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Summary

In vertebrates, the arrestins are a family of four proteins that regulate the signaling and trafficking
of hundreds of different G-protein-coupled receptors (GPCRs). Arrestin homologs are also
found in insects, protochordates and nematodes. Fungi and protists have related proteins but do
not have true arrestins. Structural information is available only for free (unbound) vertebrate
arrestins, and shows that the conserved overall fold is elongated and composed of two domains,
with the core of each domain consisting of a seven-stranded �-sandwich. Two main
intramolecular interactions keep the two domains in the correct relative orientation, but both of
these interactions are destabilized in the process of receptor binding, suggesting that the
conformation of bound arrestin is quite different. As well as binding to hundreds of GPCR
subtypes, arrestins interact with other classes of membrane receptors and more than 20
surprisingly diverse types of soluble signaling protein. Arrestins thus serve as ubiquitous signaling
regulators in the cytoplasm and nucleus.

Published: 2 October 2006

Genome Biology 2006, 7:236 (doi:10.1186/gb-2006-7-9-236)

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2006/7/9/236

© 2006 BioMed Central Ltd 

Gene organization and evolutionary history 
The arrestin family has four members in mammals: arrestin1

(called visual or rod arrestin in some species, and previously

called S-antigen or 48 kDa protein), arrestin2 (also known as

�-arrestin or �-arrestin1), arrestin3 (�-arrestin2) and

arrestin4 (cone arrestin or X-arrestin). Structurally and func-

tionally the family can be subdivided into two subfamilies:

visual or sensory (arrestin1 and arrestin4) and non-visual

(arrestin2 and arrestin3) [1]. Fish and amphibians have a

rod arrestin, a cone arrestin and  at least one non-visual

arrestin; insects have at least two sensory arrestins and one

non-sensory arrestin (called Kurtz in Drosophila

melanogaster), whereas other invertebrates (such as

Caenorhabditis elegans) and protochordates (such as Ciona

intestinalis) have only one arrestin homolog. Chromosomal

locations and accession numbers are shown in Tables 1 and

2, respectively. 

In vertebrates, arrestins are encoded by large (13-50 kilo-

bases) genes containing 14-17 exons, some of which are only

10 nucleotides long [2,3]. This multi-exon structure appears

to be ancient, as the sole arrestin in the protochordate

C. intestinalis is encoded by 13 exons, with the positions of

nine introns corresponding to those in bovine rod arrestin

(arrestin1) [4]. The arrestin gene in C. elegans has ten exons

[5], whereas the genes in D. melanogaster are simpler,

having only three or four exons [6]. The positions of five

introns are identical in C. elegans, C. intestinalis and bovine

rod arrestin, suggesting that they were acquired by a

common ancestor gene. The exons do not correspond to

known structural elements of arrestins, which consist of two

domains and a variable carboxy-terminal tail [7-9], with one

interesting exception: one of the exons conserved from

C. elegans to mammals contains the phosphate-binding

motif homologous to a motif in ataxin-7, a protein mutated

in olivopontocerebellar atrophy with retinal degeneration

[10]. The multi-exon structure of vertebrate arrestins gives

rise to splice variants of rod arrestin and both non-visual

subtypes [11]. The short splice variant of rod arrestin lacks

most of the carboxy-terminal tail and has functional charac-

teristics distinct from the longer variant: it binds unphos-

phorylated rhodopsin [12] and has a different subcellular



localization in rod photoreceptors. The long and short forms

of the two non-visual arrestins differ by 8 or 11 residues in

the proximal carboxy-terminal tail; the functional signifi-

cance of this is unclear [11,13].   

Ancestors of arrestin proteins probably appeared early in the

evolution of eukaryotes, before the separation of animals,

plants and  fungi. Yeast and several other species of fungi

have related proteins of the PalF family [14]. These proteins

of about 80 kDa have two approximately 150-residue regions

that are homologous to the cores of the two arrestin

domains. Three predicted proteins (accession numbers

EAS01748, EAS01749 and  YP_053990) from two species of

Ciliophora - Paramecium tetraurelia and Tetrahymena

thermophila - show homology with the same central part of

arrestin that has homology to PalF proteins. These proteins

and members of the PalF family lack most of the structural

features that are the hallmarks of ‘true’ arrestins, however.
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Table 1

Chromosomal locations of arrestin genes in selected species

Rod arrestin Cone arrestin Arrestin2 Arrestin3 Other arrestins

Homo sapiens 2q37.1 Proximal long arm of X 11q13 17p13

Mus musculus 7 50.0 cM* 11 45.0 cM*

Rattus norvegicus 9q35 1q32 10q24

Bos taurus 3 15q25

D. melanogaster Arrestin1, 2L; Arrestin2, 3L; Kurtz, 3R†.

A. gambiae Arrestin2, 2; Arrestin3, 3; Arrestin4, 2†.

C. elegans X

Rod arrestin is also called arrestin1; cone arrestin is also called arrestin4. *Position as indicated in the GeneBank entry for this gene. †For insect arrestins,
each protein name is followed by a chromosomal location. 

Table 2

Accession numbers for arrestin proteins from selected species

Rod arrestin Cone arrestin Arrestin2 Arrestin3 Other arrestins

H. sapiens NM_000541 AF033105 isoform A, Isoform 1, 
NM_004041; NM_004313;
isoform B, isoform 2, 
NM_020251 NM_199004

M. musculus BC016498 AF156979 isoform A, NM_145429
NM_177231;
isoform B, 
NM_178220

R. norvegicus NM_013023 NM_012910 NM_012911

B. taurus NM_181000 D85340 NM_174243 L14641

Sus scrofa NM_214079 NM_214345

Rana pipiens X92398 X92400

Ambystoma tigrinum AF203327 AF203328

Xenopus tropicalis NM_203742 BC094203 BC076815

Danio rerio NM_001002405 NM_201124

D. melanogaster Arrestin1, NM_057333; Arrestin2, NM_079252;
Kurtz, NM_080249

A. gambiae Arrestin1, Ay017417; Arrestin2, BK000996;
Arrestin3 (kurtz-like), BK000997;
Arrestin4, BK001417

Limulus polyphemus U08883

Loligo pealei AF393635

C. elegans NM_075782

C. intestinalis AB052669

Rod arrestin is also called arrestin1; cone arrestin is also called arrestin4.



So far, no arrestin-related proteins of plant origin have

been described.    

Analysis of the phylogenetic tree of arrestins (Figure 1)

shows that vertebrate arrestins are divided into visual and

non-visual branches; the visual branch further subdivides

into rod and cone arrestins (arrestin1 and arrestin4) and the

non-visual branch into arrestin2 and arrestin3. Vertebrate

non-visual arrestins are the least diverse group. They are

closer to the invertebrate non-sensory subtypes than to any

other group (Additional data file 1). Arrestin2 has so far been

found only in mammals; it is much more abundant than

arrestin3 in mammalian cells, especially in mature neurons,

where overall non-visual arrestin expression levels are the

highest [15]. The greater homology within the arrestin2

group than among arrestin3 proteins in mammals suggests

that arrestin2 may be the latest evolutionary addition to the

family. Arrestins from C. elegans and C. intestinalis and

Kurtz in Drosophila seem to be ‘hybrids’: they are expressed

throughout the nervous system and support receptor inter-

nalization, similarly to the vertebrate non-visual arrestins,

yet participate in olfaction and vision, similarly to the

visual/sensory subtypes [4,5,16]. Thus, the first proto-

arrestins apparently emerged before the separation of the

main branches of eukaryotes. True arrestins in animals

evolved before the separation between the vertebrate and

invertebrate lineages and then diverged into visual and non-

visual groups early in the evolution of both lineages (Addi-

tional data file 1). 

Characteristic structural features 
Arrestins are ubiquitous (that is, every cell in animals has at

least one arrestin subtype) regulators of G-protein-coupled

receptors (GPCRs), the largest known family of signaling

proteins. Arrestins bind to the cytoplasmic side of active

phosphorylated forms of their cognate receptors, usually

engaging the carboxyl terminus and several cytoplasmic

loops of the receptor [1]. Arrestins shut off G-protein-medi-

ated signaling, target receptors to coated pits for internaliza-

tion and redirect GPCR signaling to a variety of

G-protein-independent pathways, such as the activation of

the protein tyrosine kinase Src, mitogen-activated protein

(MAP) kinase cascades, and so on [1,17]. The length of

arrestin proteins is fairly well conserved from C. elegans to

humans, in the range of 360-470 residues. 

Crystal structures of three out of the four subtypes of verte-

brate arrestins have been solved: bovine rod arrestin [8],

bovine arrestin2 [7] and salamander cone arrestin [9]. Each

of these arrestins is an elongated molecule with two domains

(amino-terminal and carboxy-terminal) and an extended

carboxy-terminal tail that makes a strong contact with the

body of the amino-terminal domain (Figure 2). The relative

orientation of the two domains in the basal conformation of

free arrestin in solution is supported by two characteristic

groups of intramolecular interactions or ‘clasps’ (Figure 2a).

Extensive mutagenesis studies indicate that both of these

clasps are unfastened by receptor-attached phosphates, so

that receptor binding induces a global conformational change

in arrestin [18]. This rearrangement involves the release of

the arrestin carboxy-terminal tail [19,20] and the movement

of the two domains relative to each other, which is limited by

the length of the inter-domain hinge [21]. The structures of

visual and non-visual arrestins from mammals and amphib-

ians show a remarkable conservation of overall fold [9]. Not

surprisingly, the key residues that stabilize the basal confor-

mation are conserved in all animal arrestins (Additional data

file 2). Extra sequences (sometimes up to 25-30 residues) in

the largest members of the family (such as Kurtz) are local-

ized at the amino and carboxy termini or in the loops between

putative � strands. Extra residues (including tags) added to

these elements of vertebrate arrestins do not compromise

their folding or functionality [22-24]. 

Each arrestin domain is an independent folding unit. Sepa-

rated domains are functional: the amino-terminal domain

preferentially binds active phosphoreceptors, albeit with lower

affinity than the full-length protein; the carboxy-terminal

domain does not [13,22]. Both domains bind microtubules

with even higher affinity than full-length arrestin [25]. The

arrestin fold was considered unique until a recent unex-

pected discovery of a very similar structure in Vps26 (vacuo-

lar protein sorting-associated protein 26, a subunit of the

retromer complex, which is involved in the recycling of the

sorting receptor from endosomes back to the Golgi) [26]. This

327-residue protein has two �-strand sandwich domains with

an arrestin-like design and relative orientation. The inter-

domain contact surface of Vps26, remarkably similar to that

of arrestins, includes an analog of the polar core and an

extensive set of hydrophobic interactions, even though

Vps26 has no detectable sequence homology with arrestin

family [26].     

Localization and function 
Arrestins are soluble, predominantly cytoplasmic proteins.

Binding to phosphorylated active GPCRs and termination of

G-protein-mediated signaling (receptor desensitization) was

the first arrestin function described. The ability of arrestins

to link GPCRs to the components of the internalization

machinery - clathrin [27] and AP2 [28] - was interpreted as a

natural extension of their desensitizing function. Subsequent

discoveries that receptor-bound arrestins interact with

numerous signaling proteins, linking GPCRs to a variety of

alternative signaling pathways (Table 3), put arrestins on an

equal footing with G proteins as a different class of signaling

adaptors recruited by active receptors [1,17]. The interaction

of arrestins and G proteins with overlapping sets of cytoplas-

mic receptor elements underlies their direct competition

[29], and in most cases receptor phosphorylation gives

arrestin an edge over G proteins [1]. 
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Figure 1 (see legend on the following page)
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Receptor-binding elements have been mapped to the

concave sides of both arrestin domains and the protruding

‘crest’ in the middle of the molecule that includes the ‘finger

loop’ between �-strands V and VI (Figure 2b) [20,30]. The

interaction sites of the proteins that bind the arrestin-recep-

tor complex must be localized on the non-receptor-binding

side of the molecule from this, or in the detachable arrestin

carboxy-terminal tail that is released by receptor binding.

The interaction sites of arrestin binding partners that are

recruited to the complex have never been properly mapped,

however, with the exception of clathrin and AP2, which bind

to the arrestin carboxy-terminal tail [31]. Arrestins interact

with the small G proteins ADP-ribosylation factor 6 (ARF6)

[32,33] and RhoA [34], their regulators ARNO (ARF

nucleotide binding site opener) [32,35] and the guanine-

nucleotide dissociation stimulator RalGDS [36], components

of MAP kinase cascades [37,38], c-Src and other non-recep-

tor tyrosine kinases [39-41], phosphodiesterase PDE4D [42]

and  others (Table 3). 

There is one common theme in the seemingly disparate func-

tions of these multi-faceted adaptors: arrestins bring proteins

together to make things happen. By interacting with several

partners simultaneously, arrestins orchestrate signaling in

space and time and direct enzymes to particular cellular com-

partments and substrates. Receptor-bound arrestins serve as

scaffolds for MAP kinase cascades, bringing together apopto-

sis signal-regulating kinase 1 (ASK1) and c-Jun N-terminal

kinase 3 (JNK3), as well as the kinase c-Raf-1 and extracellu-

lar signal-regulated kinase 2 (ERK2), thereby facilitating sig-

naling in the ASK1-Map kinase kinase 4 (MKK4)-JNK3 and

c-Raf-1-MAP/ERK kinase 1 (MEK1)-ERK2 pathways [37,38].

Curiously, arrestin3 also facilitates deactivation of JNK3 by

recruiting the dual-specificity phosphatase MKP7 [43]. When

ERK2 and JNK3 are activated by the arrestin-receptor

complex they stay bound and therefore remain in endosomes

and do not translocate to the nucleus [37,38]. Arrestins also

recruit ubiquitin ligases to the receptors: the E3 ubiquitin

ligase Mdm2 mobilized by mammalian non-visual arrestins

ubiquitinates GPCRs [44], and the E3 ligase Deltex mobi-

lized by Kurtz ubiquitinates the Notch receptor in

Drosophila [45]. Arrestin3 binds the multi-functional anti-

apoptotic protein kinase Akt (also known as protein kinase

B) and its negative regulator protein phosphatase 2A

(PP2A), facilitating deactivation of Akt in a manner depen-

dent on dopamine receptor stimulation [46]. Arrestin3 also

interacts directly with I�B�, an inhibitor of NF-�B, prevent-

ing its phosphorylation and degradation and thereby modu-

lating the activity of NF-�B [47]. Non-visual arrestins

regulate NF-�B activity in another way, by interacting with

the tumor necrosis factor receptor-associated factor 6

(TRAF6) and preventing its autoubiquitination and activa-

tion of NF-�B [48]. In addition to hundreds of GPCR sub-

types, arrestins also bind several membrane proteins that do

not belong to the GPCR superfamily and regulate their sig-

naling and/or trafficking (Table 3). These include the

insulin-like growth factor 1 receptor (IGF1R) [49], the type

III transforming growth factor-� (TGF�)  receptor [50], the

low density lipoprotein (LDL) receptor [51] and  the Na+/H+

exchanger NHE5 [52].    

A dramatic conformational difference between free and

receptor-bound arrestin provides the structural basis for the

differential interaction of various binding partners with

these two functional forms of arrestin [1,53]. However, many

of the partners  believed to bind selectively to the arrestin-

receptor complex have been found to interact robustly with

free arrestins, for example, ARF6 [33], JNK3 [24,54] and

Mdm2 [24,55] (the latter even prefers arrestin ‘frozen’ in its

basal conformation [24]; Table 3). Some binding partners,

such as microtubules [25] and Ca2+-liganded calmodulin

[56], interact with the same surface of arrestin as is engaged

by the receptor; this means that they can interact only with

free arrestin and thus that they compete with GPCRs. The
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Figure 1 (see figure on the previous page)
A phylogenetic tree of the arrestin family. Amino-acid sequence alignments were performed using ClustalW in the MEGA3 software. The phylogenetic
tree was created using the neighbor-joining method (gap settings: pairwise deletions; distance method: number of differences). Numbers at selected
nodes indicate the percentage frequencies of branch associations on the basis of 1,000 bootstrap repetitions (all percentages over 50 are displayed).
Brackets on the right indicate subfamilies. The proteins included for each species, with accession numbers, are as follows: Ambystoma tigrinum (tiger
salamander) rod arrestin (AAF14636) and cone arrestin (AAF14637); Anopheles gambiae (African malaria mosquito) arrestin1 (AAG54081), arrestin2
(DAA00888) and Kurtz-like (DAA00889); Apis mellifera (honey bee) XP_623243 (predicted); Ascalaphus macaronius (neuropteran insect) CAC36938; Bos
taurus (cattle) rod arrestin (NP_851343), cone arrestin (BAA94344), arrestin2 (NP_776668) and arrestin3 (P32120): C. elegans (nematode) NP_508183;
Calliphora vicina (bluebottle fly) arrestin1 (P51486) and arrestin2 (P51487); Canis familiaris (dog) rod arrestin (NP_001003230); C. intestinalis (sea squirt)
BAB60819; Danio rerio (zebrafish) cone arrestin (NP_001002405) and arrestin3 (NP_957418); D. melanogaster (fruit fly) arrestin1 (NP_476681), arrestin2
(NP_523976) and Kurtz (NP_524988); Drosophila miranda (fruit fly) arrestin2 (P19108); Gallus gallus (chicken) cone arrestin (XP_420156, predicted);
Gekko gecko (tokay) cone arrestin (AAQ94621); Heliothis virescens (tobacco budworm) AAB25861; Homo sapiens (human) rod arrestin (NP_000532),
cone arrestin (AAB84302), arrestin2 (NP_004032 isoform A) and arrestin3 (NP_004304 isoform 1); Limulus polyphemus (Atlantic horseshoe crab)
P51484; Locusta migratoria (migratory locust, insect) P32122; Loligo pealei (squid) AAK84368; Mus musculus (mouse) rod arrestin (AAH16498), cone
arrestin (AAG38954), arrestin2 (NP_796205 isoform A) and arrestin3 (NP_663404); Oncorhynchus mykiss (rainbow trout) arrestin (P51466); Oryctolagus
cuniculus (rabbit) arrestin2 (AAC48753); Oryzias latipes (killifish) rod1 arrestin (BAA82259), rod2 arrestin (BAA21718) and cone arrestin (BAA21719);
Rana pipiens (northern leopard frog) rod (CAA63135) and cone (CAA63137); Rattus norvegicus (rat) rod (NP_037155), arrestin2 (NP_037042) and
arrestin3 (NP_037043); Spermophilus tridecemlineatus (squirrel) cone arrestin (AAS89816); Sus scrofa (pig) rod arrestin (NP_999244) and cone arrestin
(NP_999510); Xenopus laevis (frog) cone arrestin (AAH94203) and arrestin3-like (AAH76815); and Xenopus tropicalis rod arrestin (NP_989073).  



fact that the affinity of arrestin for GPCRs is in the sub-

nanomolar range [13] and that for microtubules [25] and

calmodulin [56] is in the micromolar range suggest that the

active phosphorylated receptor always wins, but other func-

tional forms of the receptor might not. Indeed, competition

between rhodopsin and microtubules has recently been

shown to underlie the dramatic redistribution of rod arrestin

in light- and dark-adapted photoreceptors in vivo [57]. 

The expression of rod and cone arrestins is limited to their

respective photoreceptor types in the retina, although both

are also present in pinealocytes. The intracellular concentra-

tion of rod arrestin in rod photoreceptors is enormous (over

100 �M) [58]. Virtually every mammalian cell expresses

both non-visual arrestins [11,59]. Non-visual arrestins are

certainly present in mouse neural precursors at embryonic

day 12 [15], but given that arrestins have a role in the early

development of zebrafish, in which functional knockdown of

arrestin3 recapitulates the phenotypes of Hedgehog pathway

mutants [60], arrestins are probably expressed much earlier

in development. From C. elegans to mammals, the highest

expression levels of non-visual arrestins are found in neurons

[5,15,61]. In rat neural precursors, arrestin2 and arrestin3 are

expressed at comparable levels (approximately 30 nM).

During neural development the expression of arrestin2

mRNA and protein increases dramatically, so that in mature

neurons arrestin2 predominates, with intracellular concen-

trations reaching approximately 200 nM (compared with

about 10 nM of arrestin3) [15]. There are neuronal types,

however, that express arrestin3 almost exclusively, such as

olfactory epithelial cells [15].  

Both mammalian visual arrestins and arrestin3 are predomi-

nantly cytoplasmic, whereas the subcellular distribution of

arrestin2 varies: for example, it is more abundant in the

cytoplasm of striatal neural precursors and neurons and

mostly nuclear in the pyramidal neurons [15,24]. Although

they do not have identifiable nuclear localization sequences

and only arrestin3 has a recognizable nuclear export signal

in its carboxy-terminal tail, all mammalian arrestins enter

the nucleus and can be exported by different pathways

[24,54,55]. In the process of export, they remove their inter-

action partners JNK3 and Mdm2 from the nucleus

[24,54,55]. The subtype that is found most often in the

nucleus, arrestin2, has a role in the regulation of histone

acetylation and gene transcription [62].

Knockout of Kurtz, the only non-sensory arrestin in

Drosophila, is embryonically lethal, as is the simultaneous

knockout of both non-visual arrestins in mice [61,63],

whereas mice lacking either arrestin2 or arrestin3 are

grossly normal [63]. Thus, a functional non-visual arrestin is

indispensable for normal development, but the two mam-

malian subtypes can serve as backups for one another. Prob-

ably for this reason, no human disorder associated with the

loss of function of either non-visual arrestin has been

described so far. The loss of rod arrestin underlies a form of

congenital night blindness, Oguchi disease [64]. 

Considering the number of arrestin interaction partners that

participate in life-and-death decisions in cells (such as Src,

ASK1, c-Raf-1, ERK2, JNK3, Mdm2, Akt and I�B�), it is
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Figure 2 
Key structural elements of arrestin proteins. This model of a generic
arrestin molecule was generated in ViewerPro using the crystal structures
of bovine rod arrestin [8] and arrestin2 [7]. The proximal carboxy-
terminal tail (dark gray) missing in the structures has been modeled
arbitrarily. (a) Intra-molecular interactions holding arrestin in the basal
conformation. The structure is shown in ribbon representation, except
for the residues in the polar core (blue, positive charges; red, negative
charges) and the hydrophobic residues in the three-element interaction
(yellow), which are shown in space-filling representation. Dark gray
indicates the carboxy-terminal tail; magenta, the lariat loop in the
carboxy-terminal domain containing two polar core negative charges; light
brown, the inter-domain hinge (at the back of the molecule). The polar
core is a cluster of five virtually solvent-excluded charged residues, which
is unusual for a soluble protein; it includes one negative and one positive
charge in the amino-terminal domain, two negative charges in the lariat
loop of the carboxy-terminal domain and one positive charge in the
carboxy-terminal tail. The three-element interaction is mediated by
clusters of bulky hydrophobic residues in �-strand I, �-helix I and the
carboxy-terminal tail. (b) Known interaction sites on the arrestin
molecule. Receptor-binding elements: blue, positive charges that bind
receptor-attached phosphates [70]; yellow, hydrophobic residues in
�-strand X [71]; green, elements that determine receptor specificity [30].
Other elements: magenta, the clathrin-binding element in the proximal
carboxy-terminal tail [27]; red, AP2-binding residues in the distal carboxy-
terminal tail [28].
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Table 3

Arrestin binding partners

Arrestin conformation†

Binding proteins* Arrestin subtype GPCR-bound Free Function References

Trafficking proteins
Clathrin Arrestin2, arrestin3 +++ + Endocytosis [27]
AP-2 Arrestin2, arrestin3 +++ + Endocytosis [28]
NSF Arrestin2 + + Endocytosis, recycling [72]

Small G proteins and guanyl nucleotide exchange factors
ARF6 Arrestin3, arrestin2 +++ +++ Endocytosis, docking [32,33]
ARNO Arrestin3 +++ +++ Endocytosis [32,33]
RalGDS Arrestin2, arrestin3 ? +++ Ral-mediated cytoskeleton reorganization [36]
RhoA Arrestin2 ? ? Angiotensin II-dependent stress fiber formation [34]

MAP kinase cascade components
ASK1 Arrestin3 +++ ? JNK3 and p38 activation [38]
c-Raf-1 Arrestin2, arrestin3 +++ ? ERK activation [37]
JNK3 Arrestin2, arrestin3, +++ +++ Stabilization of phosphorylated (active) [24,38,54]

rod arrestin, cone arrestin JNK on endosomes; export of phosphorylated 
(active) JNK from the nucleus 

ERK2 Arrestin2, arrestin3 +++ ? Stabilization of phosphorylated (active) ERK [37]
on endosomes

Non-receptor tyrosine kinases
c-Src Arrestin2, arrestin3 +++ ? Endocytosis, ERK activation [39]
Yes Arrestin2 +++ ? G�q activation and GLUT4 transport [41]
Hck Arrestin2 +++ ? Exocytosis of granules in neutrophils [40]
Fgr Arrestin2 +++ ? Exocytosis of granules in neutrophils [40]

Non-GPCR membrane proteins
Na+/H+ exchanger NHE5 Arrestin2, arrestin3 ? + Trafficking [52]
IGF I receptor Arrestin2, arrestin3 ? + Trafficking [49]
LDL receptor Arrestin3 ? + Trafficking [51]
TGF-� receptor type III Arrestin3 ? + Trafficking [50]
TrkA receptor Arrestin2 ? + Endocytosis, MAPK activation [73]

Other
Mdm2 Arrestin2, arrestin3, ++ +++ Receptor ubiquitination, endocytosis, [24,44,55]

rod arrestin, cone arrestin export of Mdm2 from the nucleus
Deltex Drosophila Kurtz ? + Degradation of Notch receptor [45]
I�B� Arrestin2, arrestin3 +++ + Stabilization of I�B�, �2AP and TNFR stimulation [47,74]
PDE4D family Arrestin2, arrestin3 +++ ? cAMP degradation [42]
PP2A Arrestin2 +++ +++ Ser412 dephosphorylation [46]
MKP7 Arrestin2, arrestin3 +++ ? Dephosphorylation [43]
Akt Arrestin2, arrestin3 +++ ? Dephosphorylation [46]
Microtubules Arrestin2, arrestin3, - +++ Subcellular localization [75]

rod arrestin, cone arrestin
Dishevelled Arrestin2, arrestin3 ? + Transcription regulation, endocytosis of Frizzled4 [76,77]
TRAF6 Arrestin3 ? ? Regulation of TLR-IL-1R signaling [48]
Histone acetyltransferase Arrestin2 ? +++ Regulates histone H4 acetylation and [62]
p300 activity of p27 and c-fos promoters
Calmodulin (with Ca2+) Arrestin2, arrestin3, - +++ Ca2+ signaling? [56]

rod and cone arrestin

Small molecules
Phosphoinositides Arrestin2, arrestin3, +++ +++ Endocytosis, light-dependent translocation of [78,79]

Drosophila arrestin-2 Drosophila arrestin2 in photoreceptors 

Inositol phosphates Rod arrestin, - +++ Arrestin oligomerization, inhibition of [80,81]
arrestin2, arrestin3 receptor binding

*This table includes only arrestin binding partners that are not GPCRs. For a list of GPCRs that have been shown to interact with arrestins, see [1].
Abbreviations: Fgr, a Src-family member; GLUT4, glucose transporter 4; Hck, hematopoietic cell kinase; IL-1R, interleukin 1 receptor; NSF, N-ethylmaleimide-
sensitive factor; TLR, Toll-like receptor; TrkA receptor, nerve growth factor receptor; Yes, a Src-family member. †The binding of the partners to
different conformational states of arrestin is designated, as follows: +, binds; +++, binds with high-affinity; ?, not known.



hardly surprising that arrestins have a role in cell death and

survival. The effects of arrestin vary with the system,

however. Stable arrestin-rhodopsin complexes in Drosophila

photoreceptors induce apoptosis [65,66], and the complex of

arrestin2 and the receptor for the neuropeptide substance P

induces non-apoptotic programmed cell death through acti-

vation of ERK2 and phosphorylation of the nuclear receptor

Nur77 [67]. By contrast, arrestins promote activation of

phosphatidylinositol 3-kinase that is dependent on the

insulin-like growth factor receptor and has an anti-apoptotic

effect [68], and they block GPCR-mediated apoptosis [69].

The mechanisms of arrestin-mediated cell death and sur-

vival remain to be elucidated.

Frontiers 
As far as the origins and evolution of arrestins are con-

cerned, several questions remain. First, did the arrestin

domains, which can fold independently, emerge indepen-

dently? Thus far there is no known protein that has only one

of these domains; even the ‘third cousins’ in fungi and pro-

tists have homologs of both domains in the right order.

Second, do plants have arrestins? Plants are the only large

group of eukaryotes in which no arrestin-like proteins have

been described. Their discovery may help to answer the first

question. Third, is arrestin2 really a mammalian invention,

or is it simply by chance that no close relatives have been

cloned from lower vertebrates?

From a structural standpoint, the most important piece that

is missing from the puzzle is the structure of ‘active’, recep-

tor-bound arrestin. We have high-resolution crystal struc-

tures of three arrestins in the basal conformation, as well as

three structures of the inactive prototypical GPCR,

rhodopsin, but these are the functional states of these two

proteins in which they do not interact. Proposed models of

the arrestin-receptor complex [17,18] are derived from a lot

of indirect evidence, but they are educated guesses, not the

real thing. The structure of the complex would answer bio-

logically important questions regarding its stoichiometry.

The shape of the complex would shed light on its scaffolding

functions and explain why its formation facilitates signaling

in so many pathways. We do not even know whether there is

just one specific conformation of arrestin in the complex, or

whether arrestin can assume a whole family of active confor-

mations once the clasps holding it in the basal state are

released by the receptor, as some experimental evidence

suggests [1]. Microtubule-bound arrestin assumes yet

another conformation, distinct from that of the free and

receptor-bound forms [25], but we know almost nothing

about the functional capabilities of this state of arrestin.

Several laboratories using a wide variety of methods have

mapped arrestin elements involved in receptor binding, so

that we know exactly which side of the molecule faces the cyto-

plasmic tip of the receptor. The ‘footprints’ of microtubules

[25] and calmodulin [56] on the body of the arrestin molecule,

and the relatively small clathrin- and AP2-binding sites in the

arrestin carboxy-terminal tail [31] have been identified with

reasonable precision. The interaction sites for the great

majority of the non-receptor binding partners have been

localized very imprecisely or not at all, however. With very

few exceptions, we do not know whether some signaling pro-

teins prefer a single arrestin conformation out of the three

known ones, let alone which partners bind preferentially to

which functional state of arrestin. In addition, the very

modest size of arrestins (40-45 kDa), along with the enor-

mous number of known binding partners of similar or greater

size, strongly suggests that arrestin in any conformation

cannot interact with them all simultaneously. Thus, certain

groups of arrestin partners must compete with each other for

the overlapping binding sites. Which proteins can ‘share’

arrestin because their binding sites are far enough from each

other, which partners compete, how this competition is regu-

lated, and what factors determine the ‘winners’ are the key

questions that need to be addressed experimentally.

In summary, we know that arrestins do a lot more than

simply block binding of G proteins to active receptors.

Arrestins are multi-functional regulators at the crossroads of

multiple signaling pathways. The next challenge is to under-

stand the fine molecular mechanisms of their functional

interactions with an incredible variety of signaling proteins.

These studies have clear therapeutic potential as they will

provide a firm foundation for the targeted manipulation of

arrestin function.

Additional data files 
The following files are available with the online version of

this article.  Additional data file 1 is a table of the estimated

evolutionary distances for groups of arrestin proteins; Addi-

tional data file 2 is a figure showing an alignment of arrestin

sequences.
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