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A high performance test of differential gene expression for oligonucleotide arraysLogit-t employs a logit-transformation for normalization followed by statistical testing at the probe-level. Using four publicly-available datasets, together providing 2,710 known positive incidences of differential expression and 2,913,813 known negative incidences, perform-ance of statistical tests were: Logit-t provided 75% positive-predictive value, compared with 5% for Affymetrix Microarray Suite 5, 6% for dChip perfect match (PM)-only, and 9% for Robust Multi-array Analysis at the p < 0.01 threshold. Logit-t provided 70% sensitivity, Micro-array Suite 5 provided 46%, dChip provided 53% and Robust Multi-array Analysis provided 63%. 

Abstract

Logit-t employs a logit-transformation for normalization followed by statistical testing at the probe-
level. Using four publicly-available datasets, together providing 2,710 known positive incidences of
differential expression and 2,913,813 known negative incidences, performance of statistical tests
were: Logit-t provided 75% positive-predictive value, compared with 5% for Affymetrix Microarray
Suite 5, 6% for dChip perfect match (PM)-only, and 9% for Robust Multi-array Analysis at the p <
0.01 threshold. Logit-t provided 70% sensitivity, Microarray Suite 5 provided 46%, dChip provided
53% and Robust Multi-array Analysis provided 63%.

Background
Oligonucleotide arrays, together with spotted arrays, hold the
promise of providing transcriptome-wide snapshots of gene
expression in support of making great progress in under-
standing disease [1]. The common approach to analysis of
these data is to estimate indexes of gene expression in all sam-
ples and carry out statistical inference methods on the
indexes [2,3]. To produce gene-expression indexes, fluores-
cence intensities from spots on the arrays are algorithmically
combined according to a statistical or physical model of the
relationship between RNA concentration and fluorescence
[4-8]. Among the most popular and best studied methods are
the Affymetrix Microarray Suite 5 (MAS5), the dChip perfect
match (PM)-only model of Li and Wong, and the Robust
Multi-array Analysis (RMA) of Irizarry and co-workers
[4,7,8]. The two measures that typically are of interest are dif-
ferential gene expression and the corresponding fold change
of expression [4]. Irizzary et al. recommend three criteria for
comparing gene-expression indexes: precision, consistency of
fold change, and specificity and sensitivity of the measure's
ability to detect differential expression [7]. This work

provides a major contribution to the last criteria, with a minor
contribution to the first two.

It has become increasingly evident that array studies suffer
from false discoveries and many efforts to reduce them have
been published recently [3,9,10]. Many methods limit occur-
rence of false positives (FP) by tuning the significance thresh-
old, sometimes using an expression-level-dependent
threshold [9]. With any of these methods, order statistics
associated with the gene expression changes are fixed, so
reduction in FP rate results in an increase in false negative
(FN) rate. Here we approach this problem from a novel view-
point that utilizes statistical testing at the probe level and a
logit-transform for normalization, resulting in dramatic
reduction in FP incidences with little effect on false negatives
compared with current methods.

Given a dataset with known incidences of differential expres-
sion (known positives) and known incidences of no differen-
tial expression (known negatives), one can compare the
performance of multiple statistical testing procedures.
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Positive-predictive value (PPV), the likelihood that a positive
test result indicates a true positive (TP), is perhaps the most
important performance measure when using these data,
rather than sensitivity and specificity as recommended by Iri-
zarry et al. [7]. PPV works from the standpoint of the output
gene list and addresses the issue of how much credence can be
given to any gene on the list. Sensitivity and specificity work
from the standpoint of the entire dataset and address the pro-
portions of positives and negatives that appear in the list.
Considering that one might expect 100 or so genes to be dif-
ferentially expressed, a procedure with 90% sensitivity and
90% specificity would produce a gene list of about 1,000
genes, 90 of which are TP. The PPV for this list is 9%, which
to us illustrates the utility of the procedure better.

Oligonucleotide arrays, as manufactured by Affymetrix
(Cupertino, CA), typically employ multiple probe sequences
to assay expression of a given gene. The intensity of the fluo-
rescence signal for each probe in each sample consists of non-
specific or background signal and specific signal. The task of
estimating these signals and combining them into a single
gene-expression index has been explored by a number of
investigators including Affymetrix [5-8,11]. Producing a gene
expression index is intuitive, in that it provides one number
to represent the expression of one gene in one sample. One
would also expect that summarizing results obtained from
multiple probes would produce an index that functions effi-
ciently in subsequent statistical testing procedures. The argu-
ment in this paper is that current indexes do not yet provide
adequate efficiency. To make the case, we introduce a novel
probe-level statistical testing method called Logit-t and dem-
onstrate that probe-level data contain sufficient information
to statistically discriminate known positives from known neg-
atives at a reasonable rate, whereas this is not achievable
using current gene-expression indexes as the basis for statis-
tical testing.

In this work, four publicly-available datasets - one from
Affymetrix and three from Gene Logic - each designed with
both known positive incidences of differential expression and
known negative instances, have been used as the basis for
comparing statistical testing procedures. Results are pre-
sented in the form of 'calls' of differentially expressed or not,
in the form of rankings to address issues associated with
selecting an appropriate threshold cut-off and in the form of
receiver-operator characteristic (ROC) curves which display
the trajectory along which a gene list grows as the threshold
changes. The Logit_t algorithm is demonstrated to produce
much higher quality gene lists than are produced with statis-
tical testing based on the expression indexes.

Results
Performance
Table 1 shows summaries comparing the statistical testing
performance achieved using results from MAS5, dChip, RMA,

Logit_Exp, Logit_ExpR and Logit-t with each block of four
rows containing the results from one dataset. Students' t-test
was used to compare MAS5, dChip, RMA, Logit_Exp, and
Logit_ExpR gene-expression indexes. A test was considered
positive if p < 0.01 for the indexes and if |t| > threshold (p <
0.01, given the degrees of freedom (df) for the comparison,
see Materials and methods) for Logit_t.

For the Affymetrix Latin Square dataset, there are 14 × 13/2
(comparisons) ×14 (genes per comparison) = 1,274 known
positives and 1,148,966 known negatives. In the first block of
Table 1, all methods show high sensitivity, but only Logit_t
shows high PPV. Specificity (not shown) was 99-100% for all
methods. The Logit-based gene-expression indexes,
Logit_Exp and Logit_ExpR, perform similarly to the existing
indexes. The major difference between Logit_t and the other
methods is the number of false positives.

An issue that often occurs during array analysis involves
selection of a threshold cut-off for statistical significance with
the goal of enriching the gene list with TP. The composition of
the gene list resulting from adjustment of the cut-off is deter-
mined by the composition of the list of all genes as a function
of rank order. To get a sense of how the known positives rank
in the dataset, the interquartile ranks for the known positives
are shown in Table 1. For MAS5, a cut-off that would yield
three out of four of the known positives (11 genes per compar-
ison) would contain (130-11 = 119) FP. For dChip, the list con-
taining 11 TP would contain 52 FP, for RMA it would contain
27 FP and for Logit_t it would contain 7 FP. This illustrates
that the Logit_t rankings are, overall, superior to those pro-
duced from the gene-expression indexes. Arguments can be
made regarding application of p-value corrections and, with
Logit_t, whether the use of df to select a |t| cut-off is correct,
but in any case, resulting lists will comprise TPs and FPs
determined by the existing rank-ordering. The interquartile
range for ranks (IQR) data in Table 1 indicate that Logit_t
produces a better rank-ordered list for any equivalent adjust-
ment scheme.

For the Gene Logic Spike dataset, the performance for all
methods is below the performance for the same method with
the Affymetrix Latin Square data. This could be a conse-
quence of laboratory technique or due to the fact that the
Gene Logic data were generated using an older model of the
array, the HG_U95A, whereas the Affymetrix data were pro-
duced with HG_U95Av2 arrays. The order of the quality of
the gene lists is the same with this dataset as with the Affyme-
trix dataset (Logit_t > RMA > dChip > MAS5). The IQR
results indicate that p-value cut-off adjustments are unlikely
to improve the predictive quality of the resulting gene lists.

The Gene Logic AML and Gene Logic Tonsil datasets follow
the same pattern, although the AML dataset may be of lower
quality as evidenced by the very high 3rd quartile ranks for all
methods. With the Gene Logic Tonsil dataset, it was observed
Genome Biology 2003, 4:R67
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that two comparisons (0.75 pM versus 75 pM and 0.75 pM
versus 2 pM) resulted in a great deal more FP than did other
comparisons for all methods. The last block of results derives
from the Tonsil dataset with these two comparisons removed.

Note that for each method, nearly 1,500 FP are removed and
only a few TP or FN are removed. It is not clear why this
occurred, but it suggests that the trimmed results reflect the
performance of these methods.

Table 1

Summary of statistical test results

Incidences IQR for ranks Known 
positives 
achieving 

rank

TP FP TN FN PPV Sens 1st Q Median 3rd Q

Affymetrix Latin Square (known positives per comparison = 14, total, all comparisons = 1274) (rank = 14, maximum achievable positives = 1274)

MAS5 950 13,641 1,134,051 324 7% 75% 13 36 130 335

dChip PM 1,068 14,390 1,133,302 206 7% 84% 6 19 63 558

RMA 1,098 10,406 1,137,286 176 10% 86% 5 12 38 734

logit-Exp 1,037 12,311 1,135,381 237 8% 81% 6 15 53 636

logit-ExpR 1,002 11,667 1,136,025 272 8% 79% 6 15 69 619

logit-t 1,110 345 1,147,347 164 76% 87% 4 8 13 1066

Gene Logic Spike (known positives per comparison = 10, total, all comparisons = 210)

MAS5 24 1,305 263,631 186 2% 11% 151 456 1,283 10

dChip PM 38 1,729 263,207 172 2% 18% 72 255 1,505 19

RMA 91 1,860 263,076 119 5% 43% 21 112 450 41

logit-t 106 79 264,857 104 57% 50% 4 8 21 151

Gene Logic AML (known positives per comparison = 11, total, all comparisons = 605)

MAS5 86 3,473 690,352 519 2% 14% 172 816 3,952 21

dChip PM 84 3,790 690,035 521 2% 14% 64 703 5,296 44

RMA 199 3,504 690,321 406 5% 33% 15 330 5,166 139

logit-t 263 107 693,718 342 71% 43% 4 8 738 349

Gene Logic Tonsil (known positives per comparison = 11, total, all comparisons = 726)

MAS5 239 5,854 826,736 487 4% 33% 35 127 681 81

dChip PM 307 3,760 828,830 419 8% 42% 12 49 418 180

RMA 398 4,693 827,897 328 8% 55% 7 33 653 251

logit-t 490 1,752 830,838 236 22% 67% 3 7 15 524

Gene Logic Tonsil - except two comparisons

MAS5 234 4,540 802,820 470 5% 33%

dChip PM 295 2,378 804,982 409 11% 42%

RMA 381 3,263 804,097 323 10% 54%

logit-t 473 116 807,244 231 80% 67%

Spiked in RNAs are considered positives and all others considered negatives. In the Tonsil dataset, two comparisons resulted in scores much worse 
than others for all methods (0.75 versus 2 pM and 0.75 versus 75 pM). The last block of results had these comparisons removed. In each block, the 
first three rows tally t-test results on the MAS5, dChip and RMA indexes with positives having p value < 0.01. Last row tallies t-values of the Logit-t 
method with positives having |t| > threshold, based on df. Threshold t values correspond approximately to p < 0.01. The first four columns tally calls: 
TP, true positive; FP, false positive; TN, true negative; FN, false negative. The next two columns indicate performance measures: PPV, positive 
predictive value TP/(TP+FP); Sens, sensitivity TP/(TP+FN); IQR, Interquartile range for ranks. Ranks of statistics demarking the 1st quartile, median 
and 3rd quartiles for known positives. The last column shows the number of known positives achieving rank at or below the number of known 
positives in a comparison. The maximum achievable number for the final column is the total number of known positives for all comparisons.
Genome Biology 2003, 4:R67



R67.4 Genome Biology 2003,     Volume 4, Issue 10, Article R67       Lemon et al. http://genomebiology.com/2003/4/10/R67
Figure 1 shows ROC plots pooled for all comparisons. Each
panel shows results for one dataset in the order (a-d) Affyme-
trix Latin Square, Gene Logic Spike, Gene Logic AML and
Gene Logic Tonsil. A perfect score corresponds with the
upper left corner of the plot. The full plots range from 0 to 1
on both axes, but are truncated to focus on the main area in
the upper left corner. Each plot shows the methods achieving
the same relative order as seen in Table 1: Logit_t > RMA >
dChip > MAS5. Logit_t achieves higher TP rates than the oth-
ers for FP rates less than 10% for all datasets. It is important
to note that from the standpoint of a gene list, the axes in an
ROC plot are asymmetric. To estimate the number of FP
genes in a gene list, the x-axis value should be multiplied by
10,000. To estimate the number of TP genes in a gene list, the
y-axis value should be multiplied by 10 (in most practical
experiments the multiplier would be approximately 100). The
value of ROC curves is limited due to this asymmetry of the
axes, but it is useful for overall comparisons and can be bal-
anced by PPV scoring.

Figure 1a shows the curves for the Logit_Exp and Logit_ExpR
gene-expression indexes in addition to the others. The
Logit_Exp trajectory tracks that of dChip almost identically
up to an FP rate of about 5%. These indexes perform as well
as but no better than the other existing indexes, suggesting
that the modeling methods result in significant loss of infor-
mation from the dataset. In the interest of conciseness, these
novel indexes will not be discussed further.

Empirical justification of logit transformation
The logit transformation, as explained in Materials and meth-
ods, derives from consideration of first-order reaction kinet-
ics at equilibrium. One can make the argument that the
kinetic equations (equation 3) represent solution-kinetics
rather than adsorptive kinetics, a discrepancy which can cast
doubt on the applicability of the model. To address this
empirically, the logit-transformed values for each PM probe
for the spiked in genes in the Affymetrix Latin Square dataset
were regressed against the log of the RNA concentration. The
logit-log transformation predicts a linear relationship
between log concentration and logit intensity and this
appeared true for most probes (not shown).

For most of the probes in each set, the lines appeared largely
parallel, but for some, the lines were dramatically different in
slope (for example, 36311_at) including some that are near
zero slope (for example, 36889_at, 407_at). The probes pro-
ducing near-zero slope are apparently unresponsive.

Figure 2 depicts a histogram of the slopes of the regression
lines, which shows most probes producing a modal slope near
-0.15 logit intensity units per log RNA concentration and a
few with much shallower slopes. If one considers the second-
ary modes of the plot as representative of unresponsive
probes, responsive probes can be modeled with a fixed slope
equal to the primary mode of the histogram. This slope

supports the model (Model 3) described in Materials and
methods which forms the basis of the Logit_Exp and
Logit_ExpR gene-expression indexes.

Linearity
One is often interested in assessing fold change which is com-
monly considered to discriminate major changes in gene
expression from minor ones [4,10,12]. Figure 3 shows the
relationship between log(index) and log(RNA) for each model
using the Affymetrix dataset. These plots reflect the relation-
ship shown in Equation (1), where R represents the concen-
tration of RNA and θ represents the gene-expression index.
Clearly, for Equation (2) to hold, or for inferences on the
index ratios to reflect those of the original RNA [4], the
parameter β must equal 1. Figure 3 indicates that β < > 1, so
adjustments to the gene-expression indexes are necessary for
more accurately evaluating fold change. The values of β for
the 14 genes and each model are shown in Table 2.

Coefficients of variation
Figure 4 displays comparisons of coefficients of variation
found at the probe-level with coefficients of variation found in
corresponding gene-expression indexes for the Affymetrix
Latin Square dataset. One would expect, based on sampling
theory, that the coefficient of variation for the individual data
points would be higher than that for an efficient summary sta-
tistic by a factor of √J. With typically 16 probes per gene on
the HG_U95Av2 array, this ratio would be expected to be 4 in
this dataset. Figure 4a shows that the peak (center) contour of
CVs (coefficients of variation) is to the right of the dashed line
of equality of CV, indicating that the modal CV is slightly
lower for MAS5 than the probe level. The peak is above the
dotted line of optimal efficiency, suggesting that some of the
information at the probe level is not transferred to the index.
The median ratio of probe-level CV to MAS5 CV is 0.78, indi-
cating that the MAS5 calculation most often increases CV.
Figure 4b shows the modal contour for dChip PM-only nearer
to the dotted line of optimal efficiency. The median ratio of
probe-level CV to dChip CV is 2.79, which is close to the ideal
of 4. Figure 4c shows for MAS5 that the CV results for the TP
are similar to the overall results, with modal CV near the line
of equality and median CV ratio of 0.74. Figure 4d suggests
that dChip CV ratio may be lower for TP, with modal CV
nearer to the line of equality and median CV ratio of 1.6. Thus
some of the increase in statistical power observed for probe-
level analysis may come from inefficient summarization per-
formed with current index methods.

R = a

R = a +  

q

b q

b

l l ln( ) n( ) n( )                         (1)

R

R
k

l

k

l
=
q

q
bon y if =1                        (2)l
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Discussion
The near certainty of FP results in microarray experiments
has fueled continuing demands from reviewers for independ-
ent validation of key findings using, for example, reverse tran-
scriptase polymerase chain reaction (RT-PCR) or Northern
blot. It has also lead to numerous publications of statistical
methods for controlling the false discovery rate [9,10]. The

approach taken here departs from that of methods which
start analysis with gene-expression indexes, and instead starts
analysis at the probe level.

The central rationale for beginning analysis at the probe level
involves consideration of the observation, shown in Figure 4,
that CVs for gene-expression indexes across replicate samples

Receiver-operator characteristic (ROC) plots for all methods on each of the four datasetsFigure 1
Receiver-operator characteristic (ROC) plots for all methods on each of the four datasets. (a) Affymetrix Latin Square dataset, (b) Gene Logic Spike, (c) 
Gene Logic AML and (d) Gene Logic Tonsil. Results for all comparisons within the datasets were pooled to produce the plots. The dChip and Logit_Exp 
lines are nearly identical until about 5% FP. (b-d) do not include results for Logit_Exp or Logit_ExpR.
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do not achieve the level of superiority over those at the probe
level that one would expect for an efficient index, according to
sampling theory. Thus, it was expected that statistical testing
at the probe level would provide more power to accurately
ascertain differential expression than testing than testing
based on the indexes [3]. This observation on CVs suggests
that additional improvements in calculation of gene-expres-
sion indexes are possible.

Analysis at the probe level still requires an appropriate nor-
malization of arrays and appropriate statistical methods
given the distribution of values. In this analysis, the logit-log
transformation was used for normalization; evaluation of the
empirical distributions produced by the transformation indi-
cate that the values follow a normal distribution (not shown)
and, thus, parametric statistical testing was indicated. The
logit transformation is motivated from first-order binding
kinetics considered at equilibrium. After performing the logit
transformation, values for each array were further mapped to
a N(0,1) distribution to ensure comparability between arrays.

The logit transformation has been used successfully for ana-
lyzing equilibrium binding of analyte to antibody in radio-
immunoassays [13]. The results presented in Figure 2
indicate that use of this with microarrays has been successful.
Two parameters, N and A, are fitted to the data for each array.
Here, parameter A is assigned the maximum probe intensity
+0.1% of the range of intensity values and N the minimum
probe intensity -0.1% of the range. This assumes that some
probes on the array are saturated and that others are back-
ground, which may not be true. One method of ensuring that
these assumptions are met and that, therefore, A and N are
properly estimated, would be to manipulate some hybridiza-
tion control spikes to provide a background signal for esti-
mating N and others to provide a saturation signal for
estimating A. Ideally, estimation of A and N would be done
using many data points.

The combination of logit transformation and probe-level sta-
tistical testing provides a means for greatly improving PPV
from these experiments with little effect on false negatives.
PPV is considered to be a major indicator of performance,
based on the intuition that the number of regulated genes is
in the region of 100 while the number of unregulated genes is
in the region of 10,000. In this dataset there are about 10 'reg-
ulated' genes producing a 1000:1 ratio of negatives to posi-
tives. At a FP rate of 0.1%, the number of FPs nearly equals
the number of known positives. This is an experimentally
realistic scenario, although not typical. Furthermore, one
would like to know, given a reasonable statistical cut-off, what
fraction of the genes in the list might be truly differentially
expressed. This is addressed directly by PPV.

Observed reduction in FP with little effect on FN as achieved
with Logit-t, compared with testing based on indexes, may
result from selecting the median t-score to represent the
probe set. Such selection can eliminate the effect on the over-
all gene score of unresponsive probes or of probes that show
large differences due to local artifact. These effects are man-
aged by dChip and MAS5, but perhaps not as well as is
achieved with median selection. Using median selection may
result in more robust test results.

Irizarry and co-workers recently published the RMA method
which they validated using the same Affymetrix Latin Square
dataset and one of the Gene Logic datasets. Their ROC results
compare very well with those shown here for the RMA, dChip
and MAS5 data. They are not exactly the same since Irizarry
et al. produced their results from a randomly selected subset
of comparisons, while the data presented here are a summary
for all comparisons.

The results for the Logit_Exp and Logit_ExpR indexes are
intriguing. The observation that Logit_Exp tracked dChip
almost identically in the salient region of the ROC curve while
Logit_t was much better, suggests that the modeling para-
digm may cause the loss of information from the probe-level

Histogram of Logit-Log slopesFigure 2
Histogram of Logit-Log slopes. Least-squares linear fits to logit-
transformed intensity for each PM probe from the spiked-in probesets in 
the Affymetrix Latin Square dataset versus log concentration of the spike 
resulted in slopes constituting the histogram. The major mode of the 
histogram near -0.15 logit intensity units per log concentration unit 
represents the majority of probes and is used in the Logit_Exp and 
Logit_ExpR gene-expression indexes.
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data. It is not clear if errors are poorly modeled by the mini-
mization scheme or if the model itself has structural prob-
lems. One could ask if any probe-level statistical testing
procedure can match or improve upon Logit_t. This is an
interesting question, but note how simple the Logit_t proce-
dure is: one A (max) and one N (min) per array, followed by
the logit-transformation and a Z-transformation. For the
Affymetrix Latin Square Dataset, immediate Z-transforma-
tion of arrays followed by probe-level testing resulted in 88%
sensitivity and 38% PPV, while log-transformation of probe
intensities followed by Z-transformation and probe-level test-
ing resulted in 87% sensitivity and 64% PPV for the same
data. The logit transformation appears to be useful and the
most common modeling assumptions seem to result in signif-
icant information loss.

In addition to identifying positive differential expression, one
often wants to know the fold changes in an effort to discern

major changes from minor ones. Although recent efforts have
shown how to produce confidence limits around a fold change
for gene-expression indexes [4], the results presented here
suggest that indexes should be adjusted by the β-exponent
before performing the ratios and calculating the confidence
intervals. All gene-expression indexes have a β-exponent dif-
ferent from 1, and this should be taken into account to
improve correspondence between array results and RT-PCR
validation.

Other methods for assessing differential expression have
been developed. Zhang introduced a method designed for
experiments lacking replication which uses the probe-level
noise information to estimate a variance used in a pseudo-t-
test [14]. Liu et al. presented the algorithm used within the
Affymetrix commercial software which compares arrays two
at a time [15]. It was not practical to include this here, but the
published error rates suggest the results that could be

The relationship between log(index) and log(RNA) for each model using the Affymetrix datasetFigure 3
The relationship between log(index) and log(RNA) for each model using the Affymetrix dataset. Plots of log RNA concentration versus (a,d) log(MAS5); 
(b,e) log(dChip PM-only), and (c,f) RMA. (a-c) show results for all 14 spiked genes and least-squares regression line through aggregate data. (d-f) show 
data for one probe set, 37777_at, with least squares regression line.
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expected. Liu et al. report a FP error rate of 1.26% when opti-
mized with a TP rate of 81% [15]. Extrapolating these rates to
the format presented in Table 1, this method could be
expected to produce a PPV of 7% and a sensitivity of 75%,
comparable to that achieved by the gene-expression index-
based methods. Naef et al. have recently published a method
useful for detecting differential expression among probe sets
near the saturation intensity [16]. Chu et al. reported a gen-
eral linear modeling approach but did not report on its per-
formance in a setting with known positives and negatives nor
in comparison with results using gene-expression indexes
[17]. Logit_t is designed to produce high-quality output in the
context of typical experiments with replication, therefore spe-
cial-purpose methods were not included in the comparisons.
This work was carried out with C programs or with available
software. It was beyond the scope to replicate the work of Chu
et al. for inclusion.

Conclusions
Logit_t can be used to analyze experiments employing
Affymetrix arrays and replication and can be expected to pro-
duce gene lists having higher PPV than those produced by sta-
tistical testing of gene-expression indexes. It seems from this
analysis that a gene-expression index that transfers precision
of the assay to the index remains elusive. When one appears,
it can be expected that statistical test performance for the
index will meet or exceed that for probe-level testing by

arguments of statistical efficiency. Until then, a combination
of probe-level statistical testing and fold change estimation
using β-adjusted gene-expression indexes is in order, as is
continued reliance on independent validation using RT-PCR
or the like.

Materials and methods
Data
In the course of developing their most recent statistical algo-
rithm, MAS5, Affymetrix produced and provided data from a
set of 59 arrays (HG_U95Av2) organized in a latin-square
design [18]. In this dataset, a pool of human samples and cell
lines was used to produce a single source of RNA. This was
divided into 14 groups comprising 12 groups of three repli-
cates (A-L) and two groups of 12 replicates (group M-P and
group Q-T). Each group was spiked with a cocktail contain-
ing the specified concentrations of 14 RNAs. It may appear
that 14 groups on 14 conditions cannot produce a latin-
square. However, since there is only one algorithm for esti-
mating gene expression, the concentration profiles for the 14
spiked genes in this design do produce a latin-square viz-a-
viz the MAS5 algorithm or that of any other gene-expression
index. This data set not only provides a means to evaluate
dose-response for these probe sets, but also provides a
means to evaluate the performance of statistical testing pro-
cedures. Since a single RNA source was used, any probe set
not in the list of 14 should be negative for differential expres-
sion. Conversely, all of the probes in the list of 14 should be
positive for differential expression. With 14 groups and 14
genes, there are 14 × 13/2 = 91 comparisons and thus 1,274
TP and 1,147,962 true negative incidences of differential
gene expression. All analysis was performed on an Apple
Xserve Mac OS X 10.2.4. Source code and compilation
instructions usable on any Unix system is available via e-mail
from the authors.

In addition to the Affymetrix Latin Square dataset, three
datasets publicly available from Gene Logic [19] were also
used. These datasets are referred to as Gene Logic Spike,
Gene Logic AML and Gene Logic Tonsil. The Gene Logic
Spike dataset consists of 26 HG_U95A arrays arranged as
follows. All arrays were hybridized with a common complex
cRNA derived from acute myeloid leukemia (AML) cell
lines. This RNA source was spiked with varying concentra-
tions of sequences complementary to the following 10 con-
trol sequences: BioB-5_at, BioB-M_at, BioB-3_at, BioC-
5_at, BioC-3_at, BioDn-3_at, DapX-5_at, DapX-M_at,
DapX-3_at and CreX-5_at. Spikes were provided at varying
concentrations (0 pM, 0.5, 0.75, 1, 1.5, 2, 3, 5, 12.5, 25, 50,
75, 100, 150) and with varying numbers of replicates. This
dataset produced 21 usable comparisons or 210 known pos-
itives.

The Gene Logic AML dataset comprised 32 HG_U95A arrays
each hybridized with the same common RNA source as the

Table 2

Parameters (β-exponents) indicative of non-linearity of gene 
expression-index relative to RNA concentration

MAS5 dChip RMA

37777_at 1.27 1.68 1.49

684_at 1.40 1.63 1.54

1597_at 1.38 1.80 1.64

38734_at 1.46 1.70 1.52

39058_at 1.35 1.58 1.51

36311_at 1.25 1.56 1.43

36889_at 1.17 1.71 1.51

1024_at 1.37 1.80 1.48

36202_at 1.31 1.68 1.42

36085_at 1.50 2.04 1.66

40322_at 1.52 1.88 1.64

407_at 1.32 1.61 1.63

1091_at 1.58 2.63 2.25

1708_at 1.37 1.85 1.58

Average 1.37 1.80 1.59

CV 8.1% 15.2% 12.8%
Genome Biology 2003, 4:R67
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Spike dataset with a different arrangement of control spikes.
Sequences complementary to the control probes spiked into
the Spike dataset were used here along with that for the con-
trol probe CreX-3_at. The concentration profiles used are
available from Gene Logic; the details are not germane to this
report. This dataset provided 55 usable comparisons or 605
known positives.

Finally, the Gene Logic Tonsil dataset comprised 36
HG_U95A arrays hybridized with a common complex RNA
produced from pooled tonsil tissue samples. The RNA was
spiked with sequences complementary to the same control
probes as the AML dataset. The concentrations used and the
layout of the concentrations into groups of replicate arrays
was slightly different than that for the AML dataset and is

Contour plots of densities of CV for gene expression indexes versus probe-level dataFigure 4
Contour plots of densities of CV for gene-expression indexes versus probe-level data. (a) CV density for MAS5 indexes versus probe-level, (b) CV density for 
dChip PM-only versus probe-level (c) CV density for known positives only (n = 1,274) for MAS5 versus probe-level and (d) CV density for known positives 
for dChip PM-only versus probe-level. Dashed line indicates equal CV. Dotted line indicates optimal CV ratio = .
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available  from Gene Logic.  This  dataset  provided 66 usable
comparisons or 726 known positives.

Approach
Affymetrix MAS5, dChip PM-only and RMA gene-expression
indexes were obtained using the software provided by the
group publishing the index [4,11]. Affymetrix MAS5
expression indexes were obtained using the Affymetrix com-
mercial software. DChip indexes were obtained using the
dChip software available from [20]. RMA indexes were
obtained using Bioconductor v1.2 obtained from [21]. Stu-
dent's t-testing was performed on each probe set on the array
for all comparisons within each dataset and the p-values for
these procedures retained. No comparisons across datasets
were attempted. These results were compared with those of
the following novel algorithm.

Logit-t algorithm
It was reasoned that hybridization to a microarray could be
viewed in its dynamics as similar to that of the binding of an
analyte to an antibody in a radioimmunoassay [13]. Consider
unbound probe, a, and complementary RNA fragment, x,
binding to produce a hybrid, y as in a + x ↔ y. The first order
kinetic equation is

which at equilibrium can be expressed as

where A represents the total amount of probe available for
binding. Taking into account an additive non-specific signal,
N, we have

which becomes Model (3) upon log-transformation.

Model (3) has two parts: the bottom equation is a transforma-
tion requiring no calibration data and is used as the basis for
the Logit_t testing procedure; the top equation forms the
basis for a gene-expression index and can use calibration data
as described below. Parameter A represents maximal signal
intensity for the array (saturation) and N represents additive
non-specific signal intensity (background) defined as the
minimum intensity on the array. There is one A and one N for

each array. For each array, A and N were estimated by adding
or subtracting 0.1% of the intensity range for the array to the
maximum and minimum probe intensities, respectively,
found on the array within probe sets. Probe intensities were
then logit-transformed using the bottom equation of Model 3
then mapped into N(0,1) by standard Z-transformation. The
logit-transformed values before Z-transformation appeared
very much like normal distributions and, thus, the Z-transfor-
mation is reasonable.

Probe-level statistical testing: Logit-t
Within a probe set, each PM probe was evaluated across
arrays for each of the comparisons using Student's t-tests,
and resulting t-values were retained. For a given probe set in
a given comparison, Logit-t is defined as the median t-value
found among all the perfect match probes in the set. Thresh-
olds for making calls of differential expression or no differen-
tial expression were determined by choosing the t-value
cutoff corresponding to p < 0.01 for the df of the comparison.
For example, when three arrays were compared with three
arrays, df = 4 and therefore the t-threshold = 3.7; when three
arrays were compared with 12 arrays, df = 13 and therefore
the t-threshold = 2.6, and so on.

Gene-expression indexes: Logit_Expr and Logit_ExprR
To produce a gene-expression index, Model 3 can be re-writ-
ten as Model 4.

The top equation in Model 4 illustrates the logit transforma-
tion process described above and results in the PM values
transformed into Y values with i indexing the probe set and
j indexing the probe within a probe set. Each Yij value is
modeled with a probe-specific intercept, ξj, and a fixed
slope, β, determined from the calibration data shown in Fig-
ure 2. The slope is multiplied by the gene-expression index,
ηi. The intercept, ξj, can be interpreted as the transformed
equilibrium binding constant for the probe and the slope
can be considered a transformed exponent that adapts the
solution-kinetic equations to the adsorption conditions.
Comparing the bottom equation of Model 4 with the top
equation of Model 3, ξj of Model 4 corresponds to b0 of
Model 3, β of Model 4 corresponds to b1 of Model 3 and ηi of
Model 4 corresponds to log(x) of Model 3. It is reasonable to
retain the estimate of b1 from Model 3 as the global β since
this does not display a strong probe effect. This leaves only
ξj and ηi for estimation and relieves the need for auxiliary
constraint.

The parameters of interest are ηi. Fitting the parameters to
the data can be done using various methods. The Logit_Exp
index was produced by fitting the parameters to the data
using the least-squares equations (5). The Logit_ExpR index,
with final R representing robust, was produced by
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minimizing the sum of squared errors using the median-fit-
ting equations (6).

Performance
Statistical performance of each method was evaluated follow-
ing standard methods. Briefly, a p-value threshold (p < 0.01)
and a t-value threshold (based on df) were selected for identi-
fying a positive call of differential expression or a negative
call. Using these cutoffs, each probe set in each comparison
was labeled differentially expressed or not, and a two-way
contingency table produced. With these, the standard per-
formance measures of positive predictive value, negative pre-
dictive value and sensitivity, specificity and accuracy were
calculated. PPV and sensitivity are reported in Table 1, the
other results were uninformative.

Coefficients of variation
Using available replicates, coefficients of variation

(CV, )

were computed from the Affymetrix Latin Square dataset for
all genes on all groups for MAS5 and dChip PM-only. For
probe-level comparison, CVs were calculated for each probe
on all groups using the Z-transformed, Logit-transformed
probe data. For each probe set and each group, the median CV
for all probes in the probe set was selected to represent the
set. This yielded one CV for each probe set and each group
and each model (MAS5, dChip, probe-level) or 1,148,966 CVs
for each model.
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