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Human estrogen receptor binding sites<p>Refinement of the functional human estrogen receptor binding site model using a multi-platform genome-wide approach reveals extended binding specificity signal.</p>

Abstract

Background: Transcription factor binding sites (TFBS) impart specificity to cellular transcriptional
responses and have largely been defined by consensus motifs derived from a handful of validated
sites. The low specificity of the computational predictions of TFBSs has been attributed to ubiquity
of the motifs and the relaxed sequence requirements for binding. We posited that the inadequacy
is due to limited input of empirically verified sites, and demonstrated a multiplatform approach to
constructing a robust model.

Results: Using the TFBS for the estrogen receptor (ER)α (estrogen response element [ERE]) as a
model system, we extracted EREs from multiple molecular and genomic platforms whose binding
to ERα has been experimentally confirmed or rejected. In silico analyses revealed significant
sequence information flanking the standard binding consensus, discriminating ERE-like sequences
that bind ERα from those that are nonbinders. We extended the ERE consensus by three bases,
bearing a terminal G at the third position 3' and an initiator C at the third position 5', which were
further validated using surface plasmon resonance spectroscopy. Our functional human ERE
prediction algorithm (h-ERE) outperformed existing predictive algorithms and produced fewer than
5% false negatives upon experimental validation.

Conclusion: Building upon a larger experimentally validated ERE set, the h-ERE algorithm is able
to demarcate better the universe of ERE-like sequences that are potential ER binders. Only 14% of
the predicted optimal binding sites were utilized under the experimental conditions employed,
pointing to other selective criteria not related to EREs. Other factors, in addition to primary
nucleotide sequence, will ultimately determine binding site selection.
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Background
Estrogen receptors (ERs) are members of the nuclear recep-
tor superfamily of transcription factors, which plays key roles
in human development, physiology, and endocrine-related
diseases [1]. Two ER subtypes, namely ERα (ESR1) and ERβ
(ESR2), mediate cellular responses to hormone exposure in
target tissues, and receptors are directed at cis-regulatory
sites of target genes via interactions between the zinc finger
motifs in their DNA-binding domains and specific nucleotide
sequence motifs termed estrogen response elements (EREs).
Specificity protein (Sp)-1 and activator protein (AP)-1 tran-
scription factors are also known to tether with ER and regu-
late a smaller subset of target genes through Sp1 and AP1
binding sites. The importance of these sites to the overall ER
biologic response remains unclear.

The consensus ERE sequence (5'-GGTCAnnnTGACC-3') was
derived from conserved regulatory elements found in Xeno-
pus and chicken vitellogenin genes and consists of palindro-
mic repeats separated by a three-base spacer to accommodate
interactions with receptor dimers [2,3]. Subsequent charac-
terizations of EREs in additional target genes, however, indi-
cate that the majority of response elements deviate from the
described consensus sequence [4]. Furthermore, ERE-like
sequences are ubiquitous in the human genome, and evidence
for ER binding among the majority of ERE-like sites in estro-
gen response gene expression studies is apparently absent;
these factors suggest that additional sequence motifs and/or
chromatin features may contribute to the specificity of ER
binding and transcriptional response. Recent efforts to model
better the ERE by using position weight matrices (PWMs [5])
in order to describe all previously published EREs have
resulted in more complete models but with a limited ability to
predict bona fide ER binding [6,7]. We posited that the cur-
rent major challenge with construction of ERE models is the
limited datasets available, both for experimentally deter-
mined ER-bound sites and for ERE-like sites that do not bind
ER.

In addition to compiling the known sites reported in the liter-
ature, we pursued a combined experimental and informatics
approach to identify additional ER binding sites and their
associated direct target genes. This information was analyzed
to develop a more faithful model of the ER binding site motifs.
To accomplish this, we applied three experimental strategies
for ER-binding sites discovery. First, we predicted putative
EREs in the promoter regions of direct target genes discov-
ered by microarray analysis [8] and then tested for ER bind-
ing at predicted sites of responsive genes by chromatin
immunoprecipitation (ChIP) assays [9]. Second, we surveyed
ER-binding sites in promoter regions of the human genome
by hybridizing fluorescently-labeled ChIP DNA fragments to
high-density oligonucleotide arrays ('ChIP-on-chip') with
probes against about 30,000 proximal promoters (-1 kilobase
[kb] to +0.2 kb relative to the transcription start sites [TSSs]).
Third, we detected ER-binding sites across the genome by

ChIP, followed by cloning and sequencing of bound frag-
ments ('ChIP-and-clone'). ERE-like sites that have been vali-
dated, for binding and nonbinding, by conventional ChIP
followed by quantitative polymerase chain reaction (qPCR)
using site-specific primers were then used to train and test a
model for functional EREs (summarized in Figure 1). In the
present study, we focused on functional human EREs to min-
imize potential noise introduced by species-specific variation,
which we have previously observed [8].

Results
Functional estrogen receptor binding sites
We used a combination of literature search and direct exper-
imentation to generate a list of qualified ER-binding sites. In
this study we constrained ourselves to using only sites that
have been validated for the modeling of functional EREs. We
first extracted human ERE sequences that have been experi-
mentally validated in the literature to either bind or not to
bind ER. Klinge [4] and Bourdeau and coworkers [10] each
described EREs that have been validated by electrophoretic
mobility shift assays, transient transfection with reporter
gene constructs, or ChIP assays.

Supplementing the list of confirmed EREs gleaned from the
literature, we experimentally identified functional ER-bind-
ing sites using two whole-genome experimental strategies.
The first strategy was to extract candidate ER-binding sites
computationally from a list of putative direct ER target genes.
Eighty-nine putative direct target genes were identified as
genes expressed in MCF-7 cells that were responsive to estra-
diol treatment, sensitive to inhibition by Faslodex (ICI
182,780), and insensitive to cycloheximide [8]. We then com-
putationally surveyed 3.5 kb regions flanking the TSSs (-3 kb

Schematics of ERE discovery and validation for model training and testingFigure 1
Schematics of ERE discovery and validation for model training and testing. 
ERE, estrogen response element; ChIP, chromatin immunoprecipitation; 
qPCR, quantitative polymerase chain reaction.
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Table 1

Genomic coordinates of ERE-like sequences that have been experimentally validated or rejected as ER-binding

Name Genomic location Pattern Validation Reference

PDZK1 chr1:143,215,756-143,215,768 GGTCAcccAGTCC Binding This study

ADORA1 chr1:199,790,269-199,790,281 GGTTAgggTGACC Binding [10] and this study

ADORA1 chr1:199,790,414-199,790,426 GGTGTcttTGACC Binding This study

AGT chr1:227,156,613-227,156,625 GGGCAtcgTGACC Binding [4]

GREB1 chr2:11,603,634-11,603,646 GGTCAaaaTGACC Binding [10]

GREB1 chr2:11,615,324-11,615,336 GGTCAtcaTGACC Binding [10]

GREB1 chr2:11,621,861-11,621,873 AGTCAgtgTCACC Binding This study

GREB1 chr2:11,623,258-11,623,270 GGTCAttcTGACC Binding [8,10]

CYP1B1 chr2:38,214,993-38,215,005 GGTCGcgcTGCCC Binding This study

CYP1B1 chr2:38,215,049-38,215,061 GGTCAaagCGGCC Binding This study

LTF chr3:46,481,739-46,481,751 GGTCAaggCGATC Binding [10]

AREG chr4:75,676,340-75,676,352 GGACAaggTGTCC Binding This study

ELOVL2 chr6:11,154,748-11,154,760 GGTCAtctTGATG Binding This study

VEGF chr6:43,844,381-43,844,393 AATCAgacTGACT Binding [4]

LY6E chr8:144,170,802-144,170,814 GGACAagaTGACC Binding [10]

PTGES chr9:129,597,654-129,597,666 GGACAgccTGGCC Binding This study

CASP7 chr10:115,428,398-115,428,410 GGTCAgggTGAAC Binding [10]

CASP7 chr10:115,428,492-115,428,504 GGTCGgggTGAAC Binding [10]

CASP7 chr10:115,428,572-115,428,584 GGTCAgggTGAAC Binding [10]

CASP7 chr10:115,428,612-115,428,624 GGTCAgggTGAAC Binding [10]

CASP7 chr10:115,428,652-115,428,664 GGTCAgggTGAAC Binding [10]

CASP7 chr10:115,428,689-115,428,701 GGTCAgggTGAAC Binding [10]

CASP7 chr10:115,428,743-115,428,755 GGTCAgggTGAAC Binding [10]

CTSD chr11:1,741,924-1,741,936 GGCCGggcTGACC Binding [4]

PGR chr11:100,504,595-100,504,607 GGTCAccaGCTCT Binding [4]

PGR chr11:100,505,180-100,505,192 GCAGGagcTGACC Binding [4]

SCNN1A chr12:6,355,536-6,355,548 GGTCAgccTCACC Binding [10]

GAPDH chr12:6,513,208-6,513,220 GGACAtcgTGACC Binding [10]

ESR2 chr14:63,879,248-63,879,260 GGTCAggcTGGTC Binding [4]

FLJ30973 chr15:55,670,850-55,670,862 GGGCAgtgTGGCC Binding This study

FLJ30973 chr15:55,671,545-55,671,557 GGTCAcccTGCTC Binding This study

ABCA3 chr16:2,319,793-2,319,805 GGTCAcggTGTTC Binding [8]

IGFBP4 chr17:35,849,113-35,849,125 GGTCAttgTGACA Binding [10]

TRIM25 chr17:52,323,321-52,323,333 GGTCAtggTGACC Binding [4], [10]

BCL2 chr18:59,136,673-59,136,685 GGTCGccaGGACC Binding [4]

MGC26694 chr19:19,035,118-19,035,130 GTTCAgagTGACC Binding This study

GRAMD1A chr19:40,182,519-40,182,531 GGCCTggcTGACC Binding This study

ACTN4 chr19:43,897,093-43,897,105 GGTCActgTGACT Binding This study

GPR77 chr19:52,532,131-52,532,143 GGTCActcTGACA Binding This study

C3 chr19:6,671,884-6,671,902 GGTGGcccTGACC Binding [4]

NRIP1 chr21:15,359,833-15,359,845 GGTCAaagTGACC Binding [8]

TFF1 chr21:42,659,626-42,659,638 GGTCCtggTGTCC Binding This study

TFF1 chr21:42,659,906-42,659,918 AGCCAagaTGACC Binding This study

TFF1 chr21:42,660,106-42,660,118 GGTCAcggTGGCC Binding [4]

CRKL chr22:19,595,695-19,595,707 AGTCAatcTAACC Binding This study

TSHB chr1:115,283,928-115,283,940 GGTCAgctTGACA Nonbinding [10]

TXNIP chr1:142,927,222-142,927,234 GGTCAgtgGGATC Nonbinding This study

LOR chr1:150,045,850-150,045,862 GGTCCaaaGGACC Nonbinding This study
Genome Biology 2006, 7:R82
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GREB1 chr2:11,622,443-11,622,455 TGCCAccaTGACC Nonbinding This study

GREB1 chr2:11,625,143-11,625,155 TGTCAatcTGTCC Nonbinding This study

EN1 chr2:119,322,563-119,322,575 GGTTAcccTGAAC Nonbinding This study

UGCGL1 chr2:128,563,200-128,563,212 TGTCAaaaTGTCC Nonbinding This study

UGCGL1 chr2:128,565,292-128,565,304 TGTCAcatTGAGC Nonbinding This study

PLGLB1 chr2:87,884,778-87,884,790 GGTCAgtgTGCCA Nonbinding This study

SIAH2 chr3:151,966,545-151,966,557 GCTCAtagTGCCC Nonbinding This study

ATP13A3 chr3:195,656,453-195,656,465 GGTCAttaATACC Nonbinding This study

CISH chr3:50,626,609-50,626,621 GGCCAgagGGACC Nonbinding This study

LMCD1 chr3:8,517,591-8,517,603 GGCCTgcaTGACC Nonbinding This study

FLJ22269 chr4:673,249-673,261 GGGCAgagTGACT Nonbinding This study

CCNG2 chr4:78,433,176-78,433,188 GGACAactTGATC Nonbinding This study

STC2 chr5:172,689,912-172,689,924 GGGCAatgTGAAC Nonbinding This study

IL6ST chr5:55,327,909-55,327,921 GGTGAgcaTGATC Nonbinding This study

PLK2 chr5:57,792,972-57,792,984 GGTTAcagCGACC Nonbinding This study

OLIG3 chr6:137,857,308-137,857,320 CGTCAtccTAACC Nonbinding This study

FKBPL chr6:32,206,228-32,206,240 GGCCAgccCGACC Nonbinding This study

FKBPL chr6:32,206,311-32,206,323 CGCCAccaTGACC Nonbinding This study

SERPINE1 chr7:100,361,980-100,361,992 GACCAgccTGACC Nonbinding This study

SERPINE1 chr7:100,362,938-100,362,950 GGACAagcTGCCC Nonbinding This study

SERPINE1 chr7:100,363,852-100,363,864 TGTCAagaAGACC Nonbinding This study

TSPAN13 chr7:16,566,080-16,566,092 GATAAgtcTGACC Nonbinding This study

BLVRA chr7:43,570,289-43,570,301 GGTCActcTGGCT Nonbinding This study

BLVRA chr7:43,570,774-43,570,786 AGTCAaccTTACC Nonbinding This study

B4GALT1 chr9:33,157,593-33,157,605 GCTCAacgCGACC Nonbinding This study

B4GALT1 chr9:33,158,622-33,158,634 GATCAgaaGGACC Nonbinding This study

DNAJC1 chr10:22,333,030-22,333,042 GTTCAactTGTCC Nonbinding This study

GAD2 chr10:26,545,037-26,545,049 GGTCGcagTGACC Nonbinding [10]

CXCL12 chr10:44,202,437-44,202,449 GGTCCagcTGCCC Nonbinding This study

CXCL12 chr10:44,203,283-44,203,295 TGTCAaaaTGGCC Nonbinding This study

PGR chr11:100,509,203-100,509,215 AGTCAtgtTGACA Nonbinding This study

DGKZ chr11:46,321,832-46,321,844 GGCCAtgcTGGCC Nonbinding This study

CTSW chr11:65,403,499-65,403,511 GACCAgccTGACC Nonbinding This study

C14orf131 chr14:101,872,078-101,872,090 GGCCAacaTGACA Nonbinding This study

DLG7 chr14:54,727,987-54,727,999 GGTCGtccAGACC Nonbinding This study

ESR2 chr14:63,876,354-63,876,366 GACCAgccTGACC Nonbinding This study

THBS1 chr15:37,657,943-37,657,955 GGTCAatcCCACC Nonbinding This study

FLJ13710 chr15:69,737,514-69,737,526 AGTCAttgTTACC Nonbinding This study

FLJ13710 chr15:69,738,257-69,738,269 GGTCAatgTGCGC Nonbinding This study

FLJ13710 chr15:69,738,459-69,738,471 GCTCActtTGTCC Nonbinding This study

SH3GL3 chr15:82,077,053-82,077,065 GATCTtgcTGACC Nonbinding This study

SMAP-1 chr15:89,278,745-89,278,757 AGTCAatcTGTCC Nonbinding This study

ABCA3 chr16:2,321,166-2,321,178 GGTCTtttTTACC Nonbinding This study

HCFC1R1 chr16:3,015,149-3,015,161 GACCAgccTGACC Nonbinding This study

ADCY9 chr16:4,107,737-4,107,749 GGTCAggcTGGTC Nonbinding This study

ADCY9 chr16:4,108,935-4,108,947 GGTGAaaaTGTCC Nonbinding This study

CAPNS2 chr16:54,100,244-54,100,256 GGTCCgtcCGACC Nonbinding This study

Table 1 (Continued)

Genomic coordinates of ERE-like sequences that have been experimentally validated or rejected as ER-binding
Genome Biology 2006, 7:R82
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to +0.5 kb) of these 89 genes to identify proximate consensus
EREs (allowing for deviations in up to two conserved posi-
tions of the consensus motif). Each site was then tested by
ChIP assays and qPCR with site-specific primers to determine
the true nature of ER binding. Eight EREs were found to be
bound by ER, whereas 41 others were not found to be bound
by ER.

In our second approach, we performed ChIP assays on estra-
diol-treated breast tumor cells and detected ER-binding sites
using high-density oligonucleotide microarrays (NimbleGen,
Madison, WI, USA) containing probes against proximal pro-
moter regions (-1 kb to +0.2 kb from TSS; 12 probes per pro-
moter) of over 30,000 human known gene and RefSeq
transcripts annotated in the human genome sequence hg16
(July 2003), NCBI build 34 annotation of the UCSC genome
browser. The ChIP-on-chip studies were performed using
duplicate array experiments on the ChIP samples and on
input control DNA. The promoters that appeared among the
top 5% of the binding ratio range (ER antibody versus con-
trol) for both replicates, that had at least a 15% increase, and
that were supported by consistent binding ratio enrichment
across more than four probes or additional evidence of ER
regulation from the microarray data were selected. Putative
EREs (allowing for up to two mismatches from the consen-
sus) were then identified in the selected promoters, and some
were further validated by additional ChIP and qPCR (see
Materials and methods, below, for more detail). Out of the
total 28 sites tested, 13 were found to bind ER whereas 15
were not. From the literature sources and experiments
described above, a total of 45 validated ER-binding sites and
58 validated non-ER-binding were identified, all of which
bore close resemblance to the consensus ERE (Table 1). Each
of the 45 binders and 58 non-binders was associated with a
gene and most were located in the genes' upstream regulatory
regions. This list of 103 genes were used as the training set to
assess the significance of ancillary sequence signals beyond
the core ERE that might better predict ER binding.

Ancillary signals for ER binding around the core ERE
ER is known to interact with the 10 base pair (bp) long con-
sensus ERE (hereafter referred to as the 'core ERE'). Presence

of the consensus site (or its acceptable variants) is required
for the direct binding of the ER dimer to the DNA. However,
it is still unclear whether the core site alone is sufficient to sig-
nal activated ER for such binding or whether additional ER-
binding signals in the sequences flanking the core can be used
to distinguish binders from nonbinders. An in silico super-
vised learning experiment was devised to explore these
possibilities.

We modeled the problem of finding additional signals for ER
binding among the sequences surrounding the core ERE as a
binary classification problem (binders versus nonbinders).
The features were position-specific motifs surrounding the
core ERE. In other words, we asked whether there is any
motif (m) within a definitive distance (p) to the core ERE that
could help distinguish the binders from nonbinders. The
robust and versatile naïve Bayesian classification approach
was employed, with binary tuple <m,p> as features, where m
is a k-bp long motif and p is the distance between motif m and
the core ERE. Two sets of experiments were set up. The first
consisted of the core plus its flanking regions, whereas the
second considered only the flanking regions of core ERE. The

PAFAH1B1 chr17:2,441,502-2,441,514 CGCCAtgtTGACC Nonbinding This study

IGFBP4 chr17:35,851,519-35,851,531 GATCActgTAACC Nonbinding This study

IGFBP4 chr17:35,853,510-35,853,522 GGTCAtgcTGCCC Nonbinding This study

RBBP8 chr18:18,766,140-18,766,152 GGTCAttcTGCTC Nonbinding This study

MKNK2 chr19:2,382,491-2,382,503 GGGCAgagTGAGC Nonbinding This study

BBC3 chr19:52,426,840-52,426,852 TGTCAttgTGTCC Nonbinding This study

BBC3 chr19:52,427,249-52,427,261 GGTCAggcTGGTC Nonbinding This study

GPBP6 chrY:169,893-169,905 GCTCAcgaTGACG Nonbinding This study

Shown in bold and underlined are nucleotides that deviate from the consensus core ERE. ER, estrogen receptor; ERE, estrogen response element.

Table 1 (Continued)

Genomic coordinates of ERE-like sequences that have been experimentally validated or rejected as ER-binding

Sequence logosFigure 2
Sequence logos. Shown are sequence logos for (a) the 45 ER-binding loci 
with 10 bp flanking sequences and (b) 58 ER nonbinding loci with 10 bp 
flanking sequences. The logo for the binders exhibited additional signal at 
the third bases upstream and downstream of the core palindromic ERE. 
bp, base pairs; ER, estrogen receptor; ERE, estrogen response element.
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motif length k and the size of flanking regions were similarly
varied in both setups. The goal was to learn whether motifs of
certain length at particular distances from the core could con-
tribute to the discrimination of binders from nonbinders.
Although the results indicated that window size (k) of 1 bp
generally outperformed the rest (Additional data file 1), the
span of flanking regions did not appear to affect significantly
the outcome of the two experiments.

These observations suggested that additional signal for ER-
binding might lie in the distribution of single nucleotides
adjacent to the core ERE. This hypothesis was initially inves-
tigated by visually inspecting the sequence logo [11] con-
structed from the binders, including their flanking sequences.
Shown in Figures 2a (for ER binders) and 2b (for nonbinders)
are the logos for up to 10 flanking nucleotides. Comparison
between the binders and nonbinders revealed that additional
binding signals potentially came from adjacent nucleotides,
specifically those up to 3 bp flanking the core ERE, which
extended the consensus palindrome. A series of Monte Carlo
runs, performed to estimate the probability that observing
such additional signals could happen by chance alone,
showed that the signals are statistically significant at 3 bp
away from the core motif (Monte Carlo P value = 0.002 and P
value < 0.001; see Materials and methods and Additional
data file 3).

To determine the functionality for the conserved cytosine and
guanine three bases upstream of the first ERE half-site and
downstream of the second ERE half-site, respectively, we
examined the interactions between ER and wild-type and
mutant binding sites using surface plasmon resonance (SPR)
spectroscopy. Purified ER was incubated with either the pre-
viously validated ERE (wild-type) adjacent to the GREB1 gene
or mutants containing substitutions in the conserved guanine
(mutant 1), the canonical half-sites (mutant 2), in the con-
served guanine and the cytosine in the symmetrical position
upstream of the first ERE half-site (mutant 3; see Figure 3a),
and at the sixth bases upstream of the core ERE (mutant 4;
see Figure 3a) as the negative control. Substitution of the con-
served guanine (mutant 1) disrupted ER binding by about
40%, and, as expected, mutations in the consensus half-sites
reduced binding significantly (see Figure 3b). Interestingly,
substitution of the cytosine three bases upstream of the first
half-site with an adenine (Figure 3b, mutant 3), in addition to
the substitution in the conserved guanine adjacent to the sec-
ond half-site, further diminished binding. As was also
expected, the substitution outside the three bases flanking the
ERE did not perturb the binding significantly. These results
indicate that the conserved guanine outside of the canonical
ERE, discovered by modeling novel ER binding site, is
involved in mediating ER binding to the ERE.

Modeling functional EREs
The model we propose, h-ERE, exploits the above observation
and consists of two PWMs representing the models for bind-

ers and nonbinders. The model relies on a decision tree for
classifying sites into binders or nonbinders, based on the
scores obtained from the individual PWMs. Two sets of 19 bp
sequences, one for binders and the other for nonbinders, were
formed from the core sites plus three adjacent nucleotides.
We further optimized the binding EREs by minimizing the
total entropy of the aligned sites (see Materials and methods),
while augmenting the nonbinding EREs by taking both
strands of the validated nonbinding loci when constructing
the weight matrix.

With this information we constructed a decision tree for the
selection of high-likelihood binding EREs versus nonbinding
EREs. Each matrix was used to calculate the log-likelihood of
a given 19 bp site to be a binder or a non-binder. For each site
two scores can be calculated, the binding score (SB) and non-
binding score (SNB). Complementing the matrices, a decision
tree for distinguishing binders and nonbinders based on SB

and SNB was constructed from all of the training dataset using
the CART algorithm [12] implemented in R, with 100 cross-
validation runs. Figure 4 depicts the resultant tree. Putative
binders are further subcategorized into three groups, from
weak binding (group 1) to strong binding (group 3). Apart
from these groupings, sites whose raw log-likelihood binding
score (SB) is greater than its nonbinding (SNB) scores are
potentially functional sites. Additionally, to reflect the nature

Substitution of the conserved guanine outside of the canonical ERE disrupts ER bindingFigure 3
Substitution of the conserved guanine outside of the canonical ERE 
disrupts ER binding. (a) Interactions between ER and wild-type and mutant 
EREs were measured by SPR. The canonical ERE is underlined, and the 
conserved guanine is indicated by an arrow. Base substitutions are 
indicated in bold. (b) Binding of ER to ERE is indicated as a percentage of 
binding relative to the wild-type sequence. ER, estrogen receptor; ERE, 
estrogen response element; SPR, surface plasmon resonance.
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of the validated sites, the model considers sequences whose
core EREs have more than 4 bp mismatches with the consen-
sus ERE, GGTCAnnnTGACC, to be non-binding.

In all, given a 19 bp sequence, the proposed h-ERE first
checks whether the core 13 bp nucleotides contains at most
four mismatches to the consensus ERE. Next, based on the
computed PWM scores, predictions can be made based on
four stringency levels: stringent (considers only sites in group
3 to be binders), medium (predicts sites in group 3 and group
2 to be as binders), relaxed (considers sites of groups 1-3 to be
binders), and loose (defines sites whose SB > SNB as binders).

Unbiased mapping of EREs
In previously described studies conducted to identify EREs,
the analyses have largely focused on the 5' cis-regulatory
regions of direct target genes. However, ChIP analysis of pre-
dicted EREs in the extended promoters of 89 putative direct
target genes defined by hormone and inhibitor treatments
and microarray expression data [8] indicated ER binding in
only 9% of the promoter regions from genes apparently
directly regulated by ER. These results suggest that ER may
target binding sites outside of the canonical 5' promoter
regions. Therefore, to discover additional EREs in an unbi-
ased manner and to generate a dataset for testing model per-
formance, we employed the 'ChIP-and-clone' strategy of
cloning precipitated DNA fragments into a bacterial plasmid
vector, followed by direct sequencing of the inserts to identify
ER binding sites. This approach has the potential to sample
any region of the genome, as opposed to PCR-based or micro-
array-based directed strategies, which target specific sites or
functional regions, respectively. Anti-ER ChIP was per-
formed on nuclear lysates from estradiol-treated MCF-7 cells,
followed by cloning of precipitated binding sites into the pCR-
Blunt (Invitrogen, Carlsbard, CA, USA) vector. From the ChIP
library, a total of 1006 clones were successfully sequenced
and specifically mapped to the human genome. Based on the
presence of ERE-like sequences or supporting microarray
expression data for ER regulation of the adjacent transcript,

33 clones were selected for subsequent validation by ChIP
and site-specific qPCR. An additional 75 clones were ran-
domly selected from those that have neither EREs nor adja-
cent transcript expression data for further validation (data
not shown). Thus, a total of 108 clones were validated (five
contained EREs and are supported by microarray expression
data, 23 with only EREs and no supporting expression data,
five supported by microarray but no EREs, and 75 with nei-
ther EREs nor expression data).

The validation results indicate that ERE-like sequences
remain the predominant feature of functional ER-binding
sites. In the five clones with EREs and supporting microarray
expression data for ER regulation, the validation rate was
100%; for the 23 clones that encode EREs but lack supporting
expression data, the validation rate was 57% (13/23). In con-
trast, clones for which no ERE-like sequences were detected,
the validation rates were 40% (2/5) and 9% (7/75), respec-
tively, for those with and without supporting expression data
for the adjacent gene. A total of 19 EREs were found in the 18
empirically verified ER-bound clones. Interestingly, the five
validated clones that contain EREs and are adjacent to genes
that were shown to be hormone regulated map to intronic
regions of the target genes. This is consistent with our
hypothesis that ER may bind outside of the 5' cis-regulatory
regions of target genes. Moreover, when we tested ERE-like
sequences in the promoter region of one of the target genes,
SIAH2, we did not detect ER binding, suggesting that the
intronic ERE is the functional ER binding site (data not
shown) for this particular target gene. From this analysis, all
EREs that bind ER and did not bind ER in the validation
experiments were then used to test model performance
(Table 2).

Currently, three other models have been widely used to pre-
dict functional EREs: consensus sequence search (allowing
for certain mismatches), TRANSFAC matrices using MATCH
[13] search algorithm, and Dragon ERE finder [6]. The per-
formance of these models (under different settings) is com-
pared with h-ERE in Table 3. Although h-ERE was not the
most sensitive or the most specific, it offered the best balance
between the two criteria. With the interest of having a single
performance measure that captures the balance between sen-
sitivity and specificity, harmonic means of the two were com-
puted (see van Rijsbergen [14] and Materials and methods).
By this measure, h-ERE offers the best balance in perform-
ance, even under different stringency settings.

Whole-genome predictions of ER-binding sites
In order to assign specific ERE predictions, we constructed a
decision tree using binding and nonbinding scores from the
PWMs (see Materials and methods). The parameters were
selected to minimize error on the classification of the training
set. We scanned the human genome (UCSC hg17) using the h-
ERE decision tree and detected 38,024 putative sites under
the 'stringent' criteria, including 3607 EREs encoded by Alu

Decision tree for ERE predictionFigure 4
Decision tree for ERE prediction. Group 3 EREs would be predicted to be 
the highest likelihood binders of ER. ER, estrogen receptor; ERE, estrogen 
response element; SB, binding score; SNB, nonbinding score.
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repeats. To assess further the performance of our predictive
algorithm, we randomly selected 60 sites predicted to be ER
binders by h-ERE (group 3 sites) and 60 nonbinders (group 0
sites) for further experimental validation by ChIP and qPCR.
Of the 120 sites, specific primers for qPCR could be designed
for only 64 sites, 44 of which are binders whereas 20 are non-
binders. Fourteen per cent (6/44) of the predicted binding
sites were shown to bind ER (more than twofold enrichment
over control) whereas no binding was detected in any of the
sites classified as nonbinders (0/20), suggesting that the
false-negative rate is less than 5%. The low rate of false nega-
tives allows us to demarcate in the human genome the global
set of EREs that contain the universe of putative true binding
motifs. This suggests that, taking into account the 14% valida-
tion rate, there would be 5363 validated ER-binding sites
within the global optimized ERE set for the MCF-7 cells,
under conditions similar to our experimental setup.

We then considered how much of the predictions could be
attributed to random occurrences simply by chance alone. A
series of Monte Carlo simulations were carried out to esti-
mate the false positive rate of h-ERE. One thousand nucle-
otide sequences 1 megabase (Mbp) long were generated
randomly, governed by the empirical single nucleotide distri-
bution of the human genome (UCSC hg17), and were run
through h-ERE. The numbers of predicted binders divided by
1 Mbp was reported as the h-ERE false discovery rate per base
pair. Taking a conservative estimate of the noise and extrap-
olating it, for the human genome (about 3 gigabases [Gbp])
about 33,000 (approximately 86%) were estimated to be false
positives, and hence approximately 5000 ER-binding sites
are present in the human genome.

Taken together, the convergence of these two analyses sug-
gest that binding site motifs will be subject to statistical noise

Table 2

Validation results on genomic loci containing ERE-like sequences identified by sequencing random ChIP fragment from an ER ChIP 
library

Nearest gene Genomic location Pattern Validation

NBPF4 chr1:108,492,542-108,492,560 ttaGGTCAgctTGTCCcag Binding

C1orf21 chr1:181,327,606-181,327,624 ctgGGTCAgcaTGACCttc Binding

chr11:64,942,548-64,942,566 ctgGGGCAtgcTCACCtca Binding

SEC15L2 chr2:72,713,948-72,713,966 ggaGGTCTaggTGACCtcg Binding

chr3:132,571,914-132,571,932 aggGGTCAtggTGACAtta Binding

SLC6A6 chr3:14,429,604-14,429,622 ctgGGTCActgTGTCCgga Binding

SIAH2 chr3:151,957,126-151,957,144 acaGGTCAccaTGACCtgg Binding

SNX24 chr5:122,216,372-122,216,390 cagGGTTAtctTAACCaac Binding

PKIB chr6:122,985,938-122,985,956 tttGGTCAtgtGGGCCtga Binding

chr6:23,720,183-23,720,201 tcgGGTCAtgcTGCCTggg Binding

BTBD9 chr6:38,337,561-38,337,579 tggGGTCAtggTGACTcct Binding

SHB chr9:37,943,504-37,943,522 gcaGGTGGggcTGCCTcca Binding

SLC38A1 chr12:44,881,783-44,881,801 cagAGTGAactTGACCtga Binding

SLC38A1 chr12:44,881,800-44,881,818 gagGGTCAtccCAACCcca Binding

chr16:2,781,142-2,781,160 ccaGGTCGgctTGCCCtta Binding

chr16:743,678-743,696 atgGGTCActgTGACCcag Binding

chr17:46,382,536-46,382,554 cccGGACAcgaTGTCCccc Binding

TEX14 chr17:54,072,183-54,072,201 cacGGTCAtggTGACCtga Binding

chr20:54,945,262-54,945,280 gggAGACAcccTGACCtaa Binding

chr2:222,089,422-222,089,440 cagGTTCAaaaTGACGggt Nonbinding

STK10 chr5:171,535,283-171,535,301 tgtGGTCTctgTGCCCagg Nonbinding

KIAA1191 chr5:175,712,328-175,712,346 agaGGCCAgtcTACCCtcc Nonbinding

RASGEF1C chr5:179,478,929-179,478,947 gtgGGCCGgccTGGCCtgt Nonbinding

SORCS1 chr10:108,692,194-108,692,212 cacAGTCAtgcTGACCcca Nonbinding

chr14:38,648,346-38,648,364 attGGTCAgagTGACAgaa Nonbinding

chr14:79,636,926-79,636,944 accTGGCAcgcTGACCcat Nonbinding

LOC57149 chr16:20,819,825-20,819,843 tggGGTCAcacAGGCCcgt Nonbinding

chr16:25,535,373-25,535,391 ttaGTTCAcctTAACCcct Nonbinding

CEACAM6 chr19:46,954,305-46,954,323 cagGACCAgggAGACCtga Nonbinding

Shown in bold and underlined are nucleotides that deviate from the consensus core ERE. ChIP, chromatin immunoprecipitation; ER, estrogen 
receptor; ERE, estrogen response element.
Genome Biology 2006, 7:R82
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from random motif generation, but that a consistent number
of bona fide binding sites, for the MCF-7 cells and under sim-
ilar conditions as our experimentations, is likely to exist
(about 5000).

Discussion
In this report we describe a combinatorial experimental
approach for transcription factor binding site discovery and
demonstrate superior performance of the resultant computa-
tional model. The experimental strategies presented here
address the major problem in binding site modeling, namely
the small size of experimental datasets for model training and
testing. The unique use of validated nonbinding EREs and
examining flanking sequences allowed us to identify a novel
feature of the ERE.

Previous efforts to characterize the ERE have included muta-
genesis studies and electrophoretic mobility shift assays or
DNase footprinting experiments. For example, Driscoll and
colleagues [15,16] demonstrated that single mutations in the
core ERE can greatly disrupt ER binding. Furthermore, they
found that changes in the flanking sequences can also either
enhance or disrupt binding, depending on corresponding
changes in the core ERE. Their experiments examined up to
two bases flanking the core ERE, and they found that an A or
T in the position immediately flanking the core ERE is impor-
tant for optimal ER binding. Their observation is supported
by the model we present here (Figure 2). In our study we
found additional single nucleotide features flanking the con-
sensus ERE that are associated with binding site functional-
ity. In particular, there is a prevalence of guanines in the third
position downstream (or equivalently cytosines in the third
position upstream) of the core ERE motif in binders but not
in the nonbinders. The functional significance of these newly
discovered conserved bases were verified by SPR analysis of
ER interaction with wild-type and mutant binding sites (Fig-
ure 3). These additional features were included in the h-ERE
decision tree and probably contributed to improved model

performance. Having both the binding and the nonbinding
ERE sequences enabled us to assess the sensitivity and specif-
icity of the h-ERE model as compared with the consensus
sequence, TRANSFAC database ERE PWM [7], or the previ-
ously published Dragon ERE model [6]. Under the four
stringency parameters tested, the h-ERE model exhibited the
optimal combination of sensitivity and specificity, as meas-
ured using the harmonic means of these two factors, with 44-
68% improvements over the other models.

A genome-wide scan for putative functional EREs using the
h-ERE models yielded more than 38,000 predicted high-
probability ER binding sites (group 3), which we have shown
should represent the set of all high-likelihood ER-binding
EREs. Experimental validation of randomly selected pre-
dicted sites indicated that 14% of the sites bound ER under
the conditions tested, which agreed with the conservative
estimate of an approximate 86% false discovery rate for ERE-
like sequences in the human genome. From the two
approaches, we project there to be approximately 5000 func-
tional ER-binding sites in the MCF-7 genome. That only one
out of seven of the high-likelihood binding EREs are
functionally used may be attributed to several possibilities.
First is that flanking sequences more distal than where
assessed in the present study may contribute to the selection
of a functional ERE. For example, the nature of the chromatin
around the ERE, the relative location of basal transcriptional
complexes, and the density of adjacent binding of other tran-
scription factors are candidate modulators of ER-binding site
selection. Second, we only tested for ER binding using one
standard condition and in a single breast tumor cell line. It is
probably the case that certain tissue-specific and condition-
specific binding events are modulated by the presence or
absence of ER co-regulators and epigenetic modifications.
The MCF-7 cell line is known to have high levels of ER and to
over-express of AIB1 (amplified in breast cancer 1), which is a
specific co-regulator of ER [17]. Moreover, cancer cell lines
have accumulated many genetic rearrangements and point

Table 3

Performance comparison of various prediction algorithms for ER binding using the independent dataset shown in Table 2

Prediction algorithm Sensitivity Specificity Harmonic mean Fisher's exact test P value

Consensus ERE with ≤2 mismatches 94.74% 30% 45.57% 0.104838

Consensus ERE with ≤3 mismatches 94.74% 0% 0.00% 1

Dragon ERE finder v2.0 68.42% 40% 50.49% 0.477589

TFAC 8.1 (min FP) 31.57% 100% 47.99% 0.057117

TFAC 8.1 (min FN) 78.94% 40% 53.10% 0.255439

h-ERE (stringent) 42.10% 90% 57.37% 0.084693

h-ERE (medium) 68.42% 70% 69.20% 0.056272

h-ERE (relaxed) 73.68% 70% 71.79% 0.03043

h-ERE (loose) 84.21% 70% 76.45% 0.006199

h-ERE outperformed the other algorithms. ERE, estrogen response element.
Genome Biology 2006, 7:R82
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mutations in their passages, which would further confound
the results by rendering good binding sites inactive.

In our strategy, the approximately 38,000 high-likelihood
ER-binding sites were identified using a training set biased to
the 5' cis-regulatory regions of genes. However, when we
mapped these approximately 38,000 candidate sites to the
genome, only 1821 (about 4.78%) resided within 5 kb
upstream and 500 bp downstream of the TSS. The majority
(about 36.5%) fell inside genes, about 21.4% were within 100
kb upstream of the TSSs, whereas about 21.3% were located
up to 100 kb downstream of the 3' terminus. Approximately
20% were mapped to pure intergenic regions. These findings
suggest that the standard mode of identifying transcription
factor binding by concentrating on immediate cis-regulatory
elements will be unrewarding. In addition, these data collec-
tively question the assignment of physiologic functionality to
an ERE site using only gel shift and transient transfection
assays with the extracted element, because these in vitro
approaches ignore many of the relevant physiologic
conditions.

Previously, we found that many functional ERE binding sites
around responsive genes are poorly conserved between
human and mouse [8]. Moreover, both evolutionarily con-
served and nonconserved ERE sites appeared to be equally
functional for ER binding in ChIP assays; therefore, there
appears to be little advantage in using evolutionary history to
identify functional EREs. For this reason, we did not take
ERE conservation across species into consideration, as was
introduced by Jin and colleagues [18] in their recent report.
Instead, we focused on the rules governing functional ER
binding in the human genome.

Our observations raise the intriguing possibility that evolu-
tion of estrogen response relies on having a large pool of high-
quality candidate EREs widely scattered in the genome, some
of which are potentially generated by transposable elements
(about 9% of high-likelihood EREs were within Alu ele-
ments). With mutational drift and under evolutionary pres-
sures, different binding sites around the same genes could be
alternatively used and would not have detrimental effects on
overall survival. If these alternative binding cassettes prove
beneficial to the organism, then these secondary sites will
undergo further positive mutations to enhance the ER inter-
action. Conservation of mechanisms and functions across
species may be a reasonable assumption for highly conserved
biologic processes. However, in the case of EREs and estrogen
functions in development and physiology, phenotypic and
experimental analysis suggest species-specific mechanisms
and hormone responses, including binding site usage. There-
fore, using conservation as a filter for function is likely to
introduce a significant number of false-negative findings in
ERE predictions. This view is further supported by two recent
studies [19,20] that found that many functional transcription
factor binding sites are not conserved in evolution but there is

no apparent functional divergence of the cognate regulated
genes. With the binding site database that we present here,
such hypotheses can now be computationally examined with
increased confidence.

Conclusion
The availability of larger experimentally validated binding
site sets allows the construction of more robust binding site
prediction algorithms. The proposed h-ERE algorithm
employed genome-wide binding site data collected from var-
ious types of experiments. It outperformed other existing
algorithms for predicting ER binding. That only 14% of the
predicted optimal binding sites were utilized under the exper-
imental conditions suggests that there are other selective cri-
teria not related to ERE. Overall, although h-ERE is able to
demarcate better the universe of ERE-like sequences that are
potential ER binders, factors other than primary nucleotide
sequence will ultimately determine binding site selection.

Materials and methods
Identification of additional functional EREs
To enlarge the set of validated EREs, we employed a two-
pronged approach: ChIP-qPCR validation of putative ERE in
the promoters of putative direct target genes; and ChIP-qPCR
validation of putative ERE found in promoters identified
from ChIP-chip experiment (GEO series ID: GSE5405).

For the first approach, we took the 89 putative direct target
genes identified earlier in a gene expression microarray study
[8], extracted their 3.5 kb extended promoter regions, and
scanned the sequences for ERE-like motifs, allowing for up to
two-base variation from the consensus ERE. Only those with
specific PCR primers flanking the EREs were included in
ChIP validations by qPCR. There were 49 EREs from 35 pro-
moters hat met the above criteria. Of these, eight EREs from
seven putative direct target genes were validated to bind ER
and the remaining 41 EREs did not bind ER under the exper-
imental conditions tested in this study.

In the second experiment, the ChIP-chip experiments, only
promoters appearing among the top 5% of both replicate
experiment were selected, amounting to 196 promoters
(binomial P value = 1.42 × e-33). We further increased the
stringency by requiring at least a 15% increase of the IP
(immunoprecipitation) over the input control in two consec-
utive probes to further filter out potential noise in the system.
This resulted in 111 promoters that met the selection criteria.
Out of the total 111 promoters, we performed ChIP and qPCR
validation on 28 promoters that bore putative EREs and had
either microarray data supporting their regulation by ER or
had consistent binding across consecutive probes (more than
four). Of these, 13 were validated to bind ER and 15 did not
bind ER.
Genome Biology 2006, 7:R82
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Altogether, the study validated 21 EREs to be bound by ER
and 56 EREs not to be bound by ER. They are indicated by the
words 'this study' or by the citation of reference 8, respec-
tively, in the references (right-most) column of Table 1.

Chromatin immunoprecipitation assays
MCF7 cells were estrogen deprived for 24 hours and treated
with 10 nmol/l of estradiol for 45 min prior to 1% formalde-
hyde treatment to crosslink the transcription machinery and
the chromatin. Immunoprecipitations were carried out
overnight with anti-ERα (HC-20) or irrelevant control anti-
glutathione S-transferase (GST) antibodies (Santa Cruz Bio-
technology, Santa Cruz, CA, USA) and protein A-sepharose
beads (Zymed, San Francisco, CA, USA). Washing and extrac-
tion protocols were modified from methods described previ-
ously [9], and PCR reactions were carried out in an ABI Prism
7900 sequence detection system (Applied Biosystems, Foster
City, CA, USA). Forty cycles of PCR were carried out on pre-
cipitated DNA and control input DNA. Amplification prod-
ucts were also assayed for specificity by melting curve
analysis at the end of each run. Relative quantifications were
carried out by building standard curves for each primer set
and using genomic DNA, similar to the input, as the template.
Enrichment of ER binding was determined by comparing the
relative quantities of anti-ER and control anti-GST products.
Sites with more than twofold enrichment over control were
considered to be bound by ER (or 'binders').

SPR analysis of ER-ERE binding
Biotinylated ERE strands (5'-end labeling) and the anti-
strands were annealed to form DNA duplexes. The DNA
duplexes were then immobilized on the SPR disk (gold-coated
glass) using biotin-streptavidin-biotin bridge chemistry. Pro-
tein was then applied to bind to the immobilized DNA. The
end attachment of DNA ensured sufficient strand flexibility.
For DNA immobilization, the gold disks were first cleaned in
a ultraviolet/ozone chamber for 5 min, followed by immers-
ing in hot piranha solution (a 3:1 mixture of H2SO4 and H2O2)
for 2 min. After rinsing with de-ionized water and drying
using nitrogen, the disks were immersed overnight in a binary
biotin-containing thiol mixture (10% biotin-thiol and 90%
ethylene glycol-thiol at a net concentration of 1 mmol/l in eth-
anol). After rinsing with ethanol followed by a drying step
using nitrogen, the disks were ready for streptavidin (Sigma,
St. Louis, MO, USA) immobilization (0.1 mg/ml in phos-
phate-buffered saline) and subsequent biotinylated DNA
assembly (1 µmol/l in phosphate-buffered saline). ERα (58-
708 nmol/l in 40 mmol/l HEPES-KOH binding buffer [pH
7.4], containing 10 mmol/l MgCl2, 200 mmol/l KCl, 0.2% Tri-
ton X-100, 2 mmol/l DTT) was then applied to bind to the
immobilized DNA. After one cycle of protein binding (about
25 min), 0.1% sodium dodecyl sulfate solution was applied to
disassociate the protein-DNA complex and to expose the
immobilized DNA for new cycles of ER binding.

The SPR measurements were conducted using a double chan-
nel, AutoLab ESPR (Eco Chemie, Utrecht, The Netherlands).
In a kinetic measurement mode, molecular adsorption on the
gold disks was detected as SPR angle shifts (∆θ in mDeg) over
time. The measured ∆θ was proportionally related to the
amount of adsorbed material, with a mass sensitivity of 120
mDeg = 100 ng/cm2 for protein and DNA. The AutoLab SPR
equipment was equipped with a two-channel cuvette, with the
sensor disk forming the base of the cuvette. Two DNA strands
(50 µl) were then immobilized in different channels, allowing
protein binding to two different DNA sequences to be moni-
tored in parallel. The measurements were conducted at room
temperature and the noise level was 0.2 mDeg. It is worth
noting that the SPR experiment were done under varying con-
centrations of ERα, and the reported relative binding affini-
ties of Figure 3 were averages obtained from the varied
concentration of ERα. The same overall relative profiles were
observed for the different mutants.

Probing for auxiliary signals around core ERE
To detect and identify whether additional ER-binding signals
were flanking the core ERE site, an in silico experiment was
devised. We considered whether the surrounding sequences
of core ERE sites can be used to distinguish binders from non-
binders. A naïve Bayesian classification [12] approach was
employed, with binary tuples <m,p> as the feature, where m
is a motif that is k bp long and p is the location of motif m rel-
ative to the core. One can imagine constructing, for each
sequence S, a binary matrix M, with m as the row index and p
as the column index, and the value Mm,p indicates whether
motif m is present at position p. Such a matrix can be built by
running a fixed window of size k over the sequence S and not-
ing down the location of each motif. The class of sequence S,
whether it is a binder (B) or nonbinder (NB), can be predicted
through the equation C(S) below. In our set of experiments, k
was varied from 1 to 5 bp. During the training, the probability
distribution was constructed from the raw motif frequency
counts with Laplacian smoothing of adding pseudocount L to
the raw count.

A cross-validation like supervised classification experiment
was performed upon a sequence set, grouped into two or
more distinct classes, by randomly splitting the sequences
into 4:1 training and test sets, training the classifier using the
training set, and reporting the accuracy of the trained classi-
fier over the test set. One hundred runs of such training/test-
ing were carried out and the accuracy was averaged out. The
figure in Additional data file 1 summarizes the outcomes
under varied parameter settings.
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Assessing the significance of flanking nucleotide 
positions
Outcomes of the previous experiments indicated that single
nucleotides surrounding the core ERE motif might carry
additional discriminating power between binding and non-
binding EREs. In particular, complementary distinguishing
nucleotides appeared to be present at the third base pairs
after the core ERE, under visual analysis using sequence logos
(Additional data file 2). We designed and carried out a Monte
Carlo experiment to quantify its significance. Employing
information entropy, or roughly the degree of randomness, as
the statistics for each nucleotide position, we asked whether
the surrounding nucleotide positions of arbitrary ERE-like
sites (up to two mismatches to the consensus) in the human
genome contains more information (less random or lower
entropy) than those observed surrounding the 45 binding
EREs. The exact formula for information entropy is as
follows:

Where s is the set of nucleotides and fx is the frequency of
nucleotide x in the set s. Let sn be the set of nucleotides found
n bp from the core ERE motif. For each flanking nucleotide up
to 5 bp upstream and downstream, denoted as n = '-5' to n =
'+5', we took 45 random loci flanking the ERE-like sites in the
genome and computed its entropy. This was done 1000 times
and the fraction of times it was lower than the observed
entropy for the corresponding position of the 45 binding
EREs was reported as the estimated P value (Additional data
file 3).

Optimizing the sequence set for model building
With the assumption that bindings most probably occur only
on one of the strands and that nonbindings mean that none of
the strands were bound, we opted to optimize the binder and
nonbinder PWMs by minimizing the total information
entropy of the binders while augmenting the nonbinder
sequence set by taking both strands of the validated nonbind-
ing loci. The total information entropy (TE) can be calculated
as follows:

Where F is a 4 × N matrix of relative frequency of each nucle-
otide at each position, which can be derived from the PWM of
the aligned sites. The overall entropy of the binders was min-
imized through selectively reverse complementing some of
the binders using a greedy hill-climbing approach, which
resulted in 15 binder sequences being reverse complemented.

A balanced measure based on sensitivity and specificity
The trade off between achieving high sensitivity and high spe-
cificity for a prediction system is well appreciated. Here, we

propose the use of a single measure to evaluate the balanced
performance between specificity and sensitivity. One simple
option is to calculate the arithmetic mean of specificity and
sensitivity. Arithmetic means, however, might be misleading
when rates are being averaged. Inspired by the usage of the F-
measure [14] in the field of information retrieval, calculated
as the harmonic mean of precision and recall, we opted for
using harmonic mean to quantify the balance between sensi-
tivity (sn) and specificity (sp), which can be easily calculated
using the following equation:

Estimating the amount of false positives
A pertinent question any high-throughput in silico prediction
scheme is the degree of false positivity. The number of falsely
predicted binding sites, from among the 38,024 predicted
sites in the human genome (about 3 Gbp), we devised a Monte
Carlo simulation to estimate the distribution of false-discov-
ery rate. Nucleotide sequences of 1 million base pairs long
were generated by drawing random nucleotides from the
same nucleotide distribution as the human genome (UCSC
hg17). The sequences were then run through the h-ERE. Sites
on the random sequences predicted to be binders by the h-
ERE represent the false positives. As the single nucleotide
based random sequence generation may not faithfully reflect
all the inherent properties of the human genome, conserva-
tive estimation the false-positive rate was made, by reporting
the 99th percentile. The above simulation was iterated 1000
times to approximate the rate of false positives per million
base pairs. At the 99th percentile, the false positive rate was
11 false binders per million base pairs. This is roughly 33,000
false positive sites for the approximate 3 Gbp human genome,
or about 86% of the total approximately 38,000 predicted
binders.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a document
summarizing the results of preliminary Naïve Bayesian anal-
ysis on the validated binding sites and their immediate sur-
rounding sequences. Additional data file 2 is a document
showing the sequence logos for the final binder and non-
binder sets. Additional data file 3 is a document tabulating
the Monte Carlo P values for the information entropy signifi-
cance of each base pair location immediately flanking the core
ERE.
Additional data file 1Accuracy of Naïve Bayesian classification using position specific motifs as features to classify sequences bound and not bound by ERThe motif width (window size), size of the flanking regions, and the Laplacian pseudocount (L) were varied. Two sets of sequences were used: (A) with the core ERE intact, and (B) without the core ERE. Overall, single nucleotides appeared to hold certain discriminative power for separating ER binding from ER non-binding sequences.Click here for fileAdditional data file 2Sequence logosSequence logos for: (A) the 45 binders, after entropy optimization, with 3 bp flanking sequences, shown with its reverse complement, and (B) 116 non-binder sites, obtained from taking the both strands of 58 non-binding loci.Click here for fileAdditional data file 3Monte Carlo P values for the information entropy significance of each base pair location immediately flanking the core EREMonte Carlo P values for the information entropy significance of each base pair location immediately flanking the core ERE.Click here for file
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