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Abstract

Background: The PmrAB (BasSR) two-component regulatory system is required for Salmonella
typhimurium virulence. PmrAB-controlled modifications of the lipopolysaccharide (LPS) layer confer
resistance to cationic antibiotic polypeptides, which may allow bacteria to survive within
macrophages. The PmrAB system also confers resistance to Fe3*-mediated killing. New targets of
the system have recently been discovered that seem not to have a role in the well-described
functions of PmrAB, suggesting that the PmrAB-dependent regulon might contain additional,
unidentified targets.

Results: We performed an in silico analysis of possible targets of the PmrAB system. Using a motif
model of the PmrA binding site in DNA, genome-wide screening was carried out to detect PmrAB
target genes. To increase confidence in the predictions, all putative targets were subjected to a
cross-species comparison (phylogenetic footprinting) using a Gibbs sampling-based motif-detection
procedure. As well as the known targets, we detected additional targets with unknown functions.
Four of these were experimentally validated (yibD, aroQ, mig-13 and ssej). Site-directed mutagenesis
of the PmrA-binding site (PmrA box) in yibD revealed specific sequence requirements.
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Conclusions: We demonstrated the efficiency of our procedure by recovering most of the known
PmrAB-dependent targets and by identifying unknown targets that we were able to validate
experimentally. We also pinpointed directions for further research that could help elucidate the S.
typhimurium virulence pathway.

Background

The PmrAB two-component regulatory system is part of a
multicomponent feedback loop that acts as one of the key reg-
ulatory mechanisms of Salmonella typhimurium virulence
[1-3]. The PmrAB regulatory system is itself responsive to
Fe3+and mild acid [4] and senses Mg2* indirectly by commu-
nicating with the Mg2+*-sensitive PhoPQ system [5-8] via

PmrD [1,9]. PmrD is hypothesized to transduce the signal
from the PhoPQ system to the PmrAB system via a posttrans-
lational modification. The gene pmrD is transcriptionally
activated by the PhoPQ system but repressed by the PmrAB
system [1,9,10]. The PmrAB system is required for resistance
to the cationic antibiotic polymyxin B [11] and to Fe3*-medi-
ated killing [4]. The Mg2+-dependent regulation of PmrAB
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was shown to be important for gene expression in an intracel-
lular environment [12]. Fe3+-dependent PmrAB regulation,
on the other hand, has been hypothesized to be essential for
survival in extracellular environments [13]. A region in DNA
to which the PmrA protein binds has been identified by DNA
footprinting analysis [14,15].

In contrast to pmrD, other known target genes of PmrAB in S.
typhimurium are transcriptionally activated. One group of
targets is involved in LPS modification. PmrAB-induced
modifications include the addition of 4-amino-4-deoxy-L-
arabinose (Ara4N) and phosphoethanolamine (pEtN) to lipid
A [16]. Loci involved in the AragN modification of lipid A are
ugd [6] and the pmrHFIJKLM loci, both of which are respon-
sible for AragN biosynthesis [2,16-18] and incorporation of
AragN into lipid A [19,20]. LPS modifications are hypothe-
sized to allow bacterial survival within macrophages by low-
ering the affinity of the LPS for amphipathic cationic peptides
with antimicrobial activity that are produced as a conse-
quence of the innate immune response.

A second class of targets are directly dependent on PmrAB,
but have as-yet-undefined functions. pmrC (co-transcribed
with pmrAB [21]) and pmrG (located upstream of the pmrH-
FIJKLM operon) are both transcriptionally activated by
PmrAB. Mutations in pmrG did not affect the resistance to
polymyxin B [2]. Tamayo et al. recently identified two addi-
tional targets of PmrAB - yibD and dgoA. However, none of
these was involved in resistance to polymyxin B or to high
concentrations of Fe3+ [22]. These genes might therefore rep-
resent a group of as-yet-unidentified functions regulated by
the PmrAB system [22]. Also, PmrAB-regulated genes
involved in resistance to Fe3+ and pEtN addition to LPS
remain to be identified [22]. Together with the recent indica-
tions of new PmrAB-dependent functions, this raises the pos-
sibility that not all PmrAB targets have yet been identified.
Therefore, in this study we used an in silico approach to pre-
dict targets of the PmrAB regulatory system. Several method-
ologies exist for genome-wide screening using a motif model
(or mathematical representation) of experimentally verified
regulatory sites [23-27]. These assign to each possible motif
position in the genome a score (the specifics of which depend
on the methodology) that indicates how well the subsequence
located at that position matches the motif model. Genome-
wide screenings of this type have proved successful in detect-
ing additional targets of the regulator being investigated.
However, more reliable predictions for motifs in specific
pathways have been obtained by incorporating cross-species
comparisons (phylogenetic footprinting) [26,28-34]. Because
evolutionary forces tend to preferentially retain functional
DNA sequences, motifs that are conserved in the intergenic
regions of orthologs derived from several related species are
more likely to be biologically relevant [35,36].

In this study, we combine both approaches. Putative targets
identified by a genome-wide screening were, whenever
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Figure |
Consensus sequence of the PmrA box. Motif logo representing the initial
motif model used to screen the S. typhimurium intergenic sequences.

possible, analyzed by phylogenetic footprinting based on
Gibbs sampling [33,34,37]. Four interesting targets were val-
idated by wet lab experiments and the PmrA box of a repre-
sentative target was subjected to site-directed mutagenesis.

Results

Genome-wide screening using a PmrA motif model
Gibbs sampling was used to detect PmrA-binding motifs in
the intergenic regions of three experimentally verified PmrAB
targets (ugd, pmrC, pmrG). The logo of the statistically over-
represented motif detected is represented in Figure 1. This
motif corresponded to the PmrA-binding site experimentally
identified by Aguirre et al. [15] and partially overlapped the
PmrA-binding site delineated by Wosten et al. [14]. They
detected this site upstream of the transcription start of pmrcC,
in the intergenic region between pmrG and pmrH, and
upstream of ugd (on the plus strand) [14,15]. We used the
obtained motif model in a genome-wide screening of the S.
typhimurium intergenic sequences [38]. Table 1 summarizes
the results of our screening, using a threshold as described in
Materials and methods. From experimentally verified exam-
ples, it appears that the PmrA motif can be biologically func-
tional not only when present on the plus strand (as in the case
of pmrH), but also when located on the minus strand (for
example in pmrG) [14]. Therefore, both strands of the
genome sequence were screened.

Identification of close homologs

We can expect to detect conserved biologically active PmrA
motifs only in species that have a functional counterpart of
the S. typhimurium PmrAB system. Of all the completely
sequenced bacterial species, only the genomes of S. typhimu-
rium, S. typhi, Escherichia coli, Shigella flexneri and Yers-
inia pestis contain the amino-acid motif that determines the
specificity of the sensor protein PmrB (the amino acids sug-
gested to be involved in binding Fe3+ [4]). Also, the protein
domains involved in the binding of PmrA to DNA were almost
perfectly conserved in the PmrA orthologs in the species
above (PF00486 domain, see supplementary information on

Genome Biology 2004, 5:R9



http://genomebiology.com/2004/5/2/R9

Table |

Genome Biology 2004,

Volume 5, Issue 2, Article R9

Marchal et al. R9.3

List of the putative PmrAB targets in S. typhimurium

Name Description Score Instance Alignment Footprint Distribution Distribution
(COG) [38]
Minus strand
STMI273 Putative nitric oxide reductase 0.848436 CTTAATGTTT / / 1000 All Salmonella
TCTTAAT only
STM2132 Pseudogene; frameshift; putative RBS for 0.814252 TTTTAGATTC / / 1000 Some or all
STM2133 ACTTAAT Salmonella only
STM4596 Paralog of E. coli ORF, hypothetical protein  0.806962 TTTAATATTC / / 1000 Some Salmonella
(AAC73478.1); BLAST hit to putative inner ACTTAAA only
membrane protein
STM3131 Putative cytoplasmic protein; putative RBS ~ 0.801641 CTTAATTTTT / / 1000 All Salmonella
for STM3130; putative first gene of operon ACTTATT only
with STM3 130 (putative hypothetical
protein)
STM 1020 Gifsy-2 prophage 0.791616 CTTATTGTTA / / 1000 Other
AGTCAAT distributions
stdA STM3029; paralog of E. coli putative 0.788548 CAAAACATT / / 1000 Subspecies |
fimbrial-like protein (AAC73813.1); BLAST AACTTAAT only?
hit to putative fimbrial-like protein
ugd STM2080; S. typhimurium UDP-glucose 6- 0.781719 CTCAGAATT m + 1100 All nine
dehydrogenase AACTTAAT genomes
sinR STM0304; S. typhimurium SINR protein. 0.780204 CTTGATATCA / / Subspecies |
(SW:SINR_SALTY) transcriptional TCTTAAT only
regulator
STM3131 Putative cytoplasmic protein; putative RBS ~ 0.772846 CTTAATACTC / / 1000 Other
for STM3130; putative first gene of operon ACATTAT distributions
with STM3130; (putative hypothetical
protein)
STM4413 Putative imidazolonepropionase and 0.771153 GTGAATGTT / / 1000 Some or all
related amidohydrolases; putative RBS for AAATTAAT Salmonella only
STM44 1 2; first gene of operon with
STM4412 (D-galactonate transport)
ybdO STM0606; ortholog of E. coli putative 0.769839 CTTAATGTA m + 1110 All Salmonella
transcriptional regulator LYSR-type GAGTTTAT only
(AAC73704.1); BLAST hit to putative
transcriptional regulator, LysR family
oraA STM2828; ortholog of E. coli regulator, 0.766748 CTTGATGGT m - 110 All nine
OraA protein (AAC75740.1); BLAST hit to AATTTAAC genomes
regulator
sdhC STMO0732; Ortholog of E. coli succinate 0.765950 CTTATTATTC / / 1000 All nine
dehydrogenase, cytochrome b556 CCTTAAG genomes
(AAC73815.1); Putative RBS for sdhD; first
gene of putative operon encoding succinate
dehydrogenase
ycaR STM0987; Ortholog of E. coli ORF, 0.765889 TTCAATATTA / / 1000 All nine
hypothetical protein (AAC74003.1); ACATAAT genomes
BLAST hit to putative inner membrane
protein; Putative RBS for kdsB; first gene of
a putative operon with ksdB (CMP-3-
deoxy-D-manno-octulosanate transferase)
lasT STM4600; Ortholog of E. coli ORF, 0.765754 ATTTAGGATA nd / 1110 All nine
hypothetical protein (AAC77356.1); ATTTAAT genomes
BLAST hit to putative tRNA*tRNA
methyltransferase
STM2137 Putative cytoplasmic protein 0.764036 TTTAACCTTA nd / 1100 Some Salmonella
ATTTAAT only
STM 1672 Putative cytoplasmic protein 0.762904 ATTAATAGTC / / 1000 Subspecies |
ACTTATT only?
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List of the putative PmrAB targets in S. typhimurium

gcvA

ycgO

STM2287

yebW

STM0897

IpfA

Plus strand
yjdB*

ugd

yfbElais

STMI1269%
STMI268

STM0692

ybjGImdfA*

STM2901

yhjClyhjB

yjbE/pgi

yibD*

STM2982; Ortholog of E. coli positive
regulator of gcv operon (AAC75850.1);
first gene of putative operon (gcvA, ygdD,
ygdE containing a SAM-dependent
methyltransferase)

STM1801; Ortholog of E. coli ORF,
hypothetical protein (AAC74275.1);
BLAST hit to putative CPAI family, Na:H
transport protein

Paralog of E. coli putative sulfatase*
phosphatase (AAC75329.1); BLAST hit to
putative cytoplasmic protein

STM1852; Ortholog of E. coli ORF,
hypothetical protein (AAC74907.1);
BLAST hit to putative inner membrane
lipoprotein

Hypothetical protein Fels-1 prophage

STM3640; S. typhimurium long polar fimbrial
protein A precursors; first gene of a
putative fimbriae synthesis operon

STM4293; S. typhimurium hypothetical 61.6
kDa protein in basS*pmrA-adiY intergenic
region. (SW:Y]JDB_SALTY) putative
integral membrane protein; Putative RBS
for basR; first gene of the putative operon
(yjdB basR basS)

STM2080; S. typhimurium UDP-glucose 6-
dehydrogenase

STM2297; Ortholog of E. coli putative
enzyme (AAC75313.1); first gene of the
yfbE operon; shared intergenic with ais

Putative chorismate mutase; intergenic
shared with STM[268

Paralog of E. coli nitrogen assimilation
control protein (AAC75050.1); putative
transcriptional regulator, LysR family

STMO0865; Ortholog of E. coli orf,
hypothetical protein (AAC73928.1);
putative permease; intergenic shared with
mdfA (multidrug translocase)

Hypothetical protein putative cytoplasmic
protein; located downstream of
pathogenicity island |

STM3607; Ortholog of E. coli putative
transcriptional regulator LysR-type
(AAC76546.1); intergenic shared with yhjB
(putative transcriptional regulator)

STM4222; Ortholog of E. coli orf,
hypothetical protein (AAC76996.1);
BLAST hit to putative outer membrane
protein; first gene of the putative operon
(yjbE, yjbF, yjbG, yjbH) consisting of putative
outer membrane (lipo)proteins; intergenic
shared with pgi (glucosephosphate
isomerase)

STM3707; Ortholog of E. coli putative
regulator (AAC76639.1); BLAST hit to
putative glycosyltransferase

0.761166

0.760685

0.759519

0.754895

0.754468

0.753228

0.930146

0.913666

0.912660

0.888478

0.814773

0.810981

0.803712

0.796967

0.791181

0.790879

CTTAATGTC
GAATGAAT

TTTAACATTA
ACATAAT

CTTATTATTC
ACATAAC

CTCAATGTTA
ACTACTT

CGTAAGGCT
CTTTTAAT

ATTAAGAATA
AATTAAT

CTTAAGGTT
CACTTAAT

CTTAATATTA
ACTTAAT

CTTAATGTTA
ATTTAAT

CTTAATGTTA
TCTTAAT

CTTGATGTT
GATTTAAT

CTTTAAGGTT
AATTTAA

CTTAATATCA
ATATAAT

TTGAATATTA
ATTTAAT

TTTAATTTTA
ACTTATT

CTTAATAGTT
TCTTAAT

nd

+ (]
+ 1110
/ 1000
/ 1000
/ 1000
/ 1000
+ (NN
+ 1100
+ (]
/ 1000
/ 1000
+ I
/ 1000
/ 1110
/ 1000
+ 1100

All nine
genomes

All nine
genomes!

Some or all
Salmonella only?

All nine
genomes?

Some Salmonella
only

Other
distributions

All nine
genomes

All nine
genomes

All nine
genomes!?

All Salmonella
only

All Salmonella
only

All nine
genomes

Other
distributions

All nine
genomes!

All nine
genomes!

Other
distributions
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List of the putative PmrAB targets in S. typhimurium

STMI926/flhC  Putative cytoplasmic protein; Putative RBS ~ 0.790699 CCTAATGTT / / 1000 Some or all
for STM1926; first gene of a putative CACTTTTT Salmonella only
operon with yecG (putative universal stres
protein); shared intergenic with flhC en
flnD (flagellar transcriptional activator)
STM0334/ Putative cytoplasmic protein; shared 0.789514 TTTCATATTC / / 1000 Some Salmonella
STMO0335 intergenic with STM0335 ATTTAAT only
ybdN STM0605; Ortholog of E. coli orf, 0.788778 ATTAATATAA nd / 1100 All nine
hypothetical protein (AAC73703.1); ATTTAAT genomes!?
BLAST hit to putative 3-phosphoadenosine
5-phosphosulfate sulfotransferase (PAPS
reductase)*FAD synthetase Putative RBS
for ybdM; first gene of a putative operon
with ybdM (hypothetical transcriptional
regulator)
glgB STM3538; Ortholog of E. coli 1,4-alpha- 0.779808 TTTAAGGGT m - (RRN All nine
glucan branching enzyme (AAC76457.1); AGCTTAAT genomes
BLAST hit to |,4-alpha-glucan branching
enzyme; Putative RBS for glgX; putative
first gene of operon involved in glycogen
synthesis
leuO STMO1 15; S. typhimurium probable 0.776490 ATTAATGTTA m - (NRN All nine
activator protein in leuabcd operon. ACTTTTT genomes
(SW:LEUO_SALTY) putative
transcriptional regulator (LysR family)
STM0343 Paralog of E. coli orf, hypothetical protein 0.774271 ATTAATGTTA nd / 1100 Subspecies |
(AAC75237.1); BLAST hit to AAC75237.1 CTTTAGT only
identity in aa 10 - 512 putative Diguanylate
cyclase*phosphodiesterase domain
orf242 STM 1390 S. typhimurium ORF242 0.773644 CTTAGTCTTC / / 1000 Other
(gi|4456866) putative regulatory proteins, ATTTGAT distributions
merR family
STMI868A/ Lytic enzyme; intergenic shared with mig-3  0.773462 CTTAATGATT / / 1000 ?
mig-3 (phage assembly protein) ATTTATT
STM2763/ Paralog of E. coli prophage CP4-57 0.772053 ATTAATGTCC / / 1000 S. typhimurium
STM2726 integrase (AAC75670.1); BLAST hit to ATTTAGT only 3
putative integrase; intergenic shared with o
STM2726 (putative inner membrane) §
pntA STM1479; Ortholog of E. coli pyridine 0.770547 TTTAATGTTA m - Il All nine 3‘
nucleotide transhydrogenase, alpha subunit ATTTCTT genomes ]
(AAC74675.1); Blast hit to AAC74675.1 2
pyridine nucleotide transhydrogenase F:;_
(proton pump), alpha subunit; Putative RBS
for pntB; first gene of the putative operon
(pntA, pntB)
STMO0057/cit2  Putative citrate-sodium symport; intergenic  0.767968 CTCATGGTT nd / 1110 Other
shared with citC2 (citrate lyase synthetase) CATTGAAT distributions
yrbF STM3313; Ortholog of E. coli putative ATP- 0.766758 CCTAATTTTG m + (N All nine
binding component of a transport system ACTTTAT genomes
(AAC76227.1); Blast hit to AAC76227.1
putative ABC superfamily (atp_bind)
transport protein; Putative RBS for yrbE;
RegulonDB:STMSIHO003330; first gene of
putative yrb operon (ABC transporter)
yejG STM2220; Paralog of E. coli orf, hypothetical 0.767099 CTTTATGTTT m + (N All nine
protein (AAC75242.1); Blast hit to putative ATTTTAT genomes
cytoplasmic protein
slsA STM3761; putative inner membrane 0.765418 CTTTATGTTA nd / 1110 Other
protein TTTAAAT distributions
yheN STM3361; Ortholog of E. coli orf, 0.764452 ATTAGTGTAT m + Il All nine
hypothetical protein (AAC76270.1); Blast ACTTAAT genomes!?

hit to putative outer membrane protein

Genome Biology 2004, 5:R9
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List of the putative PmrAB targets in S. typhimurium

yceP

STM4098
stfA

atpF

yegHIwza

yjgDlargl

ssej/
STMI1630%*

csrA

dinPlyafK

STM0346

ybfAISTM0707

yncDISTM | 587

STMI1161; Ortholog of E. coli off,
hypothetical protein (AAC74144.1); Blast
hit to putative cytoplasmic protein

putative arylsulfate sulfotransferase

STMO0195; S. typhimurium major fimbrial
subunit StfA

STM3869; Ortholog of E. coli membrane-
bound ATP synthase, FO sector, subunit b
(AAC76759.1); Blast hit to imembrane-
bound ATP synthase, FO sector, subunit b;
Putative RBS for atpH; first gene of a
putative operon encoding putative ATP
synthase

STM2119; Ortholog of E. coli putative
transport protein (AAC75124.1); Blast hit
to putative inner membrane protein;
intergenic shared with wza (putative
polysaccharide export protein)

STM4470; S. typhimurium hypothetical
protein in argl-miaE intergenic region
(ORFI5.6). (SW:YJGD_SALTY) putative
cytoplasmic protein; Putative binding site
for ArgR; shared intergenic regions with
argl (arginine ornithine transferase); first
gene of a putative operon with miaE (tRNA
hydroxylase)

STM1631; S. typhimurium secreted effector;
regulated by SPI-2; shared intergenic with
STM1630 (putative inner membrane
protein)

STM2826; S. typhimurium carbon storage
regulator

STMO0313; Ortholog of E. coli damage-
inducible protein P; putative tRNA
synthetase (AAC73335.1); Blast hit to
AAC73335.1 DNA polymerase IV, devoid
of proofreading, damage-inducible protein
P; intergenic shared with yafK| (periplasmic
protein, putative amido transferase)

Putative outer membrane protein;
Homolog of ail and ompX

STM0708; Ortholog of E. coli off,
hypothetical protein (AAC73793.1); Blast
hit to putative periplasmic protein;
intergenic shared with STM0707
(hypothetical protein)

STM1587; Ortholog of E. coli putative
outer membrane receptor for iron
transport (AAC74533.1); Blast hit to paral
putative outer membrane receptor;
intergenic shared with STM 1586 (putative
receptor)

0.764191

0.763003

0.762241

0.760841

0.760004

0.759514

0.758303

0.756990

0.756938

0.756369

0.754265

0.754063

TTTATTGTTC
ATATAAT

TCTAATATTT
ATTTAAT

ATCAATTTTA
ATTTAAT

CAGAAGGTT
AACTAGAT

ATTAATATTA
AATGAAT

ATTAAAATTC
ACTTTAT

CTTAAGAAAT
ATTTAAT

CTTAGGTTTA
ACAGAAT

CATACTGTA
CACTTAAA

CATTAGGTG
CTCTTAAT

ATTAGTATTA
ATTTAAC

CATTTTCTTA
ACTTAAT

nd

+ 1100
/ 1100
/ 1000
+ (N
- (]
+ (]
/ 1000
+ (NN
+ I

1000
+ (Y

1100

All nine
genomes

Subspecies |
only?

Some Salmonella
only

All nine
genomes

All nine
genomes

All nine
genomes

Some Salmonella
only

All nine
genomes

All nine
genomes

Some Salmonella
only

All nine
genomes!?

All nine
genomes
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Table | (Continued)

List of the putative PmrAB targets in S. typhimurium

0.753257 CAAAATATC
AATTTAAT

Other
distributions

yafC/STM0275  STM0256; Ortholog of E. coli putative
transcriptional regulator LysR-type
(AAC73313.1); Blast hit to putative
transcriptional regulator, LysR family;
intergenic shared STM0275 (drug efflux
protein)

m - Il

Name: name of the gene in the S. typhimurium genome (NC_003197). For genes that are divergently transcribed and have a shared intergenic region,
the gene for which the motif is detected on the plus strand is indicated first and the gene for which the motif is on the minus strand is indicated after
the slash. Description: annotation of the encoded proteins and genome location of the genes (derived from GenBank and Sanger annotation). Score:
normalized score assigned to the respective motifs by MotifLocator. Site: instance of the motif as detected in the respective intergenic sequence.
Distribution (COG): distribution of the protein as determined by our analysis. The distribution is indicated by a binary profile that indicates the
presence | versus absence 0 of the protein in species (serovars) of, respectively, Salmonella, E. coli, Shigella and Yersinia (for example, 1111 indicates
protein present in all four species; 1000: protein present in Salmonella species only). Distribution: distribution of the protein encoded by the
corresponding gene in nine bacterial genomes as determined by McClelland et al. [38]. Proteins having close homologs in at least one Salmonella strain
but not in E. coli or K. pneumoniae are indicated by 'some Salmonella only'. Genes that contain close homologs in all genomes are indicated by "all nine
genomes'. Other combinations are indicated by 'other distributions'. ? indicates that the authors were not certain about the statement. Differences
between the distribution as determined by McClelland et al. and the one determined by our analysis is due to the difference in selection criteria used
to identify close homologs (see Materials and methods). Alignment: indicates whether the intergenic regions in the dataset could be locally aligned
(nd, no local alignment detected that contained the original sequence of S. typhimurium; m, local alignment detected. If the dataset only contained
homologs from Salmonella species, local alignments were considered noninformative (indicated by /)). Footprint: denotes whether the PmrA motif is
conserved in the close homologs. +, the retrieved putative PmrA motif is conserved; -, the intergenic sequences of the orthologs could be locally
aligned but the PmrA motif was not part of the conserved regions. Most promising PmrAB targets that contained a PmrA motif matching the PmrA

consensus (Figure 4) are in bold face. PmrA motifs that are experimentally validated in this study are indicated by an asterisk.

our website [39]). Therefore, these y-proteobacterial species
were used to perform phylogenetic footprinting analysis. For
each gene containing a potential hit of the PmrA motif in the
S. typhimurium genome sequence, close homologs were
selected as described in Materials and methods.

Phylogenetic footprinting using Gibbs sampling

For each dataset we aimed at constructing a local multiple
alignment. We used Gibbs sampling to generate motifs that
can be wused as alignment seeds. Alignments were
subsequently constructed based on the positions of these
motif seeds. Potential seeds were selected using a heuristic
described in the supplementary information on [39]. Such
multiple alignments summarize the motifs in the intergenic
sequences that are conserved between species. We used the
alignments to verify whether the putative PmrA motifs
retrieved by the genome-wide screening were conserved in
other species. Table 1 gives an overview of the results of the
genome-wide screening and the phylogenetic footprinting
approach (individual alignments are displayed in the supple-
mentary information at [39]).

Detailed analysis of the putative PmrAB targets

Putative PmrA motifs were detected in the intergenic regions
of genes encoding transcriptional regulators, outer-mem-
brane and secreted proteins, proteins with functions involved
in flagella and fimbria synthesis, proteins with a function
related to the modification of cellular components, putative
transport proteins, proteins involved in amino-acid synthesis
and also in phage remnants. As mentioned above, if the puta-

tive PmrAB-regulated genes contained close homologs in
other species, the intergenic sequences of these close
homologs were locally aligned to check whether putative
PmrA motifs were conserved in these other species as well.
For some of the datasets, however, no local alignment could
be identified (no motif detected). Closer inspection showed
that most of these datasets contained highly homologous par-
alogs of the original sequence. The intergenic sequences of
these paralogs showed an overall low degree of conservation
(for example, STMoos7) with the original intergenic
sequence in S. typhimurium (data not shown). In some of the
datasets, a local alignment of the respective intergenic
regions could be detected, but the putative PmrA motif was
not present within the conserved parts of the alignment (for
example, leuO). For these putative PmrAB targets, phyloge-
netic footprinting could not strengthen the confidence in the
prediction of the PmrA motif. If such putative motifs are bio-
logically active, their activity will be restricted to Salmonella
serovars or S. typhimurium.

Our analysis revealed that PmrA motifs, present in the inter-
genic sequences of known PmrAB-dependent S. typhimu-
rium genes, were also conserved in the intergenic sequences
of the orthologs of these genes in related species (Figure 2).
An overview of the alignments of these known targets is given
below.

pmrH (the first gene of an operon that contains the genes
pmrHFIJKLM; Table 1) is the only known PmrAB-regulated
gene for which the PmrA motif is conserved in all genome

Genome Biology 2004, 5:R9

R9.7

-
o
®
e
I
o
o
-
I
4
0
8
8
[o]
>




R9.8 Genome Biology 2004,

Volume 5, Issue 2, Article R9

Marchal et al.

(a)

b2253 NC_000913 E. coli K12
ECs3141 NC_002695 E. coli 0157
Z3511 NC_002655 E. coli 0157
yfbE NC_004431 E. coli CFTO073
yfbE NC_004337 S. flexneri
yfbE NC_003197 S. typhimurium
STY2527 NC_003198 S. typhi
YP02422 NC_003143 Y. pestis
y1917 NC_004088 Y. pestis

b2253 NC_000913 E. coli K12
ECs3141 NC_002695 E. coli 0157
Z3511 NC_002655 E. coli 0157
yfbE NC_004431 E. coli CFTO073
yfbE NC_004337 S. flexneri
yfbE NC_003197 S. typhimurium
STY2527 NC_003198 S. typhi
YP02422 NC_003143 Y. pestis
y1917 NC_004088 Y. pestis

b2253 NC_000913 E. coli K12
ECs3141 NC_002695 E. coli 0157
Z3511 NC_002655 E. coli 0157
yfbE NC_004431 E. coli CFT073
yfbE NC_004337 S. flexneri
yfbE NC_003197 S. typhimurium
STY2527 NC_003198 S. typhi
YP02422 NC_003143 Y. pestis
y1917 NC_004088 Y. pestis

b2253 NC_000913 E. coli K12
ECs3141 NC_002695 E. coli 0157
Z3511 NC_002655 E. coli 0157
yfbE NC_004431 E. coli CFT073
yfbE NC_ 004337 S. flexneri
yfbE NC_003197 S. typhimurium
STY2527 NC_003198 S. typhi
YP02422 NC_003143 Y. pestis
y1917 NC_004088 Y. pestis

b2253 NC_000913 E. coli K12
ECs3141 NC_002695 E. coli 0157
Z3511 NC_002655 E. coli 0157
yfbE NC_004431 E. coli CFTO073
yfbE NC_004337 S. flexneri
yfbE NC_003197 S. typhimurium
STY2527 NC_003198 S. typhi
YP02422 NC_003143 Y. pestis
y1917 NC_004088 Y. pestis

(b)

yjdB NC_000913 E. coli K12
ECs5096 NC_002695 E. coli 0157
yjdB NC_002655 E. coli 0157
yjdB NC_004431 E. coli CFTO073
yjdB NC_004337 S. flexneri
yjdB NC_003197 S. typhimurium
STY4492 NC_003198 S. typhi

yjdB NC_000913 E. coli K12
ECs5096 NC_002695 E. coli 0157
yjdB NC_002655 E. coli 0157
yjdB NC_004431 E. coli CFTO073
yjdB NC_004337 S. flexneri
yjdB NC_003197 S. typhimurium
STY4492 NC_003198 S. typhi

ICGTAAACTCCACCTATAGACAAGCGC. CAG: ATiACCGTG: ‘TGAGCTAC
ICGTAAACTCCACCTATAGACAAGCGC. CAGA[#.'ATi:ACCGTG: TGAGCGAC
ICGTAAACTCCACCTATAGACAAGCGC. CAG: ATiACCGTG: TGAGCGAC
INNNNNNNNNNNNNNNNNNNNNNNNNNNA{eCAG: ACCGTG: TGAGCGAC

INNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN;

NNNNNNNNNCATTAACCTCTCAGGCAGAEAGTGEIGCHAACTTAATAGCAATACAAT|:AAAATGAARLTTCC
NNNNNNNNNNNNNNNCATTAACCTCTCAGGCAGACAGUGCAGCTAACKTAATAGCAALACGATTARLATGA
ATTTATTGGCAATAAAATATTATTTACTTCTCCTATIETCATFIGANCATTGTGCTHACGATGTT. TATCGTGGHCA
ATTTATTGGCAATAAAATATTATTTACTTCTCCTATI®TCAT®IGALCATTGTGCTACGATGTT TATCGTGGLCA

fcecacrficereifyiTaTARR IrccricEaTeTceeCcAr T TacicAlR AT TTTGC NN

AGCAGT|:GGTG TAT 'TCC ARY ATTTTGC
AGCAGT{:GGTGILV'TAT ATCC VAT ATTTTGC
AGCAGT{:GGTGILV'TAT ATCC VT GleC) ATTTTGC
AGCAGTiGGTGILYITAT ATCC Ady TTTTTGC
GCAACGGAAGACCOLGGCCAGALVCATAAL'AACAGCTTTTGGGCATGCAT. 'ATGCCTT.
AATTCCGCGAC J/GAC ACATALAAACAGCTTTTGGGCATGCATLVAATGCCT

TATCAGLATAAATHATGALCGCHATTATAECGTTAAATCCENAC T
TATCAGATARATLATGALICGC|JATTAT. CGTTAAATCC!C T

2Xele e TAATATTA
2Xele Te TAATATTA
A 3 AC A
A A AC :
A a A
SAAATTEY
TCCGTTHAAATTIY: : 2 AR
SATEVATT TTCCCC
‘AETT%TTCCCC RN ra N P T rr JETAAGGT
ACARAACAS
ACA[AACA
JCA[EAACAS
c
c
AAAAGCGGCTTTCAA

A AACA
A AACA(
AAGeCCTT
JAGECCTT AAAAGCGGCTTTCAA

ATGCle T AT,
ATAGCL'Ge TGLICG TAT{eTGATTGGC TTTTC JACTTATCTGGGCATATAGTTAATAGTCCATGAAGGT
ATAGCLGle TG;\CGH TAT{¢TGATTGGC TTTTC JACTTATCTGGGCATATAGTTAATAGTCCATGAAGGT

TTTCTTAAGGTTAR
TTTCTTAAGGTTAR

GCA'
CTGGGC
CTGGGC

TGGACAGGTATTCAATGGCGGAAGGAAAAGCAA

e

GTCCTAAGGGATTTATTAA
GTCCTAAGGGATTTATTAA

ATTCCCCITAAT!
INNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATTCCCCTTAAT
INNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATTCCCCTTAAT

ATAAAAGCCAACCTTAAGAACTTAAGGT
ATAAAAGCCAACCTTAAGAACTTAAGGT
ATAAAAGCCAACCTTAAGAACTTAAGGT!
ATAAAAGCCAACCTTAAGAACTTAAGGT!
ATAAAAGCCAACCTITAAGAACTTAAGGT!

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNATTCCCCTTAATCeA

A\GCGTCACCGAATCGATGGACGCATCAACA
A\GCGTCACCGAATCGATGGACGCATCAACA

Figure 2 (see legend on page dfter next)

Genome Biology 2004, 5:R9

http://genomebiology.com/2004/5/2/R9




http://genomebiology.com/2004/5/2/R9 Genome Biology 2004,  Volume 5, Issue 2, Article R9 Marchal et al.

(c)

ugd NC_003198 S.typhi
udg NC_003197 S. typhimurium

TAT:
TATY

yibD NC_000913 E. coli K12 AR STGTCLGTGTIVT,
yibD NC_002655 E coli 0157
ECs4493 NC_002695 E. coli 0157 ; AR tTGTCHGTGIHaT
yibD NC_004431 E. coli CFT073 lTGTCEGTGIE!T
yibD NC_003197 S. typhimurium

ECs4493 NC_002695 E. coli 0157 CCuG.
yibD NC_004431 E. coli CFTO073 CCiGA!

yibD NC_003197 S. typhimurium AGUTTT, CTi GCTiTTTACTGTLY VY.
STY4088 NC_003198 S. enterica AGUTTT] CTi GC T TTTACTGTLY VY,

yibD NC_000913 E. coli K12
yibD NC_002655 E coli 0157
ECs4493 NC_002695 E. coli 0157
yibD NC_004431 E. coli CFTO073
yibD NC_003197 S. typhimurium
STY4088 NC_003198 S. enterica

yibD NC_000913 E. coli K12 CCiG. eACHLCT
yibD NC_002655 E coli 0157 CCiG. e ACHLCT
e ACHLCT
eACHCT

CGTClefesw: V.U TTA
CGTClefes VW TTA

Al
A
Al
Al

GTTH TTCT{eled Vi CGTTA
GT Ty TTCT{e[eid:-V:NiCGTTA

ECs2829 NC_002695 E. coli 0157 [JATCTGATTTAATCAACAATAINWTIIGAGGCC A
ugd NC_004431 E. coli CFTO073 ATCTGATTTAACCAACATTAALLY. A
ugd NC_000913 E. coli K12 ATCTGATTTAACCAACAATALYY. A
ugd NC_002655 E. coli 0157 ATCTGATTTAATCAACAATALVY A
ugd NC_003198 S.typhi NNNNNNNNNNNNATTTCTGCLY: T
udg NC_003197 S. typhimurium NNNNNNNNNNNNATTTCTGCLY.V\AR T
PhoP
ECs2829 NC_002695 E. coli 0157 FRATATCACIEEEEVYINIIVYSTIVIEVIATATCAG T AC
ugd NC_004431 E. coli CFTO073 ITGCTTAATATTAACTTAAT ‘ATATCAGEEC AC
ugd NC_000913 E. coli K12 Al N Xe TGCTTAATATTAACTTAAT AANY-\le) \eloTATHY {ATLARGALIAATCTGARTTGTTT] blelc AC
ugd NC_002655 E. coli 0157 RATATCAGTGCTTAATATTAACTTAAT"ATATCAG TATUWsTHATIAAGALAATCTGAATTGTT T 44 AC
ugd NC_003198 S.typhi ETCGCTT TGCTTAATATTAACTTAATAA NI SsNTAT( =T \AT(eAAGA ca
udg NC_003197 S. typhimurium ETCGCTT TGCTTAATATTAACTTAATAAI S cA gy TAT(o = IA CA
PmrA -10 RscB
ECs2829 NC_002695 E. coli 0157 CGAREICEIACGT s TCTTATCAGGATGiisAAALACATCATGATTCAsAle TTAAGTTAATTCTG
ugd NC_000913 E. coli K12 (o[er:\Alen).Xl i \GCGTTAAAAC|LT! s TCTTATCAGGATGSJsAAR AleAle TTAAGTTAATTCTG
ugd NC 002655 E. coli 0157 CGAL\CLIACGT s TCTTATCAGGATGiisAAALACATCATGATTCAsAle TTAAGTTAATTCTG

Alssder{e GCGTTAAAAC!LT : ICTTATCAGGATGH
Alsifer:\e GCGTTAAAAC!LT! : TCTTATCAGGATGE

-10
ECs2829 NC_002695 E. coli 0157 IY&:{eléATGALV;
ugd NC_004431 E. coli CFTO073 A'I'Gﬁ
ugd NC_000913 E. coli K12 A
ugd NC_002655 E. coli 0157
ugd NC_003198 S.typhi
udg NC_003197 S. typhimurium
(d)
yibD NC_000913 E. coli K12 NNNNNNNNNNNNNNNNNNNNNNNNNNNNECECleAAC, GGCji\GGTATTC{6AGCCC| ATCT{&\GG W\ AATCTGTTAA
yibD NC_002655 E coli 0157 NNNNNNNNNNNNNNNNNNNNNNNNNNNNZC: GGCi:GGTATTCEAGCCC AGGLYWAATCTGTTAA
ECs4493 NC_002695 E. coli 0157 NNNNNNNNNNNNNNNNNNNNNNNNNNN GGCj:GGTATTCEAGCCC| LVAATCTGTTAA
yibD NC_004431 E. coli CFTO073 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNA[eGGCi\GGTATTC[¢AGCCC| LYAATCCGTTAA

yibD NC_003197 S. typhimurium TATCGGGTCTGATATACGTTTCATCGTALALIGETTGGTETCANTCGC ¢CTTT TAGGE: CTGGAARAGCC
STY4088 NC_003198 S. enterica TATCGGGTCTGATATACGTTTCATCGTALALIGE TTGGT{,TCAI'TCGC! sCTTT TAGGe); CTGGAAAGCT

AcATINGCRATTERAATIGCGCTTTACTCH TATH G TA AAC 1CG ACTCTG
STY4088 NC_003198 S. enterica ‘AAGETTG oA TA ‘CATC! ATTClei AATIHGCGCTTTAATCHY TATE R T AN AACGi{&\CGCC:ACTCTG

ATTAAGTTAATTCTG

ACATCATGATTCA

AATTGTGCTGA:CT AT, CTCTAC
AATTGCGCTGA:CT AT, CTCTAC
AATTGCGCTGAILCT AT, CTCTAC
AATTGCGCTGACT AT, CTCTAC

PmrA

Figure 2 (continued from the previous page, see legend on next page)
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(e)

(f)

(9)

STM1269 NC_003197
aroQ NC 003198 S.

STM1269 NC_003197
aroQ NC_003198 S.

S. typhimuri
typhi

S. typhimuri
typhi

ybjG NC_000913 E. coli K12 bl N UiThfevTlvele ClalvAalia Al Clelvela.Xe AGTTTAATAAAAGCGCAGCTAACGAGAAAGCGAATTTTGTAGCTGAAA
ECs0921 NC_002695 E. coli 0157 TGCAATHTCTiCGCEALT A A e B AGITTAATAAAAGCGCAGCTAACGAGAAAGCGAATTTTGTAGCTGAAA
ybjG NC_002655 E. coli 0157 TGCAATWTCTLCGCEALIT .mﬁg lelelcli\e AGITTAATAAAAGCGCAGCTAACGAGAAAGCGAATTTTGTAGCIGAAA
ybjG NC_004431 E. coli CFT073  NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNARYEEEUNN SNV Yedelo Telel VXl Yy VN .eldle) vt b [el ):Yelel fer:VV.Xe
ybjG NC_004337 S. flexneri el VU Th T vele AW AL A Al ClelWeloXe AGTTTAATAAAAGCGCAGCTAACGAGAAAGCGAATTTT
ybjG NC_003197 S. typhimurium  NTACCALCTCLTCGeCLATIANAACCGCGCAGAGLGTLATGLY:
ybjG NC_003198 S. typhi NTACCAWCTCL TCGECLATY CGCGCAGAGLGTLATGLY, ; AT A
ybjG NC_000913 E. coli K12 CACGGTTAAGCACATTCTTACATTATTCGAGTATAGCTACGCTTTCTTTAAGTTTTATTTAACCTTGCCCGTTACAA
ECs0921 NC_002695 E. coli 0157 CACGGTTAAGCACATICTTACATTATTGCGAGTATAGCTACGCTTTCTTTAAGTTTTATITAACCTTGCCCGTTACAA
ybjG NC_002655 E. coli 0157 CACGGTTAAGCACATTCTTACATTATTGCGAGTATAGCTACGCTTTCTTTAAGTTTTATTTAACCTM GCCCGTTACAA
VS [ (T Z¥ %S NS -J T3 R Ae) 3 [o I & B C A CGGTTAA GCACATTCTTACATTATTGCGAGTATAGCTACGCTTTC TTTAAGETTTATTTAA (:CTIWT GCCCGETACAA!
ybjG NC_004337 S. flexneri CACGGTTAAGCACATTCTTACATTATTGCGAGTATAGCTACGCITTCTTTAAGTTTTATTTAACCT M GCCCGTTACAA
ybjG NC_003197 S. typhimurium
ybjG NC_003198 S. typhi

PmrA
ybjG NC_000913 E. coli K12 CACC*ACCGTAAACAGGCCGCTTGAGGGAAATAAGACGATGCCGCTTTACCCAGITTAACCTIGCACTTTATTCTCAACGA
(VRN (T 1-1 100 -1 Y E RN A= Bl CA CCleA CCGTAAACAGGCCGCTTGAGGGAAATAAGACGATGCCGCTTTACCCAGTTTAACCTGCACTTTATTCT CAACGA
ybjG NC_002655 E. coli 0157 CACC®ACCGTAAACAGGCCGCTIGAGGGAAATAAGACGATGCCGCTTTACCCAGTTTAACCIGCACTTTATTCT CAACGA
SCE L T ZY5h S -J T3 R ile) 3 [ & B C A CCit A CCGTAAACAGGCCGCTTGAGGGAAATAAGACGATGCCGCTTTACCCAGTTTAACCIGCACTTTATTCTCAACGA
ybjG NC_004337 S. flexneri CACC®ACCGTAAACAGGCCGCTTGAGGGAAATAAGACGATGCCGCTTTACCCAGITTAACCIGCACTTTATTCTCAACGA
ybjG NC_003197 S. typhimurium (@ A€GTTATYTTLTGCCATTGLCTTAAATCTCTTCL T ThleldeleleCARLTAAGACAAT, (S TGCTTTYiCCTCC{g GTTACG
ybjG NC_003198 S. typhi GG T TATL T T TGCCAT TG CTTAAATCTCTTCL TE Th {edele[eCAAL TAAGACAA T {8 TGC T T Ti:CCTCC[g:GTTACG
ybjG NC_000913 E. coli K12 CTTGCCTGTATTGGCTCCCTTTTAATCACTThlcleGuiClelclcVXe T\
ECs0921 NC_002695 E. coli 0157 [Gifddele iNildede (el il LU VLGN L rGCETEGGGARGIIA
ybjG NC_002655 E. coli 0157 CTTGCCIGTATIGGCTCCCTTTTAATCACTTW G ClelelesYXe T\
ybjG NC_004431 E. coli CFT073  [ideleleilesy\iileleles [olelebii b VL [0 Xeh b TGO T[S GGGARGLEIA
ybjG NC_004337 S. flexneri CETGCCIGTATTGGCECCCTTTTAATCACT
ybjG NC_003197 S. typhimurium GCATI TATGCTCAGTTTGCACGGGGTGAGCTEGETATCCCIE TTGATTTCATTGCTCCGAGCCTGGATGTTA
ybjG NC_003198 S. typhi GCA TATGCTCAGTTTGCACGGGGETGAGC S TATCCCif TTGATTTCATTGCTCCGAGCCTGGATGTTA

TTAATACCCATCTIGTAATAATTACTIAATGTTATCTTAATAAAGGTAAATTACTGICAGECCTCCGTAAAAGGAGGTTGA
TTAATACCCATCTGTAATAATTACTIAATGTTATCTTAATAAAGGTAAATTACTGICAGLICCTCCGTAAAAGGAGGTTGA
e o

TTATAGTTAACTICACTTAAGAAATATTTAATATGAAAATAGAAATCAAAATGICACATAAAACACTAGCACTTTAGCAA
AATAGTICGGATGATAAGTITTGICIGTTTTTCCIGAGTATCAAGCCAGCTCATACTCACGCCAGCACACTAAAATCAGGAG

TGGCTTCTTTTTTAGATCTTTGCCTTAGCCAGGCGCACACTICAATAATGATAGCAGTCAGATAATATGTACCAGGCATTA
[ACCICACGTIGTTGATGATATATTTACTTCGTTGAAAAACAATAAACATTGTATGTATTTTATTGGCGACGAAAAACTG

AAAGAAGCGTAATTCCATATACACCATTTACCTIGATTACTTTTCTIGCTAATATTTGCTAATTAATTATTTGCTAAAG!

sseJ NC_003197 S. typhimurium
PmrA
sseJ NC_003197 S. typhimurium
sseJ NC_003197 S. typhimurium
sseJ NC_003197 S. typhimurium
sseJ NC_003197 S. typhimurium
sseJ NC_003197 s. typhimurium [epiensnd: Vb v.v.V:\e J.V.{eler(ele)- Vol Vol v:

Figure 2 (Continued from previous page)
Local alignments of the most promising targets. Examples of local alignments obtained by phylogenetic footprinting of known PmrAB targets and of some
promising potential targets. Known motifs or (putative) PmrA motifs are indicated by a box. (a) yfbE (pmrH); (b) yjdB (pmrC); (c) ugd; (d) yibD; (e) ybjG
(mig-13); (f) STM1269 (aroQ); (g) sse/.

sequences analyzed (including that of Y. pestis). In pmrC,
encoding a gene with unknown function [15,22], the PmrA
motif is conserved in the intergenic regions of its orthologs in
E. coli strains, Salmonella species and Shigella. ugd encodes
a UDP-D-glucose dehydrogenase required for the synthesis of

AragN. Three two-component systems are involved in its reg-
ulation (PmrAB, PhoPQ and RcsCB) [12,15] and this is
reflected in the presence of the corresponding motifs: ugd
contains PmrA, PhoP and RcsB motifs. The experimentally
confirmed PmrA motif on the plus strand and part of the -10

Genome Biology 2004, 5:R9
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sequence as determined by Aguirre et al. have been conserved
in S. typhimurium, S. typht and E. coli [15]. The promoter of
ugd also has a hit of the PmrA motif on the minus strand. This
was, however, not confirmed by DNA footprint analysis [15]
and might represent a false positive. The PhoP motif on the
plus strand in ugd of Salmonella, although occurring as a
dyad, is not conserved in close orthologs and was recently
demonstrated to be non-functional [12]. The recognition site
for the ResB protein [12] is also conserved in E. coli. Lastly,
yibD encodes a putative glycosyltransferase. The PmrA motif
is conserved in E. coli. yibD has recently been identified as a
PmrAB target by a genome-wide mutagenesis study. Its
actual function is still unknown [22].

Experimental validation by expression analysis

Our in silico predictions pointed towards putative targets of
the PmrAB regulatory system. Some of these have functions
that were previously not associated with the PmrAB system.
To prove the strength of our in silico approach, four potential
targets were selected for biological validation: yibD (novel at
the time of our analysis), aroQ (STM1269), mig-13 and sseJ.
aroQ and yibD were selected because a perfect repeat of the
previously described PmrA half-site (CTTAAT [15]) was
detected in their respective intergenic regions. mig-13 (Figure
2) was chosen because it has previously been reported as a
gene selectively induced in macrophages, but with further
unknown regulation [40]. sseJ (Figure 2) was further ana-
lyzed because although PmrAB-regulated genes have been
implicated in animal virulence [2], no direct link between
SPI-2 (Salmonella pathogenicity island 2) gene regulation
and PmrAB has been demonstrated yet.

For each of these targets, green fluorescent protein (GFP)
reporter fusions were constructed and their expression was
determined by fluorescence-activated cell sorter (FACS) anal-
ysis in wild-type S. typhimurium and a pmrA::Tniod mutant.
Because the PmrAB system is sensitive to Mg2+and Fe3+ con-
centration, we tested the effect of these signals on the expres-
sion of the fusions [22] (Table 2). All experiments were
performed at pH 5.8 and pH 7.7. All fusions tested exhibited
the same PmrAB-dependent expression behavior at both pH
levels. In all experiments, pmrC was used as a positive
control.

The pmrC fusion showed a clear induction by either Mg2+
deprivation or Fe3+ excess. The observed level of induction
was higher for the Fe3+-dependent signal than for the Mg2+-
dependent signal and the combination of both signals seemed
to act synergistically. For both signals, induction was abro-
gated in a pmrA::Tniod background, indicating that induc-
tion by Mg2+ and Fe3+ is solely PmrAB dependent. For the
mig-13 fusion, similar observations were made, although
induction by low Mg2+ and the synergistic effect of both sig-
nals were less pronounced. mig-13 also exhibited a consider-
able background expression level both in a pmrA::Tniod
mutant and in the uninduced state in a wild-type background.

Genome Biology 2004, Volume 5, Issue 2, Article R9

aroQ was strongly induced by low Mg2+ and induction was
abrogated in a pmrA::Tniod background. The influence of
Fe3+ was less pronounced. In the case of yibD, the opposite
was found: the yibD gene was barely induced by low Mg2+but
Fe3+ excess resulted in a large induction. For the yibD fusion,
although Fe3+ excess, but not Mg2+ deprivation, seemed to be
a sufficient signal to trigger expression, both signals acted
synergistically. Also, induction of yibD was abrogated in a
pmrA::Tniod background. Compared to the other fusions,
the observed expression levels of the sseJ fusion were rather
low in the test conditions. Because sseJ showed a higher over-
all expression level at pH 5.8, these data were considered
most representative (see Table 2). Results show an upregula-
tion of sseJ expression in elevated Fe3+ concentrations that
was absent in the pmrA::Tniod background. As observed for
mig-13, sseJ was expressed at a background level in the
mutant pmrA::Tniod. Interestingly, even at low concentra-
tions, Mg2* seemed to counteract the Fe3+-dependent
induction.

Site-directed mutagenesis of the PmrA box

We constructed a set of mutant PmrA box sequences by site-
directed mutagenesis of the PmrA box of yibD. AT — GC and
GC — AT substitutions were introduced in the first half-site of
the PmrA box (Figure 3a). We focused on the first half-site, as
in the experimentally verified target pmrcC, the second half-
site overlaps with the -35 promoter site [14]. Expression was
compared in different mutagenized fusions and the nonmu-
tated fusion in the wild type and in the pmrA::Tniod strain in
all conditions mentioned above. For simplicity, only the
expression values for two inducing conditions are displayed
in Figure 3b. One is induction by the combined action of high
Fe3+ and low Mg2+ concentrations and the other is the
induction by raised Fe3+levels in the presence of high Mg2+.
Observations under all other conditions allowed us to draw
similar conclusions. Substitutions in the third and fifth posi-
tions of the motif box completely abrogated PmrAB-depend-
ent expression. Mutations of the first, second, fourth or sixth
position reduced PmrAB-dependent induction. Note that for
the mutation in the second position, expression was very low
but not completely abrogated. Results from this site-directed
mutagenesis experiment of one representative PmrAB target
allowed us to demonstrate unequivocally that the PmrA box
we identified was responsible for PmrAB-dependent tran-
scriptional activation. It also allowed us to further delineate
the sequence requirements of the PmrA consensus.

Other promising PmrAB targets

On the basis of the instances of the PmrA motif in experimen-
tally verified PmrAB targets of Salmonella (verified previ-
ously or validated in this study), a PmrA consensus was built
(Figure 4). The motif consensus of PmrA was converted into
a regular expression (A/C)(C/T)T(A/T)A(T/G/A) N.NTT(A/
T)A(T/A/G). To construct this regular expression we only
considered the two conserved half-sites, because the PmrA
motif is believed to be a dyad [15]. We preferred the part
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Expression analysis of the GFP reporter fusions

Fusion Strain 10 mM MgCl, 10 uM MgCl, 100 uM FeCly 10 mM MgCl, 10 uM MgCl,
100 uM FeCly 100 uM FeCly
pmrC::GFP WT 6.06 (0.18) 16.8 (1.42) 70.53 (3.84) 27.39 (4.41) 83.2 (3.21)
pmrA- 1.00 (0.01) 1.02 (0.02) 1.08 (0.03) 1.03 (0.03) 1.16 (0.12)
mig-13::GFP WT 6.17 (1.55) 13.50 (2.02) 35.81 (4.67) 17.86 (5.04) 49.23 (5.43)
pmrA- 2.69 (0.11) 4.32 (0.48) 5.2 (0.09) 2.67 (0.16) 9.64 (1.19)
aroQ::GFP WT 2.32 (0.22) 20.39 (1.54) 19.39 (0.53) 4.38 (0.19) 19.48 (2.07)
pmrA- 1.06 (0.02) 1.09 (0.02) 1.71 (0.09) 1.02 (0.01) 1.09 (0.03)
yibD::GFP WT 1.25 (0.02) 1.67 (0.26) 33.35 (7.01) 27.52 (5.64) 52.46 (8.98)
pmrA- 1.26 (0.02) 1.21 (0.06) 1.30 (0.02) 1.14 (0.02) 1.81 (0.44)
ssej::GFP WT 7.68 (1.55) 11.25(1.46) 22.58 (1.01) 3.80 (1.13) 8.03 (1.27)
pmrA- 5.64 (0.72) 8.72 (1.05) 7.35 (1.55) 2.99 (0.43) 6.47 (1.36)

All experiments were performed twice. Values indicate the average mean peak fluorescence measurements of at least three samples for the

populations grown under the conditions indicated for one representative experiment. Values in parentheses represent standard deviations. All values
are expressed in arbitrary units. Strains used: WT = ATCC14028s and pmrA- = pmrA:Tn10d. For pmrC, aroQ, mig-13 and yibD, values represented in
the table correspond to experiments performed at pH 7.7. Similar results were obtained at pH 5.8 (data not shown). For ssej, values correspond to
experiments performed at pH 5.8 because at this pH the overall measured expression was higher. The constitutive gfp fusion (pFPV25.1) varied less

than 10% between the conditions tested.

between the conserved half-sites of the regular expression to
be represented as degenerate (that is, N,). Indeed, the
observed degree of conservation in the intermediate part of
the motif model (Figure 4b) is probably related to the
restricted sample size of the training set rather than being an
intrinsic property of the motif. Promising motifs (indicated in
bold in Table 1) are, therefore, motifs that match this regular
expression and thus contain nucleotides that occur in the con-
served half-sites of one of the experimentally verified exam-
ples. Promising targets for which the putative PmrA motif
was also conserved in species other than Salmonella were
mig-13, yrbF, yjgD, ybdO, yejG, lasT and ybdN. Promising
targets only present in S. typhimurium and/or S. typhi were
STM1269 (aroQ), STM1273, sseJ and IpfA. Note that this list-
ing is just based on an arbitrary selection criterion, that is, a
preliminary PmrA motif consensus that will be improved as
more PmrAB targets become experimentally validated. As
well as the targets mentioned above, Table 1 contains other
targets that are of interest because their annotation relates to
the PmrAB system (such as yncD).

Discussion

Putative PmrAB targets were detected by genome-wide
screening of S. typhimurium intergenic sequences using a
PmrA motif model. If possible, the confidence in the pre-
dicted motifs was strengthened by a cross-species compari-
son: we tested whether the PmrA motif was conserved in the
intergenic regions of close homologs in related species. To
this end, we developed a two-step procedure for phylogenetic
footprinting. In the first step, a motif-detection procedure

based on Gibbs sampling was performed to generate a list of
motifs. In the second step, these motifs were used as seeds to
generate local multiple alignments. Eventually, the biological
relevance of the obtained alignments was assessed.

We used the alignments rather than a listing of the high-scor-
ing motifs obtained by Gibbs sampling for the following rea-
sons. First, we observed, as also reported by McCue et al., a
high overall similarity in intergenic regions of the selected
species [34]. In general, the overall degree in conservation
between the intergenic sequences of close homologs is about
93.56% for the sequenced representatives of Escherichia and
Shigella species, 69.21% for Shigella and Salmonella and
53.31% for Salmonella and Yersinia. As a result of this prop-
erty (high correlation in the data), not only the motif itself
turns out to be conserved, but also its local neighborhood.
Moreover, the degree of conservation between the aligned
sequences in a biologically relevant alignment will reflect, in
most cases, the phylogenetic relatedness of the species from
which the sequences are derived (see Figure 2 for examples).
By selecting the most promising alignment seeds (based on
the appropriate heuristics for the scores) and constructing a
local alignment with these seeds, we could also evaluate the
local neighborhood of the seed. If this one seemed to be con-
served as well, we could be more confident in the obtained
alignment and in the motifs contained within the conserved
parts. Therefore, the use of local alignments allows a better
judgment on the reliability of the motifs.

Second, Gibbs sampling is a stochastic procedure. The algo-
rithm has to be run repeatedly on the same dataset, each time
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Figure 3

Site-directed mutagenesis of the PmrA box in yibD. (a) Construction of six species of the yibD promoter mutant, designated pCMPG5615 to pCMPG5620,
each with a single base substitution (T — G or A — C) in the PmrA box. Promoters were fused to GFP and promoter activity was assessed by FACS
analysis. (b) Plot of the normalized expression values of the six mutant fusions and the wild-type fusion measured in two distinct conditions in the wild
type and pmrA:Tn/0d mutant background. Gray bars represent condition | (pH 7.7, 100 uM FeCl; + 10 uM MgCl,), white bars correspond to the
expression values observed in condition 2 (pH 7.7, 100 pM FeCl; + 10 mM MgCl,). w, wild-type background; m, pmrA::Tn/0d mutant background. The
pmrC::GFP fusion was included as a positive control. Bars represent the standard deviations of three independent measurements.

generating potentially different motifs. As a consequence, the
output of a motif-detection approach can be simultaneously
redundant and non-exhaustive: some statistically strong
motifs are detected repeatedly in different runs. On the other
hand, some motifs might never be detected. Indeed, because
Gibbs sampling was originally designed for unrelated
sequences and because of the high correlation in the data, the

number of possible equally scoring motifs (local optima)
might be so high that many runs have to be performed before
all motifs have been covered. All these local optima coincide
with motifs that, when used as seeds, will result in a similar
alignment. The same alignment can thus be obtained by sev-
eral motifs, but there is no guarantee that all possible motifs
that result in the same alignment will be detected by Gibbs
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(a) Experimentally verified PmrA targets of S. typhimurium

ugd (S. typhimurium) CTTAAT ATTAA CTTAAT
pmrC (S. typhimurium) CTTAAG GTTCA CTTAAT
pmrC (E. coli) CTTAAG GTTGG CTTAAT
pmrH (S. typhimurium) CTTAAT GTTAA TTTAAT
pmrH (E. coli) CTTAAG GTTAA GTTAAT
pmrH (Y. pestis) CCTAAG GTTCA TTTAAG
pmrD (S. typhimurium) ATTAAT GTTAG GTTAAT
mig-13 (S. typhimurium) CTTTAA GGTTA ATTTAA
mig-13 (E. coli) CTTTAA GTTTT ATTTAA
STM1269 (S. typhimurium) CTTAAT GTTAT CTTAAT
yibD (S. typhimurium) CTTAAT AGTTT CTTAAT
ssed (S. typhimurium) CTTAAG AAATA TTTAAT

(b) Adapted motif logo
12 PmrA binding sites
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Figure 4

Refined consensus of the PmrA box. (a) Alignment of all experimentally
verified PmrA sites ([15] or this work) in S. typhimurium [1]. PmrA sites in
the orthologs of these respective experimentally verified genes are also
displayed if these PmrA motif instances deviated from the PmrA motif in S.
typhimurium. (b) An adapted motif model of the PmrA site was built
(represented by its logo) on the basis of the sequences represented in (a).

sampling. Therefore, an alignment is a better summary of the
degree of conservation between the intergenic regions than a
listing of the highest-scoring motifs.

Moreover, regulatory systems such as PmrAB might have
acquired some very species-specific targets. For such highly
specialized regulatory systems, motifs are likely to be present
in the intergenic sequences of a selected subset of orthologs
only. Because such motifs occur in a restricted number of
sequences of the dataset, they will not necessarily correspond
to the highest-scoring motifs. Thus, they might be overlooked
when selecting on high-scoring motifs by, for instance, setting
a threshold on the score. Once a reliable local alignment of a
set of intergenic sequences is obtained, one can judge the
degree of confidence to put on the prediction of the motif of
interest not only by checking in which subset of species the
motif is conserved, but also by taking into consideration other
factors, such as the functional annotation of the putative tar-
get. The motifs that we select on the basis of our heuristic will
result in a biologically relevant alignment that includes the
maximal number of species. As such, our heuristic tries to
overcome the fact that Gibbs sampling is intrinsically unable
to cope with correlated data. Note that the motif of interest
(PmrA motif) does not necessarily have to correspond to the
motif used to produce the alignment.
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We showed that our in silico phylogenetic footprinting
approach can be used to confirm targets detected by genome-
wide screening. So far, it can only be used for species that
show a high degree of conservation in their intergenic
regions, similar to the conservation observed in this study. As
more complete genomic data become available, the approach
might be extended to other species.

As suggested previously [34], the high observed similarity in
intergenic sequences might be due to the small phylogenetic
distance between the species we analyzed. However, it cannot
be excluded that because of the small size of the intergenic
regions in bacteria and the very similar habitat and mecha-
nism of regulation among the y-proteobacterial species used
in this study, a large part of the complete intergenic region is
functional and therefore conserved. This hypothesis was also
put forward by Rajewsky et al. [41]. The alignment of the
intergenic region of the well-characterized ugd indeed points
in that direction. Large parts of the conserved regions of the
alignments correspond to experimentally verified motifs.

Remarkably, most potential PmrAB-regulated genes exhib-
ited a footprint of the PmrA motif in E. coli only, and several
target genes had no counterpart at all in organisms other than
Salmonella species. This indicates a high degree of specializa-
tion of the PmrAB two-component system in Salmonella.
Such specialization could also explain the considerable differ-
ences between PmrAB-dependent regulons in related species.
For instance, in both Y. pestis and S. typhimurium the atten-
uated virulence of phoP mutants is ascribed to a defect in LPS
modification, a process shown to be PmrAB-dependent [42].
So far, two S. typhimurium loci have been postulated to be
involved in this LPS remodeling: pmrHFIJKLM and ugd.
Only for pmrH did we detect an ortholog in Y. pestis and a
conserved footprint of the PmrA motif in the promoter region
of this ortholog. The Ugd protein does not even have a func-
tional counterpart in Y. pestis. This low similarity in PmrAB
regulon composition indicates that a different network of
genes must be responsible for a similar phenotype in distinct
species. This is not completely unexpected in view of the very
different LPS composition of Salmonella and Y. pestis [42].

For most of the known experimentally verified targets, clear
phylogenetic footprints of the PmrA motif could be detected
in the intergenic regions of close homologs. In the intergenic
region of pmrD we could recover the consensus sequence
only partially (that is, one half-site) because the second half-
site overlaps with the coding region (data not shown) and this
was not included in the current analysis. Another PhoPQ-
dependent gene that contributes to resistance to antimicro-
bial peptides is mig-14 [10]. However, we could not find the
presence of a clear PmrA consensus in the promoter of mig-
14. Neither could we detect a PmrA motif in dgoA, which was
previously shown to be regulated by PmrAB [22]. This would
indicate that both targets are only indirectly dependent on
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PmrAB. It can, however, not be excluded that they represent
false negatives of our screening.

As well as the known targets, several putative new predictions
could be made. Some of these predictions are consistent with
previously published observations. Indeed, the PmrAB sys-
tem is part of a complex regulatory cascade acting down-
stream of the pleiotropic PhoPQ system. The PhoPQ regulon
is responsible for intracellular survival of bacteria and genes
dependent on PhoPQ are induced in bacteria inside macro-
phages. Part of the PhoPQ regulon has been discovered to be
dependent only indirectly on PhoPQ, via PmrAB. This
PmrAB-dependent subset is known to confer resistance to
cationic peptides by encoding genes involved in LPS modifi-
cation and genes contributing to resistance to raised Fe3+con-
centration. Genes encoding proteins involved in modification
of membrane components and outer-membrane proteins are
therefore sensible additional putative PmrAB targets.
Another target worth mentioning in view of the Fe3+-sensitiv-
ity of the PmrAB system is yncD, which encodes a putative
outer-membrane receptor for iron transport.

Phage remnants, such as mig-3, have been described as mac-
rophage inducible, PhoPQ-dependent genes [40], and thus
can be PmrAB-dependent. This might explain the PmrA motif
in the intergenic region between STM1868A and mig-3.
Detweiler et al. showed that two genes, virK and somA, both
coexpressed with the SPI-2 system, confer resistance to cati-
onic peptides and their expression is PhoPQ-dependent. Also,
four fimbrial operons had genes that were coexpressed with
SPI-2 [43]. Predictions of the PmrAB-dependence of sseJ,
which encodes a secreted effector of the SPI-2 system, or of
genes that are involved in fimbrial synthesis (such as in IpfA,
encoding the S. typhimurium long polar fimbria A precur-
sor), could therefore be in agreement with these findings.
Recently, the study of Kim et al. related PmrAB-dependent
regulation to swarming motility functions in S. typhimurium
[44]. This could explain why we detected a putative PmrA
motif in the intergenic region of flhC, which encodes a master
transcriptional activator of flagellar genes.

To confirm the predictive power of our methodology further,
four putative PmrAB targets were validated biologically.
Expression analysis clearly demonstrated PmrAB-depend-
ence of yibD, which confirms the recent observations of
Tamayo et al. [22]. The observed PmrA-dependence of mig-
13 accords with its being upregulated in macrophages in in
vivo conditions [40]. The clear PmrAB-dependence of aroQ,
which encodes a periplasmic chorismate mutase, is striking.
In general, chorismate mutases are involved in the synthesis
of tyrosine and phenylalanine and are key to the synthesis of
a plethora of secondary metabolites [45]. The function of
periplasmic chorismate mutases, which differ from the cyto-
plasmic chorismate mutases in their long carboxy-terminal
extension [46], is still unclear. Periplasmic AroQ proteins
have also been detected in Y. pestis, Pseudomonas aerugi-
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nosa, Mycobacterium species, Erwinia herbicola and in the
phytoparasitic nematode Meloidogyne javanica [46]. Strik-
ingly, all these organisms containing AroQ interact with a
eukaryotic host. This observation, together with the fact that
AroQ is dependent on the key virulence regulator PmrAB in S.
typhimurium, suggests that the as-yet-unknown function of
AroQ might be involved in bacteria-host interactions.

Despite its low expression level in our in vitro conditions, the
sseJ fusion showed a clear PmrAB-dependent induction by
Fe3+ excess. SselJ is a secreted effector protein that is translo-
cated across the membrane of the Salmonella-containing
vacuole (SCV) by SPI-2. From recent evidence it was specu-
lated that the putative acyltransferase activity of SseJ would
be involved in modifying the lipid composition of the SCV
[47,48], thereby interfering with the trafficking and matura-
tion properties of the SCV in infected cells. The PmrA-
dependence of sseJ would therefore link expression of genes
involved in bacterial LPS modification with those involved in
regulating the lipid composition of the SCV membrane.

Further experimental analysis will shed light on how these
previously undescribed PmrAB-dependent proteins, with
unknown functions, relate to the known part of the PmrAB-
dependent regulon.

The extent to which each of the tested strains reacted to the
signals Fe3+ or/and Mg2+ varied considerably. This is not sur-
prising in view of the complex regulatory system that inte-
grates both these signals. Indeed, both signals are transduced
via the PhoPQ, PmrD, PmrAB multicomponent system,
which includes a posttranslational signal transduction and a
transcriptional feedback loop [1]. Depending on the affinities
between the interacting components of such dynamic sys-
tems, small changes in the initial concentrations of the com-
ponents might result in large differences in the observed
expression levels [49]. A more detailed study of the dynamics
of this system might reveal how such systems can integrate
signals so differently.

Site-directed mutagenesis of the PmrA box in the yibD pro-
moter indicated a crucial role for the T at position 3 and the A
at position 5 of the first half-site of the motif. As can be
deduced from the consensus site in Figure 4, no degeneracy is
allowed at positions 3 and 5. This observation allows us to
extrapolate to a certain extent the sequence requirements of
the PmrA box in yibD to other PmrAB targets. Some positions
seem essential, whereas it appears that the specific choice of
nucleotide at the other positions affects the level of induction.
By altering the nucleotides, the binding affinities of the regu-
latory protein to the box can be modified, allowing specific
fine-tuning of gene expression in a cell.

Genome Biology 2004, 5:R9
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Conclusions

We conclusively demonstrate that our in silico approach reli-
ably identifies additional PmrAB-dependent targets.
Although false positives will still be present among these pre-
dicted targets, the method offers an interesting approach for
further elucidation of genetic networks involved in the
expression of S. typhimurium virulence genes. We predicted
the PmrAB-dependent regulation of four additional targets:
yibD, aroQ, mig-13 and sseJ. Our approach might become
extendable to other species when more genome sequences
become available.

Materials and methods

Selection of intergenic sequences

Genome sequences were obtained from GenBank [50]. All
intergenic regions used in this study were extracted using the
modules of INCLUSive [51] to automatically parse GenBank
entries [52]. Here, we define an intergenic sequence as a
region that contains the noncoding sequence between two
coding regions. No overlap with coding regions is allowed.
Intergenic regions with lengths smaller than 10 base-pairs
(bp) were discarded because of computational reasons.

Construction of motif models

A motif model (a probabilistic representation of the consen-
sus DNA pattern that is recognized by the respective regula-
tory protein) for PmrA was constructed using MotifSampler
[53]. The PmrA training set consisted of the promoter regions
of three known PmrAB-regulated genes (ugd [7,15,17], pmrH
[7,14,17,19] and pmrC [2,14]) for which the binding of the
PmrA protein to the promoter regions was verified by DNA
footprint analysis [14,15].

Genome-wide screening

The intergenic regions of the complete genome of S. typhimu-
rium LT2 (NC_003197 [38]) were screened using MotifLoca-
tor [54,55]. The scoring scheme used by MotifLocator is
extensively described in Thijs et al. [55] and uses an extension
of the classical position-weight matrix scoring scheme [56].
Given the motif model #and the background model B,, a score
W(x) is computed for each window x of length [ in the
sequence S. W(x) compares the score of the subsequence
within the window being generated by the motif model to the
score of the subsequence within the window being generated
by the background model. b;: nucleotide at position j in the
segment.

W(x) = log(——12 =

P(x|6) !
P(x|S,B,) =

[log(6}") ~log(P(b; | S, B,))]
J=1

Both the plus and minus strand were screened using a back-
ground model of order 3. The higher-order background
allows implicit compensation for motifs that are located in a
context highly resembling the global nucleotide composition
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of the genome. To apply a threshold on the scores, the scores
of different motifs were normalized such that their values
ranged between 0 and 1. The normalized scores W(x) are dis-
played in Table 1.

W) = VO~ Woin ioh - — minW(x) and W, = maxW(x).
X X

max ~ "/min

Hits with a score above 0.75 were retained (corresponding to
a selection of the 0.003% top-scoring hits of the total number
of possible motif positions in the genome. Possible positions
are identified as overlapping windows of length [). To give a
rough assessment of the number of hits with a score similar to
the chosen threshold that could be expected from the specific
nucleotide composition of the genome, we generated 100 ran-
dom sets of intergenic sequences using a third-order back-
ground model. These random sets were scored with the same
PmrA motif model. From these results it appeared that the
true set contained three times more hits with a score above
the threshold than an average random genome.

Identification of datasets

Highly similar homologs of the putative PmrAB-regulated
genes were identified in the genome sequences of S. typhimu-
rium (NC_o003197), S. typhi (NC_003198), S. flexneri
(NC_004337), E. coli O157:Hy (NC_002695), E. coli
0157:H7 EDL933 (NC_002655), E. coli K12 (NC_000913), Y.
pestis CO92 (NC_003143) and Y. pestis KIM (NC_004088).
In general, only true orthologs are likely to have retained a
similar function and therefore a similar mechanism of regula-
tion [35]. However, ortholog identification is a difficult prob-
lem and discriminating between true orthologs and paralogs
is not always straightforward. Because our motif-detection
algorithm is, to some extent, robust against the presence of
noise and allows for the presence of sequences that do not
contain the motif [57], we did not make an a priori distinction
between true orthologs and paralogs if both appeared highly
similar to the original protein. This motivated us to use the
principle of clusters of orthologs for dataset construction
[58]. The pairwise BLAST scores obtained by mutually align-
ing the whole-genome sequences using BlastP [59] were used
as input of the cluster program TRIBE-MCL [60]. Stringent
criteria were applied to retain only closely related orthologs
and paralogs (cut-off of the BLAST hit was an E-value of 1e-
80), For those proteins that, when BLASTed against them-
selves, gave rise to an E-value higher than 1e8° (yjbE,
STM1926, STM0344, yhcN, STM1868A, yceP, atpF, yjgD,
csrA, ybfA) the threshold was relaxed (E-value 1e-20). The
choice of the stringent threshold was essential to maximally
reduce the noise in the datasets.

Phylogenetic footprinting by Gibbs sampling

We used a two-step procedure for phylogenetic footprinting.
In the first step, Gibbs sampling is performed to generate a
list of motifs. Subsequently, local alignments are generated by
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selecting motifs that can be used as alignment seeds and by
assessing the relevance of the alignments by a test statistic.

Motif detection by Gibbs sampling

An advanced Gibbs sampling procedure for motif detection
was used (MotifSampler). MotifSampler allows us to search
for overrepresented motifs in each dataset. The motif length,
the maximal number of different motifs and the background
model are user-defined parameter settings of the algorithm
described in Thijs et al. [53]. A recent extension of the algo-
rithm allows to automatically determine the number of
instances of a certain motif per sequence [55] and requires a
predefined indication on the prior probability of expecting at
least one motif per sequence. For each dataset, 100 runs of the
MotifSampler were performed under the following
conditions: motif lengths varying from 6, 8, 10, 12; back-
ground order 0; prior probability default value 0.7. Because
Gibbs sampling is a stochastic procedure, each run can give
rise to different motifs. To summarize the results from the
100 runs, all detected motifs were mutually compared and
similar motifs were grouped. The information content was
used as a similarity measure to compare motifs. For each
dataset, therefore, a list of different potential motifs was
obtained. Motifs in this list were ranked according to their
log-likelihood score (LL-score) [53].

Generating reliable local alignments using the detected motifs
From the obtained list, motifs that could be used as seeds to
generate a biologically relevant alignment were selected using
a heuristic [61]. Motifs with a high LL-score that occurred
preferentially once in each sequence were chosen (starting
with those motifs that had the highest consensus score).
Moreover, we preferentially selected motifs that occurred in
the maximal number of species. For each dataset, multiple
alignments were constructed using the position of these
retrieved motifs as alignment initializations (seeds) until a
reliable alignment was obtained. The alignment was consid-
ered biologically relevant if within a window of 100 bp around
the motif it exhibited a degree of conservation that reflected
the overall observed homology between intergenic sequences
of the selected species (interspecies homology).

To assign a more quantitative criterion to the alignment, a p-
value was assigned to each alignment that was calculated as
follows: for each window of 100 bp around the motif, the larg-
est conserved block not overlapping with the core motif was
identified (using the consensus score of minimal 0.7 as mini-
mal similarity measure). This p-value expresses the probabil-
ity of observing a conserved block of the same length in a
randomly aligned dataset of similar composition. Distribu-
tions of conserved blocks in randomly aligned sequences were
constructed [62]. These random datasets take into account
the observed high pairwise sequence homology between
intergenic sequences derived from similar species (serovars)
(homology between E. coli sequences, homology between Sal-
monella sequences, homology between Y. pestis sequences),

Genome Biology 2004, Volume 5, Issue 2, Article R9

but not the interspecies homology between intergenic regions
(for example, between E. coli and Salmonella). All alignments
with a p-value less than 0.15 (the p-value of ugd) were consid-
ered as relevant (indicated in Table 1 with 'm"). Because the
obtained alignments are local, they are gapless. In some
cases, more than one alignment might be essential to cover
the complete intergenic region.

Selected alignments are displayed in the supplementary
information at [39]. Sequence editing was done in BioEdit
[63].

Functional annotation

Functional annotation was derived from the National Center
for Biotechnology Information (NCBI) [38,52] and from the
Sanger annotation of S. typhi [64]. Specific genomic context
was derived from NCBI [38,52]. The distribution of the puta-
tive targets (unique for Salmonella species versus more
widely distributed), as derived from our clusters of ortholo-
gous groups (COGs), was verified by comparison to the anal-
ysis of McClelland et al. [38], who included, in addition to the
species we used, several subspecies of Salmonella (six
genomes), and species more distantly related to Salmonella
(Klebsiella pneumoniae).

Bacterial strains and growth conditions

The bacterial strains and plasmids used in this study are listed
in Table 3. Bacteria were grown overnight at 37°C with aera-
tion in Luria-Bertani (LB) broth or in the nitrogen minimal
medium of Nelson and Kennedy [65] with modifications as
previously described [66]. The pH of the medium was buff-
ered with 100 mM Tris-HCI, adjusted to pH 7.4 or pH 5.8.
MgCl, was added at a final concentration of 10 uM or 10 mM.
FeCl, was used at a final concentration of 100 uM from a
freshly prepared 10 mM stock. Antibiotics were used, when
appropriate, at the following concentrations: tetracycline, 30
pg/ml; and ampicillin, 100 pg/ml.

Molecular methods

Plasmid DNA, after passage through S. typhimurium LB5010
[67], was introduced into bacterial strains by electroporation.
Polymerase chain reaction (PCR) was carried out in a Per-
sonal Mastercycler (Eppendorf, Hamburg, Germany) with
Pfx DNA polymerase, using the manufacturer's instructions.
The constructs containing the putative promoter regions of
yibD, mig-13, aroQ, sseJ and pmrC and the site-directed
mutated yibD promoter fragments were all verified by
sequence analysis.

Construction of plasmids

To construct the gfp reporter fusions of yibD, mig-13, aroQ,
sseJ and pmrC, the primers listed in Table 4 were used in a
PCR reaction (as described above) to amplify the respective
promoter regions from the ATCC14028s genome. Restriction
sites in the primers are indicated in bold face in Table 4. The
promoter fragments were digested with EcoRI and BamHI
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Bacterial strains

Strain or plasmid Relevant genotype

Reference or source

Salmonella ATCC 14028s Wild type ATCC
JSG421 pmrA:Tn/0d [21] kind gift of ).S. Gunn
LB5010 metA22 metE551 ilv-452 leu-3121 trpA2 xyl-404 galE856 hsdLTé hsdSA29 [67]
hsdSBI21 rpsL120
E. coli DH5a F$80AlacZM 15 A(lacZYAargF)U169 deoP recAl endAl hsdRI7 (r,m,) Gibco BRL
Plasmids ~ pCRII-TOPO  Cloning vector, AmpR Invitrogen
pFPV25 ColEl mob bla promoterless gfpmut3, AmpR [40] kind gift of R. Valdivia and S. Falkow
pFPV25.1 Constitutive rpsM promoter in pFPV25, AmpR [40] kind gift of R. Valdivia and S. Falkow
pCMPG561 | pFPV25 with yibD promoter This work
pCMPG5612  pFPV25 with ybjG promoter This work
pCMPG5613  pFPV25 with STM1269 promoter This work
pCMPG5614  pFPV25 with yjdB promoter This work
pCMPG5621 pFPV25 with sse/ promoter This work
pCMPG5615  pCMPG561 | with point mutated putative PmrA motif C—>A This work
pCMPG5616  pCMPG561 | with point mutated putative PmrA motif T>G This work
pCMPG5617  pCMPG561 | with point mutated putative PmrA motif T>G This work
pCMPG5618  pCMPG561 | with point mutated putative PmrA motif A—>C This work
pCMPG5619  pCMPGS561 | with point mutated putative PmrA motif A—C This work
pCMPG5620  pCMPG561 | with point mutated putative PmrA motif T—>C This work

and cloned into pCRII-TOPO that had been digested with
EcoRI and BamHI. The promoter fragments were subcloned
as EcoRI/BamHI fragments into the corresponding sites of
PFPV25 [40], resulting in the pPCMPG plasmids listed in Table
3. These plasmids were electroporated into ATCC14028s and
JSG421 [21] after propagation through LB5010, as described
above. Cloning steps were carried out in E. coli DH5a..

Table 4

The single base-pair substitutions in the putative PmrA motif
occurring in the yibD promoter sequence were introduced via
a PCR approach using the QuickChange Site-Directed muta-
genesis kit (Stratagene, La Jolla, CA), according to the manu-
facturer's instructions. The yibD promoter sequence
introduced into pCRII-TOPO was used as the parent plasmid
and appropriate primers were applied (sequences not

Primers used to construct the GFP promoter fusions

Name Sequence 5' to 3'

Description

Amplification of promoter regions

Pro-115 CCGAATTCTAATTCGAGTTGCTTAAAGGCGGC
Pro-116 CCGGATCCGCTCCCGCATTATATAACGGG
Pro-117 CCGAATTCGCCAATAAAAACCGCGCAGAGTG
Pro-118 CCGGATCCAGCGAGTTGTTAAGGTTTTCCAGC
Pro-119 CCGAATTCGAAGATTCCGCAGAATCAACGGCC
Pro-120 CCGGATCCGGTGCTGCACATCAATAAAGAACAAAG
Pro-121 CCGAATTCGTATTGCATCTGGGCGGTCATCG
Pro-122 CCGGATCCAGGCGATTTGCCCAAGAACAGG
Pro-224 ATGAATTCGCTTCCCCATCCCAAACCACC

Pro-225 ATGGATCCGGAAGGCGTGCGCTTTCTTTTATC

Amplification of yibD promoter region
Amplification of yibD promoter region
Amplification of mig-13 promoter region
Amplification of mig-13promoter region
Amplification of aroQ promoter region
Amplification of aroQ promoter region
Amplification of pmrC promoter region
Amplification of pmrC promoter region
Amplification of ssef promoter region

Amplification of sse/ promoter region

Restriction sites in the primers are indicated in bold type.
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shown). The site-directed mutated yibD promoter fragments
were subcloned into pFPV25 (EcoR1/BamHI), resulting in
plasmids pCMPG5615 — pCMPG5620, as listed in Table 3.
These reporter plasmids were electroporated into
ATCC14028s and JSG421.

Fluorescence-activated cell sorter-based expression
analysis

Bacterial strains harboring the reporter constructs were
grown overnight in nitrogen (N)-minimal medium pH 7.4
plus 10 mM MgCl,, harvested, washed in N-minimal medium
pH 7.4 without MgCl,, and diluted 1:100 in N-minimal
medium pH 7.4 plus 10 mM MgCl,. Mid-log-phase bacteria
were then inoculated into the indicated media and grown for
3 h to allow expression of GFP. Bacteria were diluted into PBS
and analyzed by flow cytometry with a Becton Dickinson
FACSCalibur and CellQuest acquisition and analysis software
[40] with gates set to forward and side scatters characteristic
of the bacteria.

Nomenclature

As the gene names used in the annotation of the S. typhimu-
rium genome sequence do not always match the 'common'’
names used in the PmrAB literature, we give a summary of
the synonyms below. STM1269 (aroQ); ybjG (mig-13);
pmrAB (basSR); ugd (udg, pagA, pmrE); pmrHFIJKLM
(yfbE, pmrF, yfbG, STM2300, pqa, STM2302, STM2303);
pmrC (yjdB); pmrG (ais); pbgP (yfbE,pmrH).

Availability of data
All additional information of our analysis is available on our
supplementary website [39].
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