocytes [22] and their responses to
increased hydrostatic pressure [20]. PIK3R1 is the regulatory
subunit of the lipid kinase that transforms phosphoinositide
(4,5) biphosphate (PIP2) into the triphosphate (PIP3). PIP3
in turn mediates activation of several of the Rho GTPases as
well as selected protein kinases. Thus, in AAG astrocytes,
lipid-activated pathways that modulate astrocyte motility are
altered.

ERK1 potentiates MYLK activity through phosphorylation
[23] and interacts with PEA15 (Phosphoprotein enriched in
astrocytes) [24]. The increased expression of the S6-family
kinase (RPS6KA3) may compete with ERK1 for binding to the
phosphoprotein PEA15 [25], potentially increasing the pool
of active ERK1. Consistent with this finding, we have shown
that ERK1 is activated in normal CA ONH astrocytes, under
increased hydrostatic pressure and in experimental glaucoma
in primates [26]. Thus, myosin-based motility may be influ-
enced by changes in MYLK expression and potentiation
through ERK1 activation under hydrostatic pressure.

Co-localization of MYLK and glial acidic fibrillar protein
(GFAP) by immunohistochemistry indicates that ONH astro-
cytes in tissue sections in the lamina cribrosa of normal AA
and AAG expressed visibly higher levels of MYLK protein in
situ (Figure 4a).

The MYLK gene has multiple genes within its locus [27]. In
some tissues up to three transcripts are expressed, including
for long and short forms of the kinase and a protein identical
to the carboxyl-terminal sequence [27]. ONH astrocytes
express both the 130 kDa (MYLK-130) and 210 kDa (MYLK-
210) kinase isoforms and we quantified changes in both using
standard densitometry measurements. Western blots (Figure
4b) show that the fraction of MYLK-210 in ONH astrocytes is
higher in AAG and CAG compared to normal astrocytes, while
the fraction of the MYLK-130 isoform decreases (Figure 4b).
These differences were quantified using densitometry (Figure
4c, d). Thus, in glaucoma there appears to be MYLK isoform
switching towards the larger protein. The difference between
the two proteins is the presence of an amino-terminal exten-
sion in the 210 kDa species that contains additional actin
binding domains. Other studies have shown that MYLK-210
displays enhanced interaction with the actin cytoskeleton
compared to the 130 kDa isoform [28,29]. These results are
consistent with the enhanced migration of ONH astrocytes
mediated in part by increased expression of MYLK-210.

MYLK variants have been found to confer risk of lung injury
[30], asthma or sepsis [31], particularly in African Americans
[32]. Some of the common polymorphisms in MYLK affect its
expression [31]. Therefore, in some populations, it is possible
that the effects of increased expression of MYLK may be fur-
ther modified by genetic polymorphisms.
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Figure 4

MYLK isoform expression in ONH astrocytes. (a) Representative double immunofluorescent staining of MYLK (red) and astrocyte marker GFAP (green)
in sections of human ONH from an AA donor (51 year old male), AAG donor (70 year old male), CA donor (56 year old female) and CAG donor (76 year
old male). Nuclei (blue) are stained with DAPI. Note strong granular staining of MYLK in astrocytes (arrows) in the cribriform plates of the lamina cribrosa
of AA and AAG donors compared to CA and CAG donors. V, blood vessel; NB, nerve bundle. Scale bar 35 um. (b) Representative western blots of
astrocyte cell lysates with MYLK antibody. -Actin was used as a loading control. Note that AAG -4 donors express more MYLK-210 and less MYLK-130
than CAGI-4 donors. (c) Graph of MYLK-210 expressed as the fraction of MYLK-210 in the four groups. (d) Graph of the fraction of MYLK-130
expressed in the four groups. These results represent densitometry analysis of western blots using seven AA, five AAG, eight CA and eight CAG donor

samples.

Actin-dependent astrocyte migration

From the microarray and qRT-PCR data the following genes
were differentially expressed in AAG: TGFBR2, TGFBR1,
SMAD3, NCK1, PTPN11, ARHGEF7, PDLIM1, LMo4, and
PLEC1. Figure 2a shows several signal transduction networks
that participate in the regulation of actin. Remodeling or
redistribution of actin at cellular edges is an essential part of
establishing cell polarity [33] and the formation of processes
in astrocytes [34]. Actomyosin interactions and actin polym-
erization are regulated by intracellular proteins such as a-
actinin (ACTN4) and the ARP protein complex (ACTR2,
WASP: Figure 2a). These networks involve the Rho GTPase
signaling pathway. Therefore, we used a pull-down Rho acti-
vation assay to measure activated Rho in cell lysates. ONH
astrocytes from CAG and AAG donors exhibited significantly

higher Rho activity compared to those from normal AA and
CA donors (Figure 2b, c¢), consistent with the differential
expression of Rho regulatory components. Rho activity was
also increased in astrocytes exposed to elevated hydrostatic
pressure [35]. Thus, increased Rho activity is another con-
tributor towards increased migration of AAG astrocytes. We
suspect that Rho activity may be altered by changes in the sig-
naling proteins included in these networks. For example,
RAC2 and ARGEF?7 are upregulated in AAG. The Rho-family
GTPase, RAC2, is downstream of TGFB signaling [36] and
ARHGEF7 stimulates guanine nucleotide exchange on Rho
family GTP-binding proteins. We further elaborated changes
in TGFp signaling as a driver to changes in Rho activity.
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TGF /3 signaling in AAG astrocytes

TGFB1 and TGFB2 act via TGFBR1 and TGFBR2 receptors.
Using qRT-PCR we confirmed that TGFBR2 and the
downstream signaling protein SMAD3 are up-regulated in
AAG astrocytes, suggesting increased responsiveness (Figure
5a). TGFBR1 is down-regulated in AAG compared to CAG
(Figure 5a). SMAD proteins not only function as transcrip-
tional regulators in ONH astrocytes [37] and other cells in the
central nervous system [38], but also participate in the regu-
lation of cell polarity. SMAD3 was also upregulated in ONH
astrocytes exposed to hydrostatic pressure in vitro, suggest-
ing that pressure activates the TGFB pathway [35]. In
addition, LMo4, a LIM domain protein that modulates
SMAD3 transcriptional activity [39], is upregulated in glau-
comatous astrocytes in both populations (Table 1). One path
that limits SMAD3 signaling is ubiquitin-linked degradation
by SMURF2. Although SMURF2 expression is not altered in
glaucomatous astrocytes, SMURF2 is downregulated by an
increase in hydrostatic pressure [35]. Thus, there may be
additional potentiation of TGFp signaling in AAG astrocytes
with changes in intraocular pressure, which may be a suscep-
tibility factor to glaucomatous changes in the AA population.

TGFp regulates cellular motility through two components.
One is through the expression of extracellular matrix (ECM)
proteins, which will be discussed in detail below. Contractile
forces are transmitted to the ECM through actin-based stress
fibers via focal adhesions, which are assemblies of ECM pro-
teins, transmembrane receptors, and cytoplasmic structural
and signaling proteins, such as integrins. TGFB modulates
integrin-mediated cellular migration, where FYN is one of the
primary signal transducing proteins. A second component of
TGF signaling is the regulation of cell polarity. For example,
PARD3 and PARDG are part of a multi-component polarity
complex that controls polarized cell migration [40]. These
complexes involve the Rho, CDC42, and RAC signaling path-
ways, which provide the means to remodel actin during
migration [33,41]

As shown in Figure 2a, NCK1 was upregulated in AAG (Table
3). The Nck1 SH2/SH3 adaptor couples phosphotyrosine sig-
nals to the actin cytoskeleton and receptor signaling to the
regulatory machinery of the cytoskeleton [42]. The enigma
family member PDLIM1 was upregulated in AAG astrocytes
(Table 3) and functions by allowing interactions among
cytoskeletal proteins through PDZ and amino LIM domains
[43,44]. Downregulation of other actin binding proteins such
as PLEC1 (Table 3) may alter actin dynamics with respect to
cytoskeletal changes induced by Rho-GTPase, phospholipids,
and tyrosine kinase (Src) mediated signaling [45].

TGFBR2 receptors in optic nerve head astrocytes

Figure 5b illustrates immunohistochemistry of the TGFBR2
on astrocytes in normal and glaucomatous ONH tissue. GFAP
positive astrocytes in the lamina cribrosa of AAG exhibit
higher expression of TGFBR2 compared with astrocytes in
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normal ONH tissue. Consistent with these findings, western
blots of lysates of ONH astrocytes from AAG indicate higher
levels of TGFBR2 protein compared to the normal tissue and
CAG (Figure 5c¢).

To further investigate alterations in TGFp signaling in ONH
astrocytes, we examined the production of TGFB1 and TGFp2.
As seen in Figure 5d, TGFp2 is the primary form of TGFf pro-
duced by ONH astrocytes [46]. There are significantly
increased levels of secreted TGFB1 in AA compared to CA
astrocyte supernatants but the increases in AAG and CAG
astrocytes were not significant compared to normal astro-
cytes. These data suggest that most of the changes in TGFj
signaling are due to alterations at the level of TGFp receptors
in astrocytes from AAG.

Mutations in TGFBR2 are associated with Marfan syndrome
type 2 [47-49]. Ocular abnormalities, including glaucoma, are
associated with Marfan syndrome type 1 in which there are
mutations in the gene for fibrillin (FBN1) [50]. However, it
has not been established that mutations of TGFBR2 are asso-
ciated with ocular problems in Marfan syndrome type 2

[48,49].

Intracellular trafficking and the endoplasmic
reticulum/Golgi compartments

From the microarray and quantitative RT-PCR data the fol-
lowing genes were differentially expressed in AAG. Endosome
group, RAB4A, RAB5B, RAB9P40, RAB9A; plasma mem-
brane group, PRSS3, APPB1, CTNNDi1, CTNNB1, CDHz2,
VCAN, HAPLN1, CCL5, COL4A4, TGM2, SLIT2, GPC1; Golgi
group, GOLGA1, GOLGA3, GOLGA2, RAB1A, RABGGTB
(Figure 3a). Six Rab family signaling genes involved in intra-
cellular transport of organelles were differentially regulated
(Table 3). Three small GTPases, RAB4A, RAB5B, and RAB9A,
were upregulated (Table 3, Figure 3b), suggesting increased
endosomal transport and processing. RAB4A and RAB5B
selectively regulate intracellular trafficking and signaling of G
protein-coupled receptors, such as the angiotensin receptor
and adrenergic receptors (2-AR and a2B-AR) from the cell
surface [51,52]. RABQA participates in late endosomal events
leading to fusion with the lysosomal compartment [52].

In AAG astrocytes there was a predominant increase in tran-
scription of Golgi-resident protein transcripts (Additional
data file 7). These include RAB1A, and three members of the
golgin family, GOLGA1, GOLGA2 and GOLGA3 (Table 3),
which may function in the stacking of Golgi cisternae and in
vesicular transport [53]. GOLGA3 promotes cell surface
expression of the beta adrenergic receptors [54]. Thus, the
increased expression of Golgi proteins may further enhance
adrenergic receptor signaling. Note that the RAB proteins
upregulated in the endosomal pathway (above) also affect
trafficking of these receptors.
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TGFp and its receptors in ONH astrocytes. (a) Confirmation of three differentially expressed genes from the TGFf-actin network (Figure 3a) by qRT-
PCR in human ONH astrocytes: TGFBR2, SMAD3 and TGFBR /. Genes were normalized to |8S. Graphical representation of the relative mRNA levels in
normal and glaucomatous AA and normal and glaucomatous CA astrocytes (n = 6, two-tailed t-test was used. Asterisk indicates p < 0.05). (b)
Representative double immunofluorescent staining of TGFBR2 (red) and astrocyte marker GFAP (green) in sections of human ONH from an AA donor
(51 year old male), AAG donor (70 year old male), CA donor (54 year old male) and CAG donor (76 year old male). Nuclei (blue) are stained with DAPI.
Note granular staining of TGFBR2 in astrocytes (arrows) in the cribriform plates of the lamina cribrosa in AAG and CAG donors. Fewer astrocytes stain
for TGFBR?2 in the lamina cribrosa of CA donors. V, blood vessel; NB, nerve bundle. Scale bar 35 um. (c) Representative western blots of astrocyte cell
lysates with TGFBR?2 antibody. B-Actin was used as a loading control. Note that AAG donors express more TGFBR2 than CAG donors. Normal AA and
CA express lessTGFBR2 than glaucomatous donors. (d) Secreted TGFf| and TGF2 detected by ELISA. TGFP2 is the primary form of TGFf produced
by ONH astrocytes. Secreted TGFI is significantly higher in AA astrocytes compared to CA astrocytes (Asterisk indicates p < 0.05, two-tailed t-test);
however, the increase in glaucomatous astrocytes compared to normal astrocytes is not significant. Secreted TGFf2 levels are elevated significantly from
normal AA astrocytes compared to all other donors (n = 24; asterisk indicates p < 0.05, two-tailed t-test).

Included in the protein trafficking network are plasma mem- (CTNNB1, CTNND1) form membrane trafficking complexes
brane associated proteins involved in cell-cell communica- that integrate other cadherins (CDH2), and members of the
tion from the junctional matrix (Figure 3a). Catenins amyloid precursor protein complex (presenilin, APPBP1,
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PRSS3). In particular, CTNND1 functions to regulate mem-
brane trafficking either through blocking cadherin interac-
tions, or through Rho-GTPases such as Rho A, Rac and
CDC42 [55]. As with the myosin and actin motility networks,
the change in expression of GTPase regulatory proteins will
likely impact plasma membrane trafficking. The upregulation
of chondroitin sulfate proteoglycan 2 (versican; VCAN),
transglutaminase 2 (TGM2), and hyaluronan and proteogly-
can link protein 1 (HAPLN1) are significant modifiers of the
ECM [56]. Both HAPLN1 and VCAN mRNA levels were
upregulated in AAG compared to CAG astrocytes by qRT-PCR
(Figure 3b). VCAN immunoreactivity was observed in the
ECM of the cribriform plates, the perivascular matrix and a
few astrocytes in the lamina cribrosa of normal AA and CA
donors (Figure 3c). In glaucomatous tissues there was a
marked increase in VCAN staining in astrocytes in the cribri-
form plates and hypertrophied reactive astrocytes in the
nerve bundles in both populations (Figure 3c). TGFf2 signal-
ing upregulates VCAN [57] in astrocyte cell types and
expression of collagen type 4 and transglutaminase 2 in ONH
astrocytes [37]. Our data on changes in TGFj receptor expres-
sion and ECM proteins are similar to those found in microar-
ray profiling of ONH tissue from a rat model of glaucoma
[58]. Expression of ECM proteins is also modulated by TGFp
in GFAP-negative lamina cribrosa cells in culture [59].

There is substantial evidence that ONH astrocytes are respon-
sible for the normal maintenance of the ECM in normal tissue
and that reactive astrocytes remodel the ECM in response to
elevated IOP in human and experimental glaucoma
[10,60,61]. Reactive astrocytes in the ONH express abnormal
ECM in glaucoma, leading to loss of resiliency and deforma-
bility in response to elevated IOP. Alterations in TGFp2 levels
and TGFp receptors and abnormal synthesis of ECM in AAG
may convey connective tissue components of susceptibility to
elevated IOP to this population.

cAMP signaling in glaucomatous ONH astrocytes

Earlier work in our laboratory indicated upregulation of two
adenylyl cyclases (ADYC3 and ADYC9) in normal AA com-
pared to CA astrocytes, suggesting changes in cyclic AMP
(cAMP) levels in this population (L. Chen, MR Hernandez,
ARVO (Association for Research in Vision and Ophthamol-
ogy) 2007 abstract 3265). To test whether glaucomatous
ONH astrocytes exhibit differential basal levels in cAMP, we
conducted a standard cAMP assay in normal AA and CA
astrocytes and in AAG and CAG astrocytes. Under unstimu-
lated conditions, normal AA and CA astrocytes exhibit no dif-
ference in basal levels of cAMP, whereas AAG and CAG
astrocytes have significantly higher basal levels of cAMP com-
pared with the normal counterparts (Figure 6a). Cyclic AMP
is a key intracellular second messenger in astrocytes. The
cAMP signaling cascade opposes pro-inflammatory cytokines
such as IL1p and TNFa and maintains astrocytes in a quies-
cent (non-activated) state [62]. Thus, the higher basal levels
of cAMP in astrocytes from glaucomatous donors may be a
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response to pro-inflammatory cytokines such as TNFa in the
glaucomatous ONH [19].

We searched the expression data for differentially expressed
genes that might explain the difference in basal cAMP levels
between glaucomatous and normal astrocytes. One potential
candidate for increasing basal cAMP is PTHLH, a parathyroid
hormone-like protein that is upregulated in glaucomatous
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Figure 6

cAMP signaling in glaucomatous astrocytes. (a) cAMP levels in
unstimulated ONH astrocytes were determined as described in the
Materials and methods. The basal cAMP level was significantly higher in
glaucomatous astrocytes compared to their normal counterparts. Values
are the mean * standard deviation of cAMP expressed in pmol/mg of
protein. Eight AA, four AAG, nine CA and four CAG individual samples
were used in this study. (b) Confirmation of PTHLH and CAP2 expression
by qRT-PCR in human ONH astrocytes. Genes were normalized to 18S.
Graphical representation of the relative mRNA levels in normal and
glaucomatous AA and normal and glaucomatous CA astrocytes (n = 6,
two-tailed t-test). Asterisk indicates p < 0.05).

astrocytes (Figure 6b). This protein binds to ubiquitous PTH
receptors that are coupled to stimulation of adenylate cyclase
and elevated cyclic AMP [63]. Thus, upregulation of PTHLH
provides an autocrine pathway leading to increased basal
cyclic AMP levels in glaucomatous astrocytes. Another gene
that might also contribute to the activity of adenylate cyclases
is CAP2 [64]. However, we found that CAP2 was not
differentially expressed in glaucomatous ONH astrocytes by
qRT-PCR (Figure 6b).
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Other disease-associated genes differentially regulated
in glaucomatous OHN astrocytes

Cell-cell communication

The secondary and tertiary comparisons identified genes that
were differentially expressed in AAG compared to AA and in
CAG compared to CA, including BMP1, LTBP1, AMIGOz2,
SLIT2, GPC1, and OLR1 (Tables 1 and 2). Selected genes were
confirmed by qRT-PCR (Figure 7).

In this list we found that specific cell-surface-associated pro-
teins are downregulated in glaucoma. These include BMP1,
which activates cleavage of LTBP1 proteins that release nas-
cent TGFpB1 [65], and AMIGOz2, a type I transmembrane pro-
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Figure 7

Glaucoma disease-associated genes differentially regulated in
glaucomatous OHN astrocytes. Differential expression of six glaucoma
disease associated genes (BMPI, AMIGO2, DMPK, SLIT2, RBP-1 and CASK)
was validated by gqRT-PCR in human ONH astrocytes. Genes were
normalized to 18S. Graphical representation of the relative mRNA levels
in normal and glaucomatous AA and normal and glaucomatous CA
astrocytes (n = 6, two-tailed t-test). Asterisk indicates p < 0.05).

tein that regulates axon extension [66]. Down-regulation of
BMP1 may reduce the levels of free TGFB1 and thus unbalance
signaling between TGFp isoforms. A decrease in AMIGO2
might negatively impact axon survival.
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Two differentially expressed genes that are involved in reac-
tive astrocyte responses to neuronal injury are SLIT2 and
GPC1 (glypican-1). SLIT2 serves as a chemorepellant for mul-
tiple types of axons [67], while GPC1 is a proteoglycan that
binds SLIT2 [67]. Upregulation of expression of SLIT2 and a
reduction of GPC1 by glaucomatous astrocytes suggest an
inhibitory microenvironment for RGC axons in the ONH.
These data are consistent with the idea that the enhanced
migratory properties of glaucomatous astrocytes coupled
with the release of factors that negatively impact upon axon
survival are part of the pathophysiology of the disease.

Finally, lectin-like oxidized-LDL receptor (OLR1; also known
as LOX-1) is highly upregulated (Additional data files 5 and
11) in AAG astrocytes. OLR1 expression is induced by TGFp1
signaling and is known to be a component of the fluid shear
stress response of endothelial cells in early atherosclerotic
lesions [68]. These data are further confirmation of enhanced
TGFp signaling in AAG astrocytes as suggested by the differ-
ential receptor expression described earlier.

Intracellular calcium signaling/transport systems in ONH astrocytes

Two genes directly involved in Ca2* homeostasis are differen-
tially regulated in ONH astrocytes of AAG (Additional data
files 5 and 7). CACNB4 encodes a beta subunit of the voltage-
dependent calcium channel complex. CACNB4 plays an
important role in calcium channel function by modulating G
protein inhibition, increasing peak calcium current, control-
ling the alpha-1 subunit targeting to the membrane and shift-
ing the voltage dependence of activation and inactivation. The
second gene, ATP2C1 (Additional data file 77), encodes a pro-
tein that belongs to the family of P-type primary ion transport
ATPases, which pump Ca2* into the endoplasmic reticulum.

Transcripts encoding the calcium/calmodulin-related signal-
ing proteins calmodulin 1 (CALM1) and Ca2*/calmodulin-
dependent membrane-associated kinase (CASK1) are differ-
entially expressed in one or more glaucoma groups. CALM1
was increased in AAG compared to AA donors (Additional
data file 5), while CASK1 was increased in glaucomatous
astrocytes from both AA and CA donors (Table 1, Figure 7).
Calmodulin is the Ca2* sensor of key signaling molecules,
such as adenylyl cyclase, CAMKII, CAMKIV, and MYLK dis-
cussed above. CASK1 is a member of the membrane-associ-
ated guanylate kinase proteins (MAGUKSs), a prominent
family of scaffolding molecules associated with intercellular
junctions. CASK1 targets Ca2+ and K+ channels [69] and/or
the Ca2* pump 4b/CI [70] to the plasma membrane, interacts
with liprins [71] and regulates transcription by interacting
with transcription factors in the nucleus [72]. Interestingly,
CASK is a candidate gene for X-linked optic atrophy [73]. The
differential expression of genes in Ca2* signaling pathways
could be a common theme in glaucomatous astrocytes that
may have a higher impact in optic nerves from AA donors due
to increased sensitivity to elevated IOP in these donors.
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Conclusion

Glaucomatous ONH astrocytes share many characteristics of
reactive astrocytes in the central nervous system; however,
certain properties may be specific to the pathophysiology of
glaucoma. The current work and previous studies demon-
strate that cultured glaucomatous ONH astrocytes exhibit dif-
ferential expression of genes that promote cell motility and
migration, downregulate cell adhesion, are associated with
structural tissue changes, and contribute to neural degenera-
tion. Our data further strengthen the idea that reprogram-
ming of transcription in glaucomatous astrocytes shifts
signaling towards TGFB, Rho GTPase and Ca2* systems,
which impact the multiple networks described earlier.

Our demonstration of this wide variety of genes that remain
differentially expressed after weeks in culture suggests that
glaucomatous ONH astrocytes have an altered phenotype. In
the current study, using microarray analysis, we identified a
number of genes (for example, MYLK, TGFBR2, VCAN, and
RAC2) whose expression may underlie higher susceptibility
of astrocytes of AA individuals to elevated IOP and that may
be relevant to reactive astrocyte responses in glaucoma. Some
limitations of our approach should be noted. First, ONH
astrocyte derived from human glaucomatous eyes during the
disease process does not allow assessment of changes or the
identification of early mechanisms of disease that might be
available from animal models. In addition, the difficulty to
obtain and include more AA glaucomatous eyes limited our
ability to identify differentially expressed genes in this group.
However, stringent filters allowed the selection of a group of
genes with functional significance. For each comparison,
selected genes were validated by qRT-PCR and relevant gene
products were confirmed by western blots in the four groups.

We propose that part of the increased susceptibility to ele-
vated IOP in AAG relates directly to astrocyte functions in the
ONH. Astrocytes in AAG, which are reactive astrocytes, may
have increased responsiveness to TGF(B signaling and
enhanced migratory abilities, which may impact the
remodeling of the ECM, inhibit axon survival, and alter vas-
cular permeability in the glaucomatous ONH. Any one of
these changes may represent a susceptibility risk factor in the
AA population to withstand abnormally elevated IOP.

This study provides an initial survey of the molecular differ-
ences of ONH astrocytes from AA and CA donors with glau-
coma. Genes encoding many potential therapeutic targets,
such as motility genes, ion channels, adhesion molecules, and
signaling pathways, are selectively expressed in glaucoma-
tous astrocytes, making them interesting as potential targets
for astrocyte-specific therapeutics. Additional applications of
these data include identification and characterization of sign-
aling pathways involved in astrocyte function and further
exploration of the role of selected identified genes in experi-
mental animal and in vitro models of glaucoma.
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Materials and methods

Human eyes

Thirteen eyes from eleven CA donors (age 73 + 9 years) with
POAG (referred to as CAG) and six eyes from three AA donors
(age 62 + 13 years) with POAG (referred to as AAG) were used
to generate ONH astrocyte cultures as described (Additional
data file 1). Myelinated optic nerves were fixed in 4% parafor-
maldehyde, post-fixed in osmium, embedded in epoxy resin
and stained with paraphenylendiamine to detect axon degen-
eration as described earlier to confirm glaucoma and to assess
optic nerve damage (Additional data file 1). Normal eyes were
from 12 CA donors (age 60 + 11 years) and 12 AA donors (age
58 + 12 years) with no history of eye disease, diabetes, or
chronic central nervous system disease (Additional data file

2).

Astrocyte cultures

Primary cultures of human ONH astrocytes were generated as
described previously [11]. Briefly, four explants from each
lamina cribrosa were dissected and placed into 25 cm2 Prima-
ria tissue culture flasks (Falcon, Lincoln Park, NJ, USA).
Explants were maintained in DMEM-F12 supplemented with
10% fetal bovine serum (Biowhittaker, Walkerswille, MD,
USA) and 10 ul/ml of PSFM (10,000 U/ml penicillin, 10,000
pg/ml streptomycin and 25 ug/ml amphotericin B; Gibco/
BRL, Gaithersburg, MD, USA). Cells were kept in a 37°C, 5%
CO, incubator. Primary cultures were purified by using an
immunopanning procedure [11]. Purified cells were expanded
after characterization by immunostaining for astrocyte
markers GFAP and NCAM (Neural cell adhesion molecule) as
described [11]. Second passage cell cultures were stored in
RPMI 1640 with 10% DMSO in liquid nitrogen until use. For
each set of experiments, cells were thawed and cultured so
that sufficient cells from the same batch were available for
multiple experiments.

Antibodies

An affinity purified rabbit polyclonal antibody to MYLK was a
gift from Dr Linda van Eldik (Northwestern University). It
was used in western blotting (1:10,000) and immunohisto-
chemistry (1:50). Another MYLK antibody (M7905) is a
mouse monoclonal antibody (Sigma-Aldrich, St Louis, MO,
USA) and it was used in western blotting (1:10,000) and
immunohistochemistry(1:50). TGFBRII (L-21) is a rabbit pol-
yclonal antibody (Santa Cruz Biotechnology Inc., Santa Cruz,
CA, USA). It was used in western blotting (1: 200) and immu-
nohistochemistry (1:50). VCAN is a goat polyclonal antibody
(R&D Systems, Minneapolis, MN, USA). It was used in immu-
nohistochemistry (1:20).

Oligonucleotide microarray analysis

Total RNA was extracted using Qiagen RNeasy mini kits (Qia-
gen, Valencia, CA, USA). RNA was then purified and quanti-
fied by measuring absorbance at 260 nm. Quality and
intactness of the RNA was assessed by capillary electrophore-
sis analysis using an Agilent 2100 Bioanalyzer (Agilent, Palo
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Alto, CA, USA). cDNA was synthesized from 2-5 pg purified
RNA by using Superscript Choice system (Gibco BRL Life
Technologies, Gaithersburg, MD, USA) and Ty7-(dT)24
primer (GENSET, La Jolla, CA, USA). Using Bioassay High
Yield RNA Transcript Labeling Kit (Enzo Diagnostics,
Farmingdale, NY, USA), in vitro transcription was carried out
with the cleaned double-stranded cDNA as a template in the
presence of biotinylated UTP and CTP. Purified biotin-
labeled cRNA was fragmented before the hybridization.
Hybridization of the labeled cRNA to Human Genome
UgsAv2, U133A, U133A 2.0 chips (Affymetrix, Santa Clara,
CA, USA) was carried out by using Genechip Instrument Sys-
tem (Affymetrix) at the Genechip Core Facility of Washington
University School of Medicine. The arrays were washed and
stained with streptavidin-phycoerythrin (Molecular Probes,
Eugene, OR, USA) followed by scanning on an Agilent Gene-
Array Scanner G2500A (Agilent Technologies, Palo Alto, CA,
USA).

Data analysis

Pretreatment of data

The first step in the analysis of the microarray data was to
determine which genes to consider "present' or 'absent’. We
estimated the probe-set present/absent calls by using the
Wilcoxon signed rank-based algorithm. In order to reduce
false positives, we removed the probe-sets with all samples as
'absent’ (Additional data file 3).

Comparison between glaucomatous ONH astrocytes from AA and
CA normal donors

As the experiments were done at different times, two types of
Affymetrix microarrays (Human Genome U95Av2 array and
Human Genome U133A 2.0 array) were used. Samples from
eight CAG donors, seven CA normal donors and six AAG sam-
ples were measured using a Human Genome U95Av2 array.
Eighteen CA samples, eighteen AA samples and six AAG
samples were measured using a Human Genome U133A 2.0
array. The data measured by two types of arrays were normal-
ized separately by RMA normalization [74,75]. We defined
common glaucoma-related genes as genes differentially
expressed in both CAG versus CA and AAG versus AA, and did
comparisons of CAG versus CA and AAG versus AA sepa-
rately. The differentially expressed genes were identified by
the empirical Bayesian shrinkage moderated t-statistics in
the limma Bioconductor package [76]. A mixed effects model
was used to account for the effect of technical replicates.
Genes exhibiting a fold-change >1.5 and p-value < 0.01 were
considered significant. To reduce false positives because the
AAG has only three biological replicates, we applied the Ben-
jamini and Hochberg false discovery rate multiple testing cor-
rection with a false discovery rate of 0.05 (AAG versus CAG
and AAG versus AA).

To compare the significant gene list based on two types of
microarray platforms, the Affymetrix probeset IDs were
transferred as Entrez IDs based on the Bioconductor library.
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Genes whose Entrez IDs appear in both the differentially
expressed gene list from CAG versus CA (using the Human
Genome UgsAv2 array) and AAG versus AA comparisons
(using the Human Genome U133A 2.0 array) and change in
the same direction were considered as common glaucoma-
related genes. Genes that are differentially expressed for AAG
versus CAG (using the Human Genome UgsAv2 array), but
without significant changes for AA versus CA (using Human
Genome U133A 2.0 array), were considered as the glaucoma
race-related genes. Here we considered a p-value > 0.05 as
indicative of changes that were not significant.

GO analysis of differential expression in glaucomatous astro-
cytes was done with GoMiner [14]. Briefly, gene lists of up-
and downregulated genes (p < 0.01 as described above) were
normalized to 1 and -1, respectively, for genes that exhibited
at least a 1.5-fold change in either direction. These lists were
then loaded into GoMiner using local GO databases accessed
using the 'Derby' module. GoMiner output was analyzed with
a significance cutoff of p < 0.01 and at least four genes per
category.

Network construction

Initially, we scanned the differentially expressed gene lists for
AAG-CAG, AAG-AA, and CAG-CA comparisons for groups of
genes that were either in common GO categories, or were
highly over- or underexpressed (>1.5-fold, p < 0.01). These
short lists were then used as a source of nodes for each
network group. Networks of interacting proteins were con-
structed using the BioGRID database [77]. BioGRID is a freely
accessible database of physical and genetic interactions.
BioGRID release version 2.0 includes more than 116,000
interactions from Saccharomyces cerevisiae, Caenorhabditis
elegans, Drosophila melanogaster and Homo sapiens.
Graphs with embedded protein, gene and interaction
attributes were constructed with a visualization program,
Osprey [78], that is dynamically linked to the BioGRID. Each
network was begun using a single gene or node. Then more
interactions were added using The BioGrid Database lookup
function. These were curated to simplify the graphs, and non-
expanded nodes were minimized. In general, nodes that were
not differentially expressed required at least two connections
or edges to remain in the network. Expression of genes
depicted in the networks were checked for a 'present call' in
the microarray data or otherwise validated by quantitative
real time RT-PCR.

Real-time qRT-PCR

Real time qRT-PCR was done as previously described [60]. To
compare expression of specific genes amongst the four groups
included in this study (AA, CA, AAG and CAG), we used 12
ONH astrocyte cultures from normal CA and 12 cultures from
normal AA donors. cDNA of eight eyes from eight CAG
donors and of six eyes from three AAG donors were used.
Individual samples were processed simultaneously under the
same conditions and the data were analyzed for significance
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using a two-tailed t-test on sample pairs (Prism 3.0 GraphPad
software, San Diego, CA, USA). Primers used in this study are
listed in Additional data file 4.

Western blotting

Protein lysates from four samples of each group of ONH
astrocytes were processed together in the appropriate combi-
nations: four AAG and four AA; four CA and four CAG. West-
ern blots were run in triplicate to accommodate all available
samples. Protein lysates containing 3-10 pg were used
depending on the specific antibody. B-Actin was used as a
loading control. Films of blots were scanned using a flatbed
scanner in 8-bit gray scale mode. ImageJ (National Institutes
of Health) was used to quantify band intensities on the blots.

Detection of TGF(31 and TGFf32 by ELISA

TGFB1 and TGFB2 were measured in cell culture superna-
tants using ELISA kits (R & D Systems) specific for each pro-
tein. Briefly, astrocytes (70-80% confluent) were incubated
for 24 h in 6 ml of cell culture medium without serum. Media
was harvested and divided into 1 ml aliquots and frozen at -
80°C until analysis. For each sample, cell counts were made
and recorded. Media samples were thawed on ice and 200 pl
aliquots activated by incubating with 40 pl of 0.1 N HCI at
room temperature for 40 minutes. The reactions were
quenched by adding 40 pl of 0.1 N NaOH in 0.5 M HEPES and
mixed. Samples were diluted with the appropriate ELISA
assay buffer to 400 ul. Aliquots of these solutions (50 pl
TGFB1:100 pl TGFB2) were then assayed according to the
manufacturers' protocol. Experiments were performed in
duplicate and each astrocyte cell culture (n = 5-7 samples per
each group) was assayed at least twice. Expressed protein val-
ues in picograms of TGFB1/2 per ml were normalized to 106
cells using the cell counts obtained at harvest. The means of
the content were considered significantly different if p < 0.05
(two-tailed t-test; Prism 3.0 GraphPad software.).

Cyclic AMP assay

Primary ONH astrocyte cultures obtained from six normal
AA, six normal CA, eight CAG and three AAG were grown in
60 mm dishes until 80% confluence. Growth media was
replaced with serum free media and the cells incubated for an
additional 24 h. After washing with ice-cold phosphate-buff-
ered saline (PBS), cells were lysed in 95% chilled ethanol for 1
h and then centrifuged at 2000 x g for 15 minutes at 4°C. The
supernatant was evaporated using a Speed Vac concentrator
and resuspended in 100 pl of the assay buffer and analyzed as
described in the cAMP Biotrak Enzyme Immunoassay Kit
(Amersham Bioscience RPN225, Piscataway, NJ, USA).
cAMP concentration per well was expressed as pmol/mg of
protein. Each value represents the mean cAMP level (+ stand-
ard deviation) of independent experiments using primary
astrocyte cultures from each donor and performed in tripli-
cate. Sample pairs were analyzed by two-tailed t-test (Prism
3.0 GraphPad software) for significance (p < 0.05).
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Migration assay

CytoSelect™ 24-well cell migration assay (Cell BioLabs, San
Diego, CA USA) was used to measure the migratory proper-
ties of cells. The assay was performed according to the manu-
facture's protocol. Briefly, media with 10% fetal bovine serum
was placed in the lower wells followed by 50,000 cells in 300
ul of serum free media in each of the well inserts. After incu-
bation at 37°C in a 5% CO, atmosphere for 24 h, the media
was removed from the inserts. Cells that did not migrate were
removed from the inserts using a cotton swab. The inserts
were stained with 400 pl of cell staining solution and washed
three times with water. Cells were treated with 200 pl of
extraction solution and the solution transferred to individual
wells of a new plate. The absorbance of the extracted samples
was measured at 560 nm by a Thermo Multiskan Spectrum
plate reader. Six astrocyte cultures from each group (AA, CA,
AAG and CAG) were used in the assay and data were analyzed
for significance with ANOVA (Prism 3.0 GraphPad software).

Rho activation assay

Rho activation assay kit (Upstate Biotechnology Billerica,
MA, USA) was used to detect activated Rho in cell lysates.
Unstimulated cells were cultured in 60 mm dishes until 85-
90% confluence and then harvested in ice cold 1 x Mg2+ Lysis/
Wash (MLB) buffer (according to the manufacturer's proto-
col). Protein concentration was determined by the Bradford
method. Protein lysate (200 pg) were mixed with 32 ul of Rho
assay reagent slurry containing GST-Rhotekin-RBD fusion
protein, and incubated for 45 minutes at 4°C with gentle agi-
tation. After pelleting and washing three times with 1 x MLB,
the beads were resuspended in 2 x NuPage LDS sample buffer
(Invitrogen Carlsbad, CA, USA) supplemented with 0.075 M
DTT and boiled at 95°C for 5 minutes. Samples were
subjected to western blot analysis. An anti-Rho antibody that
recognizes Rho-A, Rho-B and Rho-C was used for detection.
Four cultures from each group (AA, CA, AAG and CAG) were
used in the assay. Western blots were performed in duplicate.
Representative blots are shown in the results and the mean
optical density was used in density analysis. Statistical signif-
icance was based upon two-tailed t-test (Prism 3.0 GraphPad
software) and p-value < 0.05

Immunohistochemistry

Six eyes from normal CA donors, six eyes from normal AA
donors, six eyes from CAG donors and four eyes from AAG
donors were used. All donors were age matched. Tissues were
fixed with 4% paraformaldehyde in 0.1 M phosphate-buffered
saline pH 7.4 and processed for paraffin embedding. Two
slides were stained per donor containing at least two 6 pm
optic nerve sections each. In double labeling experiments we
used monoclonal or polyclonal antibodies against human
glial acidic fibrillar protein (GFAP) as an astrocyte marker.
Secondary antibodies labeled with Alexa 488 and Alexa 568
(1:800) were from Molecular Probes. For negative controls,
the primary antibody was replaced with non-immune serum.
Serial sections used in comparisons (AAG versus CAG) were
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stained simultaneously to control for variations in immunos-
taining. Slides were examined in a Nikon Eclipse 80 1 micro-
scope (Tokyo, Japan) equipped with epifluorescent
illumination and digital cameras (CoolSnap ES and CF, Pho-
tometrics). The images were processed using MetaMorph
software (Molecular Devices Sunnyvale, CA, USA).
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Additional data files

The following additional data files are available in the online
version of the paper. Additional data file 1 is a table listing
clinical information about CAG and AAG eyes used to gener-
ate primary cultures of ONH astrocytes. Additional data file 2
is a table listing demographic information of CA and AA nor-
mal donor eyes used to generate primary cultures of ONH
astrocytes. Additional data file 3 is a table that summarizes
the number of probe-sets on the chip and used in analysis.
Additional data file 4 is spreadsheet listing the primers used
for qRT-PCR. Additional data file 5 is a spreadsheet listing
genes differentially expressed in glaucomatous ONH astro-
cytes and including the comparison between AAG versus nor-
mal AA. Additional data file 6 is a spreadsheet listing
differentially expressed genes between CAG and normal CA.
Additional data file 7 is a spreadsheet listing differentially
expressed genes between AAG and CAG. Additional data file
8 is a spreadsheet listing genes differentially expressed in
ONH astrocytes from AAG compared to both normal AA and
CAG. Additional data file 7 is a spreadsheet summarizing
Gene Ontology for the comparisons between AAG and AA
data. Additional data file 8 is a spreadsheet with Gene
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ontology comparisons for CAG and CA. Additional data file 9
is a spreadsheet with GO comparisons for AAG versus CAG
expression sets. Additional data file 10 is a figure showing the
distribution of genes in two GO categories. Additional data
file 11 is a figure showing qRT-PCR data that confirm addi-
tional differentially expressed genes from the CAG-CA
comparison.
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