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Most protein functions involve their interaction with other

molecules, often with other proteins in the assembly of opera-

tional complexes. A better understanding of protein inter-

actions is fundamental to the study of biological systems. As

many drugs act on proteins, it is also a prerequisite for

understanding intended, and unintended, drug effects. Over

the past few years a number of large-scale experiments have

set out to map protein interactions systematically [1-15].

While there is interest in combining the resulting data, there

appear to be substantial discrepancies between experiments,

and evaluation studies have reported large error rates, lack of

overlap and apparent contradictions between the different

datasets [16-21].

The purpose of this article is to critically assess the metho-

dology used to analyze protein-interaction datasets. When

interpreting individual experiments or combining datasets

from different experiments, we need to consider three

questions: first, what do we want to know and which experi-

ments provide data that can be used to answer our questions;

second, which types of protein interactions were assayed and

under what conditions; and third, what types of measure-

ment errors may have occurred and what is their prevalence.

In this article we will discuss how the formulation of appro-

priate statistical models can allow investigators to clearly

identify and estimate quantities of interest.

We will consider two particular types of protein interactions:

physical interactions, and interactions between members of

a protein complex - which we shall call ‘complex membership

interactions’. A physical interaction is a direct and specific

contact between a pair of proteins [22]. We regard two

proteins in a complex as having a physical interaction if they

share an interaction surface. A complex membership

interaction exists between proteins that are part of the same

multiprotein complex and does not necessarily imply a

physical interaction.

Sampling and coverage
The two most widely used experimental techniques for

detecting protein-protein interactions are the yeast two-

hybrid (Y2H) system [23] and affinity purification followed

by mass spectrometry (AP-MS) [24]. The Y2H system assays

whether proteins can physically interact with each other.

Large-scale experiments are carried out in a colony-array

format, in which each yeast colony expresses a defined pair

of ‘bait’ and ‘prey’ proteins that can be scored for reporter

gene activity - indicating interaction - in an automated

manner [1,6,25]. The type of information obtained from a

Y2H experiment is shown in Figure 1. In an AP-MS experi-

ment, a tagged protein is expressed in yeast and then ‘pulled

down’ from a cell extract, along with any proteins associated

with it, by co-immunoprecipitation or by tandem affinity

purification. The set of pulled-down proteins is identified by

MS. In a laborious and expensive process, this procedure has

been systematically applied to large sets of yeast proteins

[7-11]. The tagged protein in AP-MS is also sometimes called
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the bait and the proteins it pulls down the prey. The

information on protein complexes given by Y2H and AP-MS

experiments is compared in Figure 2.

An appreciation of the concepts of sampling and coverage is

vital for interpreting the data from these types of experiments

[26,27]. The term ‘sampling’ is used for experimental designs

where only a subset of the population is interrogated.

Representative sampling techniques are used in many fields of

science, but they are not common in the generation of protein-

interaction datasets, where sampling has often been guided by

biological priorities. The ‘coverage’ summarizes which part of

the total set of possible interactions has actually been tested.

Even when genome-wide screening was intended [1,10,11],

coverage was in fact well below 100%, and the success for each

bait seems to depend on nonrandom biological, technological

and economic factors. For example, Gavin et al. [10] used all

6,466 open reading frames (ORFs) that were at that time

annotated in the Saccharomyces cerevisiae genome and

obtained tandem affinity purifications for 1,993 of those. The

remaining 4,473 (69%) failed at various stages, because, for

example, the tagged protein failed to express or protein bands

were not well separated by gel electrophoresis. Thus, neither

the set of tested baits nor the set of tested prey in current

experiments are random subsets of all proteins in the

organism and in general, it is not valid to make inferences

about the ‘population’, that is, the set of all physical

interactions that take place in a cell under the conditions being

studied, by assuming the available experimental data from a

Y2H or AP-MS experiment to be a representative sample. We

are not arguing that random sampling be used, as it would not

be appropriate in this setting, but rather that the data need

to be interpreted more judiciously.
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Figure 2
The manifestation of protein complexes in Y2H and AP-MS data. AP-MS
experiments measure complex co-membership, and the fact that a prey is
found by a certain bait means that there is either a direct physical
interaction or an indirect physical interaction mediated by a protein
complex. The set of proteins pulled down by a particular bait cannot
therefore be equated with a single complex: if the bait is part of several
different complexes, then the set of prey will be the union of all proteins in
all complexes. (a) Protein B is involved in three different multiprotein
complexes. In two of these it directly interacts with C, which itself can also
interact with proteins F, G or H, whereas in the third complex, B interacts
with D and E. (b) Assuming there are no other interactions under the
conditions of the experiment, the bipartite graph between proteins B, ... H
and complexes 1, 2, and 3 will look like this. (c,d) The result of a
hypothetical AP-MS experiment with no false positives and no false
negatives when (c) B is used as a bait and (e) F is used as a bait. (e,f) Result
from a hypothetical Y2H experiment with a genome-wide set of preys and
with no false positives and false negatives when (d) B is used as a bait and (f)
F is used as a bait. (g,h) The results of (g) an ideal AP-MS experiment and
(h) an ideal Y2H experiment if all proteins were used as baits. The Y2H
data in (e,f,h) identifies the direct interactions, but it does not contain
information on the number and architecture of the complexes. The
maximal cliques identified by the AP-MS experiment in (g) correspond to
the complexes in (a). However, the AP-MS data do not contain information
on the topology of the direct interactions within each complex.
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Figure 1
Interpreting results on direct physical interactions from Y2H
experiments. (a) The observation of interactions A-B and B-C in a Y2H
experiment does not indicate whether the two interactions can take place
simultaneously (center) or whether they are exclusive of each other
(right). (b) The ability of two proteins to interact may depend on post-
translational modifications whose presence or absence may be actively
regulated. Proteins D and E interact (center) in the absence of a certain
post-translational modification (red shape), whose presence inhibits the
interaction (right).
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One problem in evaluating large-scale protein-interaction

experiments is that the published data are often not

sufficiently detailed to allow accurate description of the sets

of baits and prey that were actually tested. As a proxy, we

introduced the concept of ‘viable baits’ and ‘viable prey’ [28].

The first is the set of baits that were reported to have

interacted with at least one prey, and the latter are those

proteins reported to be found by at least one bait. Numbers

for these can be unambiguously obtained from the reported

data and provide surrogate measures for the tested baits and

tested prey. The set of all pairs between viable bait and

viable prey are the interactions that we are confident were

experimentally tested and could, in principle, have been

detected. The failure to detect an interaction between a

viable bait and a viable prey is informative, whereas the

absence of an observed interaction between an untested bait

and prey is not. We note that the set of viable prey is a subset

of the tested prey, and viable baits are a subset of the tested

baits. This approach might introduce bias, because negative

data from baits that were tested but found no prey, as well as

from prey that were present but did not interact with any

bait, are not recorded. On the other hand, presuming that

combinations were tested, when in fact they were not, can

also result in bias. Gilchrist et al. [29] used a randomization

approach to estimate the size of the prey populations for the

datasets in [7] and [8]. Their estimates are about double

those of the number of viable prey.

Representation as graphs
Graph theory offers a convenient and useful set of terms and

concepts to represent relationships between entities. Graphs

most commonly represent binary relationships and these

can be either directed or undirected. A further type of graph

is needed to represent the membership of proteins in

complexes: this relationship is not binary and requires a type

of graph called a bipartite graph. Box 1 gives precise

definitions of these concepts and an overview of how they

apply to protein-interaction data.

Undirected graphs are often used as a model for physical

interactions. True relationships are symmetric: if protein A

interacts with B, then B interacts with A. The observed

experimental data, however, often display asymmetry, which

is a consequence of the experimental asymmetry between

bait and prey. Protein A may identify protein B as an inter-

actor when A is used as a prey, but B as a prey may not find

A. To represent asymmetric data, we suggest using a

directed-graph model. This is a point on which we diverge

from much of the current practice. We argue that although

the quantity of interest is an unknown undirected graph, it

must be estimated from the observed data, which should be

represented as a directed graph.

“All models are wrong, but some are useful.” This maxim of

George Box [30] reminds us that we should not expect these

models to adequately represent all possible aspects of

protein interactions in a satisfactory way. For the current

types of data and questions, graph models are useful. As the

data and the questions that we ask become more sophisti-

cated, more complicated models are likely to be needed.

Some limitations of the graph models described here are

related to their lack of resolution in time and space, failure

to distinguish between different protein isoforms or post-

translational modifications, and to the fact that experiments

do not record interactions between individual protein

molecules but between populations. It is the lack of such

information that makes it difficult to use Y2H data to make

inference about the composition of protein complexes (see

Figure 1) or to use AP-MS data to identify the physical

interactions of the proteins within a complex and their

stoichiometry (see Figure 2).

Error statistics
Whether two proteins physically interact in vivo is not always

simple to determine: the range of binding affinities of

biologically relevant protein interactions spans many orders of

magnitude [31], and interactions can be dynamic, transient

and highly regulated. Nevertheless, the simple measurement

model used to interpret the results of protein-interaction

experiments presumes that for each pair of proteins, the

question of whether or not they interact can be answered as

either yes or no. The aim of making a measurement is to

record the true, typically unknown, value of a physical

quantity, but in practice there will be deviations -

measurement errors. In such circumstances, statistical

methods can be used to infer the true value of a quantity, given

the data and some assumptions about how the measurement

tool works. In this sense, the Y2H system or an AP-MS screen

are simply measurement tools that provide imperfect data

from which we make inferences about the true state of nature.

Standard definitions of various error statistics [32] are given

in Box 2. We give them to enable a coherent dialog and to

address some of the confusion in the literature. For example,

a widely cited evaluation study by Edwards et al. [17]

reported a “false positive rate” defined as FP/(TP + FP):

where FP is the number of false positives and TP the number

of true positives. However, the more common name for this

quantity is the ‘false-discovery rate’ (see Box 2). The differ-

ence between the false-positive rate, as usually defined by

FP/N, and the false-discovery rate can be substantial, as

their denominators are very different, N being the true tested

non-interactions, given by TN + FP (see Box 2). Incompatible

terminology leads to confusion and makes comparison of

error rates reported in different studies difficult.

Measurement errors can be decomposed into two compo-

nents: stochastic and systematic errors. Stochastic errors are

associated with random variability, whereas systematic

errors are recurrent. Stochastic errors are simpler to

http://genomebiology.com/2007/8/10/112 Genome Biology 2007, Volume 8, Issue 10, Article 112 Gentleman and Huber 112.3

Genome Biology 2007, 8:112



address: they can be controlled by replication, can be

eventually eliminated if the experiment is repeated many

times, and they can often readily be described using

probability models. Systematic errors give rise to bias: the

quantity being measured is consistently different from the

truth. Their identification is difficult, but if it can be done,

they can be addressed either by improving the experimental

procedures or by developing appropriate methods for post-

experiment data processing.

Statistical models for the analysis of 
protein-interaction data
Statistical models can integrate the information from

repeated or related measurements and quantify the (un)cer-

tainty that we have about the conclusions. Here we consider

how statistical techniques have been applied to two distinct

problems: estimating membership of a protein complex and

the integration of data from different experiments (cross-

experiment integration of data).
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Box 1. The terminology of graphs
Undirected graphs
An undirected graph consists of a set of nodes V and a set of edges E and is denoted as G = (V,E). Each element of the

edge set E is an unordered pair (u,v) of nodes, and the two nodes in a pair are called ‘adjacent’. The neighborhood of a

node v is the set of nodes N(v) to which it is adjacent, and its ‘degree’ δ(v) is the number of its neighbors, δ(v) = |N(v)|. A

subgraph S of a graph G contains a node set VS ⊆ V and an edge set ES = {(u,v) ∈ E|u,v ∈ VS}. The unordered pairs

defining each edge e ∈ E represent symmetric binary relationships between the elements of the node set. Undirected

graphs can succinctly model physical protein interactions. The node set of a protein-protein interaction graph consists of

all the individual proteins in the biological system of interest, and the edge set indicates which pairs of proteins

physically interact.

Directed graphs
The definition of a directed graph builds upon that of undirected graphs, the only difference being that the edges are

ordered. By convention, the direction of an edge (u,v) originates from u towards v. The edges (u,v) and (v,u) are distinct,

and a graph may contain either one or both. The notion of degree in a directed graph is separated into two distinct

concepts: ‘indegree’ and ‘outdegree’. The outdegree, δo(v), of a node v is the number of directed edges that originate at v

(out-edges). Its indegree, δi(v), is the number of edges that flow towards v (in-edges). Directed graphs can be used to

represent Y2H data as well as AP-MS data. An edge A → B indicates that an interaction was tested with protein A as a

bait and protein B when used as a prey. The result of the measurement is either positive or negative and can be

represented as an edge attribute.

Bipartite graphs
Bipartite graphs or membership graphs are useful to represent the grouping of objects. They have two distinct types of

nodes, and edges only connect a node of one type to a node of the other. For example, the proteins of a biological system

could be the nodes of one type, its functional modules that of the other, and an edge in the bipartite graph represents

membership of a protein in a module. Proteins can be members of multiple modules, and some proteins might not be

assigned to any module.

One-mode graphs
Two graphs called one-mode graphs can be derived from a bipartite graph. If U and W are the node partitions of a

bipartite graph G, then the edges in the one-mode graph on U (in respect of W) are determined by whether or not the two

nodes both have edges in G to a common element of W (in respect of U). If A is the |U| × |W| adjacency matrix of the

bipartite graph, then the one-mode graph for the node set U can be obtained by A⊗At and the one-mode graph for W by

At⊗A. The symbol ⊗ represents matrix multiplication under Boolean algebra and the superscript t indicates matrix

transposition. The one-mode graph of the proteins is the complex membership graph: two nodes are connected if they

are members of the same complex. Similarly, the one-mode graph of the complexes is the complex overlap graph: two

complexes are connected to each other in this graph if there is at least one protein that is a member of both.

Maximal cliques
A clique is a fully connected subgraph. A maximal clique is a cligue that is not s proper subset of another clique.



Estimating membership of a protein complex
Russell and colleagues [10] have developed a heuristic that

they term the ‘socioaffinity index’, Aij. It quantifies the

confidence that proteins i and j share complex membership,

given a set of protein purifications each with its bait and a

number of prey. The score is the logarithm of the product of

three odds-ratios. The first odds-ratio compares the frequency

with which bait i pulled down prey j to the frequency that

would be expected if prey came down randomly; the second

is the corresponding value for bait j pulling down prey i; and

the third is the ratio of frequency of co-occurrence of i and j

in a pull-down to what would be expected under random

sampling. The authors then apply a customized clustering

algorithm to the matrix Aij to estimate sets of protein

complexes from AP-MS data.

Scholtens and colleagues took a different route [33,34]. They

explicitly modeled the underlying bipartite graph of member-

ship of proteins in protein complexes. They estimated the

bipartite graph from the observed data using a penalized

likelihood method. Their method explicitly differentiates

between tested and untested edges in the data, and it deals

with the possibility that some proteins can be members of

multiple complexes and others may not be assignable to any.

Cross-experiment integration of data
Turning to the issue of the cross-experiment integration of

data, Gilchrist and colleagues [29] described a statistical

model for identifying stochastic errors in protein-protein

interaction datasets that is based on the Binomial distribu-

tion. They assumed that there is a true underlying graph of

protein interactions in the biological system under study and

that multiple experimental runs are performed, each result-

ing in a set of observed edges. A true edge is observed with

probability 1 - pFN and missed with the false-negative

probability pFN. Similarly, a true non-edge is observed as an

edge with false-positive probability pFP and not observed

with probability 1 - pFP. They assumed that all these stochas-

tic events are independent of each other, and governed only by

the two Binomial rates pFP and pFN. The statistical distribution

of the number of observed edges S between two proteins, given

nt trials, and conditional on whether or not they truly interact,

is then simply given by Binomial distributions:

S | true edge ∼ Bin(nt, 1 - pFN) (1)

S | true non-edge ∼ Bin(nt, pFP) (2)

From this, the authors constructed a maximum likelihood

estimator of pFP and pFN, and a likelihood-ratio test to

decide, for any pair of proteins, whether the data suggest an

interaction between them.

Krogan and colleagues [11,35] took an approach that is

similar in spirit to that of Gilchrist et al. [29]. Their formula-

tion uses a Bayes factor that compares the probability of the

observed data under the two possible alternatives, and a

further component that represents the prior odds of an

interaction. The use of a Bayes factor in this context is

entirely appropriate, but given that the selection of baits is

typically not a simple random sample from the population of

potential baits, it is somewhat difficult to interpret the role of

http://genomebiology.com/2007/8/10/112 Genome Biology 2007, Volume 8, Issue 10, Article 112 Gentleman and Huber 112.5

Genome Biology 2007, 8:112

Box 2. Standard definitions of error terms
True positives (TP): Number of cases in which a true

interaction is experimentally observed.

True negatives (TN): Number of cases in which two

proteins do not interact (truly absent interaction); their

interaction is tested but not observed.

False positives (FP): Number of cases in which two

proteins do not interact, but an interaction is

experimentally observed.

False negatives (FN): Number of cases in which a

true interaction is experimentally tested and not

observed.

True tested interactions (P): TP + FN

True tested non-interactions (N): TN + FP

False-positive rate (pFP): Probability that a truly

absent interaction is detected. It can be estimated by

FP/N.

False-negative rate (pFN): Probability that a true

interaction is not detected. It can be estimated by FN/P.

Sensitivity: Probability that a true interaction is

detected. It can be estimated by TP/P.

Specificity: Probability that a truly absent interaction

is not detected, estimated by TN/N.

False-discovery rate (FDR): Informally, the

expected value of FP/(TP + FP) [42].

Positive predictive value (PPV): Probability that

an observed interaction is indeed true. It can be

estimated by TP/(TP + FP).

Negative predictive value (NPV): Probability that

an observed non-interaction is truly absent. It can be

estimated by TN/(TN + FN).

See [32] for a more extensive discussion of these

concepts. The probabilities are conditional on whether

the interaction is tested.



the prior, and it seems some justification is needed. The two

approaches [29,35] differ somewhat in how specific

quantities, such as pFP and pFN, are estimated. An important

difference is that Krogan and colleagues [35] were specifically

interested in combining AP-MS datasets to solve the problem

of identifying protein complexes.

Internal error rate estimation using reciprocity
The direction of an observed bait-prey interaction is infor-

mative for the estimation of error rates and the

identification of systematic errors. If two proteins A and B

are each tested both as bait and prey, then ideally we

expect reciprocity in their interaction data: if they truly

interact, bait A should find prey B and bait B should find

prey A. If they truly do not interact, there should be no

observed interaction in either direction. In real data there

will be many pairs of proteins for which reciprocity does

not hold, and these cases imply that either a false positive

or a flase negative measurement was made. Comparing the

prevalence of reciprocally measured interactions amung

the reciprocally tested edges can tell us something about

error rates, both stochastic and systematic.

As the set of reciprocally tested edges is usually not explicitly

recorded, we have used the concept of viable baits and viable

prey to produce Table 1, which gives the numbers of viable

bait and prey proteins, and based on this, the numbers of

reciprocated and unreciprocated interaction measurements

for several large-scale Y2H and AP-MS experiments. We can

represent these data for each experiment as a directed

subgraph GBP, with nodes being the intersection of viable

baits and viable prey, and with directed edges each

representing an observed interaction of a bait with a prey.

There are several experiments in which GBP is sufficiently

large for statisical analysis, and the usefulness of the

reciprocity criterion can be used to measure the internal

consistency of a datset [28]. 

To identify proteins that are likely to be subject to

systematic experimental error, we can compare their in-

edges and out-edges (see Box 1) within the directed

subgraph GBP. Ideally, theses edges should all reciprocate

each other; if a certain protein has very many

unreciprocated edges, this indicates that it is likely to be

affected by a systematic error. To quantify this, the number

of unreciprocated edges, nunr, originating from or pointing

to a particular protein can be compared with the number of

reciprocated edges that it has and to the false-positive and

false-negative rates pFP and pFN. Precise estimation of

these rates is difficult, however, and a simple and effective

criterion can instead be derived from considering

symmetry.
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Table 1

Overview of seven Y2H and five AP-MS experiments

Reference VB CB TB VP VBP VBP/BP TI TI/VB REC UNR

Ito et al. [1] 1,522 6,604 2,493 773 0.51 4,524 3.0 75 803

Cagney et al. [2] 19 31 40 11 0.58 54 2.9 3 4

Tong et al. [3] 20 22 59 5 0.25 115 5.8 1 1

Hazbun et al. [4] 66 100 1,940 28 0.42 2,524 38 4 13

Zhao et al. [5] 1 1 90 0 0.00 90 90 0 0

Uetz et al. Experiment 1 [6] 508 6,604 630 142 0.28 952 1.9 10 47

Uetz et al. Experiment 2 [6] 139 192 400 36 0.26 524 3.8 18 7

Gavin et al. [7] 455 600 725 1,179 271 0.60 3,419 7.5 192 314

Ho et al. [8] 493 589 1,739 1,316 231 0.47 3,687 7.5 69 297

Krogan et al. [9] 153 165 165 483 151 0.99 1,132 7.4 89 157

Gavin et al. [10] 1,752 1,993 6,466 1,790 991 0.57 19,105 10.9 1,077 4,297

Krogan et al. [11] 2,264 2,357 4,562 5,323 2,226 0.98 63,360 28.0 1,969 34,363

VB, the number of viable baits; CB, the number of cloned (hybridized) baits, if available; TB, the total number of baits that the experimenters were
initially aiming at; VP, the number of viable prey; VBP, the number of proteins observed as both bait and prey; TI, the total number of interactions
observed; REC, the number of reciprocated interactions between proteins that were observed as both bait and prey; UNR, the number of
unreciprocated interactions between proteins that were observed as both bait and prey. Not all of the experiments were genome-wide - some were
focused on particular aspects of the cellular machinery [2-5,9]. Even in the so-called genome-wide studies [1,6-8,10,11], however, the viable baits cover
only around a third of the yeast genes. This means that the largest part of interaction space by far, containing interactions between proteins not used as
baits, was not sampled in any of these experiments. We can also see that TI/VB, the average number of interactions per viable bait, varies markedly
between experiments. In the more focused studies, this will certainly be a result of different criteria for the selection of baits. In the genome-wide
screens it may indicate the application of different, experiment-specific cutoffs.



For a given number of unreciprocated edges, nunr, if there

are no systematic errors then the unreciprocated edges

should be in-edges and out-edges in approximately equal

numbers. If we denote their numbers by nin and nout,

respectively, then nin + nout = nunr, and we expect that

nin ∼ Bin(nunr, 0.5) (3)

If nin and nout are significantly different from each other,

according to the Binomial distribution we would conclude

that the protein behaved differently in the experiment

when used as bait compared with prey, and would use this

as an indication of systematic error affecting at least part of

the data for that protein. An application of this criterion to

the subgraph GBP of the data of Krogan et al. [11] is shown

in Figure 3.

Estimation of the properties of the interaction graph
in this setting
There are two basic approaches to estimation: one is to

estimate the true underlying graph, given the data and some

modeling assumptions, then to calculate properties of inter-

est from the estimated graph. The other is to directly

estimate the quantities of interest without making an

attempt to estimate the true underlying graph. For protein-

interaction data we suggest that the latter is often preferable,

as it can deal better with the low coverage of the datasets. As

new methods and models for integrating datasets are

developed it will be important to reassess the situation.

We distinguish between two different types of quantities to

be estimated. The first type are single numeric values, such

as degree, clustering coefficient or diameter. The second are

more general structures, such as modules or subgraphs. The

tools for estimation are more developed for numeric

quantities than for modules, and there is agreement on the

definitions of the different quantities. For modules, or

cohesive subgroups, there is little agreement on what is

being sought or how to find it.

The integration of data from different
independent experiments
No single experiment has provided complete information on

all interactions in a system of interest and so data from

different experiments need to be integrated. Integration

promises to increase coverage and reduce the effects of

stochastic errors. Table 1 summarizes experiments done on

the yeast protein interactome that are candidates for inte-

gration. The overlap between experiments is examined in

Tables 2 and 3.

An essential step before integration of data is to assess their

quality in terms of specificity, sensitivity and coverage. Such

an assessment should provide reliable estimates of the false-

positive and false-negative error rates. There are three main

computational approaches: comparison to a benchmark or

‘gold standard’ data, within-experiment or internal valida-

tion, and between-experiment validation.

When direct physical interactions are being measured (for

example, by Y2H), crystal structures of the interacting

proteins can be used as the gold standard for the validity of

the interaction. This was one of the approaches used in [17].

Only a handful of crystal structures of interacting proteins

are known, however, and such data are still difficult and

expensive to obtain. Some physical interactions and protein

complexes have also been characterized through detailed

biochemical investigations, and are collected in databases

such as MIPS [36] and GO [37]. Circularity needs to be

avoided, however; for example, the data from [7] and [9] are

now reported as known complexes in some of the public

protein complex databases.
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Figure 3
Scatterplot of nin and nout for the AP-MS data of Krogan et al. [11]. Each
point in the plot corresponds to one protein. nin is the number of times
that the protein was found as a prey; nout the number of prey it found
when used as a bait. The two lines mark contours of probability p = 10-4

according to the Binomial model in Equation (3). Outlying proteins (dark
blue) show a significantly large difference between nin and nout, suggesting
that at least one of them is wrong. For example, if nout >> nin, one
possible reason is that a protein is not expressed when used as prey or of
such low abundance that it is outcompeted, but when tagged and
expressed as a bait, it will identify and pull down its interaction partners
as prey. Further validation experiments are needed to determine in each
case whether the unreciprocated interactions correspond to false-
positive or false-negative observations.
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Within-experiment validation relies on internal properties of

the data, such as redundancies or symmetries that are not

used in the experiment, and that can therefore be used to

validate the experimental results. One such property is

reciprocity, as discussed above. Deviations from expectation

can be used to estimate stochastic error rates, and they can

also be used to identify individual proteins whose data

appear to be subject to systematic artifacts (see Figure 3).

Reported replicate measurements can also be used to help

validate experimental data and to estimate error rates. The

basic idea is that if edges are tested multiple times under the

same conditions, those that are found frequently can be

termed true positives and can be used to estimate the false-

negative rate from those cases when they were missed.

Similarly, those that are seldom found can be deemed true

negatives, and from the positive data points the false-

positive rate can be estimated. This approach is complicated

by possible dependencies between the replicate measure-

ments and by systematic errors that, if present, will affect all

replicates. These complications may render the statistical

model intractable. Further caution is warranted. Was the

choice of replicates measures made a priori or because of

anomalous results obtained during the experiment? Do they

provide equal coverage of all important conditions and of all

types of proteins that were studied?

Between-experiment comparisons rely on the experimental

conditions being sufficiently similar to ensure that the

measurements are made on the same underlying set of true

interactions. However, as we see in Tables 2 and 3, in many

cases there is relatively little overlap in bait selection and in

observed prey. For two recent experiments with at least

some overlap, a comparison was presented by [20]. These

authors found a moderate overlap between the primary

data, for example the proteins identified by each successful
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Table 2

Pairwise comparison of Y2H datasets

Uetz et al. [6] Uetz et al. [6] 
References Ito et al. [1] Cagney et al. [2] Tong et al. [3] Hazbun et al. [4] Zhao et al. [5] Experiment 1 Experiment 2

[1] - 9 7 24 1 224 47

[2] 28 - 0 0 0 7 3

[3] 34 0 - 0 0 4 7

[4] 856 14 25 - 0 15 12

[5] 43 1 2 38 - 0 0

[6] Experiment 1 388 14 22 272 15 - 36

[6] Experiment 2 200 9 26 204 13 108 -

The values above the diagonal give the number of viable baits in common between each pair of experiments, and the values below the diagonal give the
number of viable prey in common. We see that the overlap between experiments in the sampled fractions of protein-interaction space is in all cases very
small, given that thousands of interactions were assayed.

Table 3

Pairwise comparison of AP-MS datasets

References Gavin et al. [7] Ho et al. [8] Krogan et al. [9] Gavin et al. [10] Krogan et al. [11]

[7] - 82 51 442 334

[8] 516 - 25 222 286

[9] 299 246 - 121 151

[10] 1,143 717 371 - 1,128

[11] 1,149 1,277 478 1,732 -

As in Table 2 the values above the diagonal give the number of viable baits in common between each pair of experiments, and the values below the
diagonal give the number of viable prey in common. Again, the overlap is very small. Consider the two largest experiments carried out so far: with a set
of 2,264 viable baits and 5,323 viable prey, Krogan et al. [11] tested for the presence of at least 12 million complex membership interactions. Gavin et al.
[10], with 1,752 viable baits and 1,790 viable prey, tested for at least 3.1 million interactions. However, even for these two datasets, the largest so far, the
known overlap is only 1,128 × 1,732 ≈ 2.0 million. One of the possible explanations for these low estimates of coverage and overlap is that our
definitions of viable baits and viable prey are restrictive and that indeed a much larger space of interactions might have been tested. For example,
Gilchrist et al. [29] estimated a value about twice ours for the number of tested prey in [7]. This situation will hopefully be alleviated as researchers
report more complete data on which interactions were actually tested.



bait, but a low everlap of the computed protein complexes

by each group.

When integrating data from different experiments our

recommendation is that validation to a gold standard and

within-experiment validation should first be done on each

experiment separately. Once the data are sufficiently well

understood and as many of the systematic errors as possible

have been resolved, integration becomes worthwhile. If

there is little agreement on the existence of interactions for

edges tested in different experiments, then one must

question the prudence of their integration: it may be that the

biological conditions were too different to allow their

integration into a single meaningful dataset.

There is room for much more research here. Evidence in

favor of, or against, experimentally detected interactions can

often be obtained from other sources, such as data from

other organisms, dependencies of different types of inter-

actions on each other (for example, coexpression, co-

localization and physical interaction), evolutionary conser-

vation [38], protein structure [39] and amino-acid binding

motifs [40]. The challenge is to ensure that the evidence is

applicable and that it does bear relationship to the assay and

system under study.

Our purpose in writing this article was to address the

observation that the many different protein-interaction

datasets available appear to have very little in common, and

also to address reports that the data were inherently noisy

and of low quality (for example [17,41]). Our investigations

suggest that the data themselves, while problematic in some

cases, are not the real issue, but rather there is often mis-

interpretation of the data, methods to address noisiness are

often inadequate, and the lack of substantive comparisons

between methods applied to the data has led to a situation

where the data, rather than the methods, are treated with

suspicion. As seen from Tables 2 and 3, low coverage, and

not the false-positive rate, is responsible for the small

amount of overlap between datasets.

The separation of errors into stochastic and systematic

components is potentially of great benefit. Comparison of

experimental data should be based on stochastic error rates.

The identification of systematic errors can help to identify

problems with the experimental techniques and hopefully

suggest solutions to those problems. We believe that when

more standard, and sound, statistical practices are adopted

for preprocessing the data, it will be possible to estimate

quantities of interest and to make substantial comparisons.

An essential prerequisite is the adoption of standard

methods for estimation of stochastic error rates and where

possible the identification of systematic errors. Standardized

preprocessing is also required in order to be able to

synthesize different experimental datasets. Combining data

requires attention to the differing error rates, and the

discounting of information from more variable experiments.

Given the numbers in Tables 2 and 3, there is much to be

gained by combining the different experimental datasets. We

believe that the data, while noisy, are in fact very useful, and

with appropriate preprocessing and statistical modeling they

can provide deep insight into the functioning of cellular

machineries.
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