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Quantifying similarity between motifs<p>Tomtom allows for the statistical measurement of similarity between pairs of motifs, thereby enabling searching a motif database with a motif query.</p>

Abstract

A common question within the context of de novo motif discovery is whether a newly discovered,
putative motif resembles any previously discovered motif in an existing database. To answer this
question, we define a statistical measure of motif-motif similarity, and we describe an algorithm,
called Tomtom, for searching a database of motifs with a given query motif. Experimental
simulations demonstrate the accuracy of Tomtom's E values and its effectiveness in finding similar
motifs.

Background
Discovering and characterizing DNA and protein sequence
motifs are fundamental problems in computational biology.
Here, we use the term 'motif' to refer to a position-specific
probability matrix that describes a short sequence of amino
acids or nucleotides that is important to the functioning of the
cell. For example, the regulation of transcription requires
sequence-specific binding of transcription factors to certain
cis-acting motifs, which typically are located upstream of
transcriptional start sites [1]. On the other hand, protein
sequence motifs might correspond to active sites in enzymes
or to binding sites in receptors [2].

A wide variety of statistical methods have been developed to
identify sequence motifs in an unsupervised manner from
collections of functionally related sequences [3]. In addition,
databases such as JASPAR [4], TRANSFAC [5], and BLOCKS
[6] can be used to scan a sequence of interest for known DNA
or protein motifs. In this work we develop a statistical method
for comparing two DNA or protein motifs with one another.
This type of comparison is valuable within the context of

motif discovery. For example, imagine that you are given a
collection of promoter regions from genes that share similar
mRNA expression profiles, and that a motif discovery algo-
rithm identifies a motif within those promoters. Often, the
first question you would ask is whether this new motif resem-
bles some previously identified transcription factor binding
site motif. To address this question, you need a computer pro-
gram that will scan a motif database for matches to your new
(query) motif. The program must consider all possible rela-
tive offsets between the two motifs, and for DNA motifs it
must consider reverse complement matches as well. An
example alignment between two similar motifs is shown in
Figure 1. An alternate use for a motif comparison program
would be to identify and then eliminate or merge highly
redundant motifs within an existing motif database.

We are not the first to describe a method for quantifying the
similarities between pairs of motifs. Pietrokovski [7] com-
pared protein motifs using a straightforward algorithm based
on the Pearson correlation coefficient (PCC). Subsequently,
Hughes and coworkers [8] applied a similar method to DNA
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motifs. Wang and Stormo [9] introduced an alternate motif
column comparison function, termed the average log-likeli-
hood ratio (ALLR). More recently, Schones and coworkers
[10] introduced two motif similarity functions, one based on
the Pearson χ2 test and the other on the Fisher-Irwin exact
test (FIET). They showed that these two new functions have
better discriminative power than the PCC and ALLR similar-
ity functions. In addition, multiple research groups have used
Kullback-Leibler divergence (KLD) to compare motifs [11-
13], and Choi and coworkers [14] used euclidean distance
(ED) to compare protein profiles. Finally, Sandelin and
Wasserman [15] used their own column comparison function
(SW) within the context of a dynamic programming align-
ment approach to compare DNA motifs. This method differs
significantly from all other DNA-motif based approaches in
the sense that it allows gaps in the motif-motif alignments.

In this report we focus on ungapped alignments of motifs. We
describe a general method for accurately modeling the empir-
ical null distribution of scores from an arbitrary, additive col-
umn comparison function. We estimate the null distribution

of scores for each column in a 'query' motif using the observed
scores of aligning it with each motif column in a database of
'target' motifs. Using a dynamic programming algorithm
inspired by earlier work on searching a sequence database
with a motif [16-18], we estimate the null distribution of the
sum of scores for any range of contiguous columns in the
query motif. This makes it possible for the user to determine
whether the motif comparison score between the query motif
and a particular target motif is statistically significant. Previ-
ous methods begin by defining a score between two motif col-
umns, and then they combine these scores either by summing
(as we do) [7-9,14] or by taking the mean [11-13] or geometric
mean [10] of the column scores. Our scoring method differs in
that it computes the P values of the match scores for the col-
umns of the query motif aligned with a given target motif in
all possible ways (without gaps). These 'offset' P values are
computed using the cumulative density functions estimated
from the target database, as described above. The minimum
P value among these offset P values is used to compute the
overall P value of the match between the query motif and the
target motif, assuming independence of the offset P values.
This is called the 'motif' P value. Finally, we apply a Bonfer-
roni correction to the motif P values to derive an E value.

This algorithm is implemented in a software tool called Tom-
tom, which is publicly available as part of the MEME Suite of
motif analysis tools [19-21]. Tomtom can compute E values
based on any one of seven column comparison functions:
PCC, ALLR, PCS, FIET, KLD, ED, or SW. In this work, we
demonstrate the accuracy of Tomtom's statistical estimates.
We also validate Tomtom'smotif retrieval accuracy via a sim-
ulation experiment. The results show that, in addition to pro-
viding formal semantics for motif similarity scores, Tomtom's
P value estimation yields improved rankings relative to ad
hoc normalization schemes.

Results
Algorithm
In this section, we describe the motif-motif comparison prob-
lem and outline our solution. Say we are given two motifs, Q
and T. Our goal is to define a motif comparison function S(·,·),
such that S(Q,T) is small if and only if Q and T resemble one
another in some biologically relevant way. For now, let us
sidestep the issue of defining 'biologically relevant' and
assume that someone has given us a function s(·,·) that com-
pares two motif columns. Thus, we can compare, for example,
the ith column of Q and the jth column of T using s(Qi,Tj). Our
problem is to use the column comparison function s(·,·) to
define the motif similarity function S(·,·).

This problem can be further subdivided into two subprob-
lems. One subproblem is that we do not know a priori
whether the motifs Q and T should be offset with respect to
one another. Indeed, in the case of DNA motifs, we often do
not even know whether the motifs lie on the same DNA

An aligned pair of similar motifsFigure 1
An aligned pair of similar motifs. The query and target motifs are both 
derived from JASPAR motif NF-Y, following the simulation protocol 
described in the text. Tomtom assigns an E value of 3.81 × e-10 to this 
particular match. The figure was created using a version of seqlogo [26], 
modified to display aligned pairs of Logos.
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strand. Therefore, our motif similarity function must take
into account all possible offsets and relative orientations. A
second subproblem is that even if we knew the correct offset
and relative orientation, we need a method for combining the
column comparison scores into a single score. Below, we
describe solutions to each of these problems.

Computing offset P values
Initially, let us simplify our problem even further. Not only
has someone told us the correct column-wise similarity func-
tion s(·,·), but they have also specified the correct relative off-
set and orientation of our motifs Q and T. For now, we assume
that the motifs are of equal width w, that they lie in the same
orientation, and that they have a relative offset of zero. Fur-
thermore, we assume that columns of the motifs are inde-
pendent and that our scores can be summed. Our problem is
to compute a P value for this summation. Because the P value
is relative to the given offset, we refer to this as the 'offset P
value'. We adopt a dynamic programming method to calcu-
late the null distribution of summed similarity scores with
respect to the motif Q.

A similar method has been used to compute a P value for the
match between a motif and a given sequence [16]. Briefly, that
method can be described as follows. Say that we have a motif
Q of width w, and we have a score function (Qi,a) that yields
a positive integer score for the similarity of the ith column of
Q and the letter a ∈ A. These integral scores correspond to
indices x of an array A defining the desired probability density
function (PDF). A is filled recursively by noting that, if we
know the PDF A(i) for matches to the first i positions in Q, then
we can calculate the PDF A(i+1) as follows:

Where Pa is the null probability of letter a. The recursion is
initialized with A(0)(0) = 1 and A(0)(x) = 0 for x ≥ 1. Iterating
with i = 1 ... w yields the PDF for a random sequence matching
the motif, which is used to calculate a cumulative probability
distribution and thus P values. The challenge in generalizing
the above algorithm to the motif-motif comparison problem
arises because we do not have a fixed alphabet of amino acids
or nucleotides for the summation in Eqn 1. Instead, we have
an infinite 'alphabet' of motif columns. Our solution involves
constructing an implicit alphabet of motif columns from the
distribution of scores between all query motif columns versus
all columns in a database of target motifs. This is an efficient
solution because the matrix of query-versus-target motif col-
umn scores must be computed during the database search
procedure.

In detail, the algorithm proceeds in five steps. First, for a
given motif Q of width wQ and a given collection of target
motifs T1 ... Tn whose total width is wT, we compute a wQ-by-
wT matrix Γ such that Γi,j = s(Qi,Tj). This matrix constitutes

the null distribution for our P value calculation. Second, we
linearly rescale the values in Γ such that the minimum value
is 1 and the maximum is t, where t is the (user-specified)
number of letters in the motif column alphabet (in Tomtom, t
= 100). We then round the values in Γ to integers. Third, for
each column i in Q and for each possible scaled, integer score
1 ≤ x ≤ t, we compute the frequency of x in the null distribution
of the ith column of Γ:

Where δ(·) is the Kronecker delta function. In the fourth step,
we initialize a PDF A(0), as described above, and then perform
the recursion as follows:

The vectors A(i) (1 ≤ i ≤ wQ) contain the null PDFs of scaled,
integerized scores for alignment to the first i columns of motif
Q. In the fifth step, the PDF is converted to a cumulative den-
sity function, which can subsequently be used to compute off-
set P values. In a similar way, we derive PDFs for alignments
starting and ending at arbitrary columns of the query. Figure
2 illustrates the output of the algorithm. The figure shows a
set of PDFs for a particular query motif of length 12, com-
puted relative to the TRANSFAC database. The figure con-
tains 12 overlaid histograms, corresponding to different ways
that the target might overlap with the query motif, assuming
that the overlap begins at position 1. Any one of these histo-
grams can be used to compute the P value of a score, depend-
ing on which columns of the query motif are aligned with the
target motif. The corresponding p value is the area of the his-
togram to the right side of the computed score.

Computing motif P values
The above procedure yields a P value for a query and target
motif with a particular offset and relative orientation. In
order to compute a motif P value, Tomtom identifies the off-
set and relative orientation for which the offset P value is min-
imal. The probability of observing a minimum P value of P*
among a collection of N independent P values is 1 - (1 - P*)N.
This value is the motif P value.

Computing E values
Tomtom searches a target database of motifs using a given
motif as the query. The resulting motif P values must there-
fore be corrected for multiple tests. Tomtom uses a form of
Bonferroni correction that assumes that the targets are inde-
pendent of one another. The correction consists of multiply-
ing the motif P value by the number of targets in the database.
The result is an E value - the expected number of times that
the given query would be expected to match a target as well or
better than the observed match in a randomized target data-
base of the given size.
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Validation
We perform three separate experiments to assess the validity
of Tomtom's statistical confidence estimates and measure
Tomtom's ability to recognize related motifs.

Assessing P value accuracy
To assess the accuracy of Tomtom's P value computation, we
exploit the observation that null P values should be uniformly
distributed between 0 and 1. We therefore generate a large
quantity of P values using randomized data, and we measure

the extent to which these P values are uniformly distributed.
In order to generate null P values, we shuffle the columns of
each motif in the TRANSFAC database (version 6.0) [5]. We
then use Tomtom to search with a randomly selected query
motif against the rest of the motifs in the target database. This
iterative procedure, including shuffling, is repeated 1,000
times. The database contains 292 motifs, and so the entire
procedure yields a total of 291,000 motif P values. We meas-
ure the uniformity of these P values using quantile-quantile
plots, an example of which is shown in Figure 3. The figure
plots the computed null P values against the theoretically cor-
rect, uniform distribution (so-called 'rank P values'). The dot-
ted lines correspond to a twofold deviation from uniformity.
This particular figure plots P values computed using the ED
column similarity function; however, for all seven column
similarity functions, the motif P values remain close to uni-
formity, rarely deviating by more than a factor of two (Addi-
tional data file 1). Note that in order for the motif P values to
be accurate, the underlying offset P values must also be accu-
rate. We verified (Additional data file 2) that the quantile-
quantile plots for offset P values look similar to Figure 3.

Measuring retrieval accuracy
Next, we designed a simulation experiment to test Tomtom's
ability to retrieve a related target motif from a database. The
experiment is designed to simulate the following situation.
Suppose that a researcher discovers a 'new' motif that is actu-
ally the same as one in a motif database. The new motif may
contain some of the same sequences that were used to create
the database motif plus some new sequences. Moreover, the
exact boundaries of the novel motif may not exactly match the
boundaries of the corresponding motif in the database. We
simulate this situation, and then measure Tomtom's ability to
identify the correct motif in the database.

In detail, the experiment proceeds as follows. We begin by
selecting all 107 motifs in the JASPAR database (jaspar core).
Then, we simulate a collection of 10 query and 10 target
motifs for each of these JASPAR motifs by subsampling with
replacement from the original sites of the JASPAR motif. The
difficulty of the retrieval task can be modulated by reducing
the number of sites sampled. In our first experiment, if the
JASPAR motif has S associated sites, then the query and tar-
get motifs are simulated using S/2, S/4, S/8 or S/16 sites. In
this step, we eliminate motifs that would yield fewer than two
sampled sites, thus leaving 82 JASPAR motifs for the S/8
subsampling experiment. In the next step, we trim the edges
of half of the motifs in each database. The number of columns
to be deleted from a given motif is determined by selecting a
random number uniformly from [N-0.8wQ, ..., 0, 0, ..., N0.8wQ],
where w is the motif width. The sign of the selected number
determines which end of the motif is truncated. After this pro-
cedure, each motif in the JASPAR database has 10 corre-
sponding motifs in the query and in the target database.
Tomtom's task, given one of the query motifs, is to retrieve all

Score distribution histogram for a query motif of length 12Figure 2
Score distribution histogram for a query motif of length 12. The figure 
contains 12 histograms overlaid on top of each other. Each histogram 
corresponds to the frequency distribution of scores, for an offset of zero 
relative to a query motif of width 12. The first (red) histogram is for the 
alignment involving only the first query column, the next (light green) 
histogram relates to the first two query columns, and so on.

Accuracy of motif comparison P valuesFigure 3
Accuracy of motif comparison P values. The figure plots the computed 
motif P value as a function of the empirical (rank-based) P value from 
searching shuffled query motifs against shuffled target motifs. The central 
line corresponds to y = x, and the two adjacent dotted lines correspond to 
y = 0.5x and y = 2x. The P values are computed using the euclidean 
distance.
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10 corresponding target motifs with smaller motif P values
than any of the unrelated target motifs.

We can use this simulation protocol to compare the various
motif column comparison scores as well as to compare vari-
ous methods of combining scores. Figure 4 compares four
score combination methods: taking the sum of scores across
all columns, the mean, the geometric mean, or the P value of
the sum (as described under Algorithm, above). This figure is
generated using ED as the scoring function and a sampling
rate of S/8. The target database is ranked with respect to each
query. Correct query-target pairs are labeled '+1' and incor-
rect pairs are labeled '-1'. All of the per-query lists are then
sorted together into a single ranked list. From this ranked list,

we compute a receiver operating characteristic (ROC) curve
[23], which plots the percentage of positive pairs as a function
of the percentage of negative pairs as we traverse the ranked
list. The figure shows that the ranking produced by any nor-
malization method is dramatically better than the ranking
produced by the unnormalized sum. This is not surprising,
because normalization aims to account for the difference in
query motif lengths. The figure also suggests that, among the
three normalization methods, P values yield a better ranking
than the arithmetic or geometric mean. Similar results can be
obtained using each of the other column comparison func-
tions (Additional data file 5).

This result is encouraging; however, sorting the results from
all of the queries into a single list is somewhat unrealistic. In
practice, the user is only concerned with the quality of the
ranking with respect to one motif at a time. We therefore
compute ROC curves separately for each query motif. In order
to quantify the extent to which the correct pairs appear near
the top of the ranked list, we compute the area under each
ROC curve (the ROC score). A perfect ranking would receive
an ROC score of 1.0, whereas a random ranking would receive
an ROC score of 0.5.

The resulting mean ROC scores are reported in Table 1. Sur-
prisingly, regardless of the normalization method employed,
the best performing column comparison function is the ED.
Among the four ranking methods, the motif P value provides
the best performance for five of the column comparison
functions, and the sum of scores provides the best perform-
ance for the remaining two. Overall, the highest mean ROC
score is achieved by motif P values using the ED. Notably,
there is a significant improvement in the performance of
'Sum' as compared with results shown in Figure 4. The under-
lying data used to generate Table 1 and Figure 4 are the same;
however, as noted above, in Table 1 a separate ROC score is
computed for each motif and then a mean ROC score is com-
puted, whereas in Figure 1 we rank all motifs together and
compute a single ROC score. Because the motifs have varying
lengths, the latter approach penalizes methods (such as
'Sum') that do not normalize for alignment length.

Measuring retrieval accuracyFigure 4
Measuring retrieval accuracy. Motif retrieval accuracy is estimated using 
simulated JASPAR motifs, as described in the text. The figure plots the 
percentage of correct query-target pairs (true positives) as a function of 
the percentage of incorrect pairs (false positives) as we traverse the list of 
query-target pairs sorted by Tomtom P value or any of the other three 
methods of combining column-wise scores. The solid and dashed lines 
correspond to width-normalized scores scores (P values, arithmetic mean, 
and geometric mean), and the green dotted line represents sum of column 
scores. This figure is for euclidean distance (ED) at a sampling rate of S/8.
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Table 1

Mean ROC scores for various motif column comparison functions and score combination methods

Ranking method ALLR PCC PCST FIET KLD ED SW

Sum 0.9823a 0.9845a 0.9786 0.9834 0.9793 0.9886 0.9809

AM 0.9595 0.9685 0.9619 0.9662 0.9736 0.9779 0.9735

GM 0.9643 0.9670 0.9630 0.9717 0.9724 0.9776 0.9720

p value 0.9786 0.9835 0.9797a 0.9842a 0.9864a 0.9889a 0.9861a

The table reports the performance of the seven different column comparison functions using four different methods for combining scores: summing 
the raw scores, computing the arithmetic mean (AM), or computing the geometric mean (GM). Each entry is the mean receiver operating 
characteristic (ROC) score across all queries in the simulation. The table reports results for the S/8 sampling rate. aHighest ROC in the column. 
ALLR, average log-likelihood ratio; ED, euclidean distance; FIET, Fisher-Irwin exact test; KLD, Kullback-Leibler divergence; PCC, Pearson correlation 
coefficient; PCST, Pearson χ2 test; SW, Sandelin-Wasserman function.
Genome Biology 2007, 8:R24
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We conducted a statistical test to estimate the significance of
the differences observed in Table 1. For each motif in the orig-
inal database, we average the corresponding 10 ROC scores,
yielding a list of 82 mean ROC scores for each column com-
parison method. We then compare the lists of mean ROC
scores for two different methods using a signed rank test. The
P values resulting from this analysis are summarized in Table
2. For the two competing normalization methods (arithmetic
and geometric mean), Tomtom P values do a better job of
combining column scores in every case. On the other hand,
only one out of seven comparisons against the sum-of-scores
method yields a significant difference. This lack of signifi-
cance arises from the high variance in the mean ROCs pro-
duced by the summed column scores method. Overall, these
results illustrate that Tomtom's P values reliably normalize

for varying lengths of motif alignments, irrespective of the
column comparison function used.

E-value based retrieval rate
In a third experiment, we tested the utility of the E values
computed by Tomtom. This experiment was conducted to
determine whether, using a reasonable significance thresh-
old, Tomtom can successfully retrieve a JASPAR motif from
the database. In this experiment, it is not sufficient for the
correct target motif to have the best score; the score must also
be statistically significant.

As above, we simulate a collection 10 query motifs for each of
the 100 JASPAR motifs that have at least 10 known sites.
However, in this case, the target database is the original JAS-
PAR database. Furthermore, unlike in the previous experi-
ment, we sample a specific number of sites (5, 10, ..., 25) from
each motif, rather than a fractional number of sites. This
allows us to evaluate the effect of the number of sites on E
value based retrieval rate. Tomtom is then used to compute E
values for all 1,000 motifs in the query database. Finally, we
compute the percentage of searches that are successful, where
'success' requires that the best E value match corresponds to
the original JASPAR motif and that the corresponding E
value is less than or equal to 0.01. Figure 5 plots the percent-
age of successful searches as a function of the number of sites
sampled. With a query motif composed of five sites, the
estimated probability of success is 92.7% using the best per-
forming column comparison function. As expected, the
retrieval rate increases with the increase in number of sites
sampled; with 10 sampled sites the probability of success is
99.0%. The best performing motif column comparison func-
tions are the ED and the KLD. Similar trends are observed
using E value thresholds of 0.05 and 0.001 (Additional data
file 6).

Discussion
Tomtom is a motif comparison algorithm that ranks the tar-
get motifs in a given database according to the estimated sta-
tistical significance of the match between the query and the
target. In this work we show that the motif P values computed

Table 2

Comparison of motif P values with other methods of combining column scores

ALLR PCC PCST FIET KLD ED SW

P value versus sum - - - - 1.87 × e-03 - -

P value versus AM 3.55 × e-13 2.43 × e-13 2.35 × e-13 6.93 × e-14 2.05 × e-13 1.38 × e-12 2.19 × e-13

P value versus GM 7.00 × e-11 2.52 × e-13 2.04 × e-12 2.06 × e-10 1.09 × e-13 1.58 × e-12 1.98 × e-13

The table compares the performance of Tomtom's P values with three other methods for combining column motif comparison scores: summing the 
raw scores (sum), computing the arithmetic mean (AM), and computing the geometric mean (GM). The comparison is performed for seven different 
column comparison functions. Each entry in the table is a signed rank P value for the comparison of two ranking methods. '-' Indicates that the 
difference between the two methods is not significant at P = 0.01. All entries correspond to significantly better performance of motif P values than 
the competing method (Table 1). The table reports results for the S/8 sampling rate. ALLR, average log-likelihood ratio; ED, euclidean distance; FIET, 
Fisher-Irwin exact test; KLD, Kullback-Leibler divergence; PCC, Pearson correlation coefficient; PCST, Pearson χ2 test; SW, Sandelin-Wasserman 
function.

E value based retrieval rateFigure 5
E value based retrieval rate. The figure plots the percentage of query 
motifs that successfully matched the correct JASPAR target as a function 
of the number of sites used to create the query motif. Here 'success' 
means that the top-ranked motif is the correct target and has an E value 
less than 0.01. ALLR, average log-likelihood ratio; ED, euclidean distance; 
FIET, Fisher-Irwin exact test; KLD, Kullback-Leibler divergence; PCC, 
Pearson correlation coefficient; PCST, Pearson χ2 test; SW, Sandelin-
Wasserman function.
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by Tomtom are accurate, in the sense that they are uniformly
distributed when computed on randomized data. We also
show that the P value calculation produces rankings that are
significantly better than the rankings produced by ad hoc nor-
malization schemes. It is important to emphasize, however,
that even if the rankings produced by Tomtom were no better
than ad hoc rankings produced, P value normalization would
still be the preferred method because of the inherent advan-
tages of having a measure of the statistical significance of
query-target matches. Finally, we show that Tomtom cor-
rectly assigns E values less than 0.01 to a large percentage of
positive matches. This result indicates that it is highly proba-
ble that Tomtom successfully retrieves a related motif with a
significant E value. All of these properties make Tomtom a
valuable tool for identifying truly related motifs.

During the course of our experiments, we compared seven
different motif column comparison functions. Surprisingly,
the simple ED between motif columns performs best. Conse-
quently, Tomtom's default behavior is to compare columns
using ED. However, for some types of motifs (for instance,
protein motifs) other comparison functions may be more
appropriate. Consequently, Tomtom provides an option to
use any of the seven column comparison functions.

In terms of practical applicability, Tomtom is especially rele-
vant in conjunction with MEME, an ab initio motif discovery
tool. Novel motifs identified using MEME can be reliably
searched against known motifs using Tomtom. Both Tomtom
and MEME are currently available as part of the MEME Suite
of motif analysis tools [19,20], and a Tomtom website is
under development.

Materials and methods
Motif column comparison functions
At Tomtom's core is a function that defines the similarity
between one column of the query and one column of the tar-
get motif. Tomtom implements seven such functions,
described below. The 'raw' score for an ungapped alignment
of columns from a query motif and a target motif is computed
by summing the column comparison scores computed using
any of the following functions. Tomtom converts the raw
scores into P values and E values, as described above.

In the following discussion, X refers to a column of the query
motif, and is a multinomial probability vector. The quantity
Xa refers to the probability of letter a ∈ A in X. For some of
these functions, these probabilities are multiplied by a motif-
dependent constant to give the 'counts' of different letters in
each column of the motif. We use NXa to refer to the count of
letter a in column X. Similar definitions apply for Y, a column
from the target motif. The quantity |A| refers to the length of
the motif alphabet (four for DNA, 20 for proteins).

Pearson correlation coefficient
The PCC was first introduced for computing motif-motif sim-
ilarity by Pietrokovski [7]. For two columns X and Y, PCC is
computed using the following formula:

The latter two expressions reduce to , because

for multinomial probability vectors X and Y.

Average log-likelihood ratio
The ALLR formula described by Wang and Stormo [9] to
quantify similarity between columns X and Y for position spe-
cific weight matrix motifs is as follows:

where Pa is the background (prior) frequency of letter a.

Pearson χ2 test
The Pearson χ2 test was introduced by Schones and coworkers
[10] for comparing motifs. The χ2 P value is computed for the
null hypothesis that the aligned columns are independent and
identically distributed observations from the same multino-
mial distribution. In order to compute the value of χ2, a con-
tingency table with margins is constructed (Table 3). Using
the contingency table, the value of χ2 is computed using the
following equation:

Where No
ja = Nja is the 'observed' count of letter a in column

j, and Ne
ja = NjNa/N is the 'expected' count of letter a at col-

umn j (Table 3 for definitions).

The P value is calculated from this χ2 score using |A| - 1
degrees of freedom. Because our null hypothesis is that these
two columns are derived from the same multinomial distribu-
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tion, a higher P value implies similarity. This P value is
treated as an additive score.

Fisher-Irwin exact test
The FIET [10] is an analytical computation of the Pearson χ2

P value. In particular, this calculation is important when mar-
ginal frequencies are small, which is often the case in position
frequency matrices. The marginal P value of the contingency
table for DNA motifs (Table 3) follows the multiple hyperge-
ometric distribution [24]:

The formula for protein motifs is similar. The two-sided P
value for the table is the sum of probabilities of all tables that
are at least as extreme. This P value is computed using the
algorithm described by Mehta and Patel [25]. As with the χ2

test, this P value is used as an additive score.

Kullback-Leibler divergence
The KLD has been used by several research groups to quantify
similarity between motifs [11-13]. The symmetric form of
KLD for two columns X and Y is given by the following
equation:

Euclidean distance
Choi and coworkers [14] introduced the ED as a means to
compare protein motifs. The ED for two DNA profile columns
X and Y is computed using the following formula:

Sandelin-Wasserman similarity function
Sandelin and Wasserman [15] introduced their own motif col-
umn comparison function for the construction of familial
binding profiles. The SW score for two columns X and Y is
computed using the following formula:
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Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a figure showing
the accuracy of motif comparison P values. Additional data
file 2 is a figure showing the accuracy of offset P values. Addi-
tional data file 3 is a table summarizing the mean ROCs for
various motif column comparison functions and score combi-
nation methods for various sampling rates. Additional data
file 4 is a table comparing motif P values with other methods
of combining column scores for various sampling rates. Addi-
tional data file 5 is a figure showing the motif retrieval accu-
racy for various column similarity functions at a sampling
rate of S/8. Additional data file 6 is a figure whosing the E
value based retrieval rate for two additional significance lev-
els (E value less than 0.05 or 0.001).
Additional data file 1Accuracy of motif comparison P valuesAccuracy of motif comparison P values: QQ plots for various col-umn comparison functionsClick here for fileAdditional data file 2Accuracy of offset P valuesAccuracy of offset P values: QQ plots for various column compari-son functionsClick here for fileAdditional data file 3Mean ROC scores for various motif column comparison functions and score combination methods for various sampling ratesMean ROC scores for various motif column comparison functions and score combination methods for various sampling ratesClick here for fileAdditional data file 4Comparison of motif P values versus other methods of combining column scores for various sampling ratesComparison of motif P values versus other methods of combining column scores for various sampling ratesClick here for fileAdditional data file 5Motif retrieval accuracy for various column similarity functions at a sampling rate of S/8Motif retrieval accuracy for various column similarity functions at a sampling rate of S/8Click here for fileAdditional data file 6E value based retrieval rate for two additional significance levelsE value based retrieval rate for two additional significance levels (E-value less than 0.05 or 0.001)Click here for file
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