
http://genomebiology.com/2002/3/12/research/0081.1

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

Software
An integrated computational pipeline and database to support
whole-genome sequence annotation
CJ Mungall*, S Misra†‡, BP Berman†, J Carlson§, E Frise§, N Harris‡§,
B Marshall†, S Shu†‡, JS Kaminker†‡, SE Prochnik†‡, CD Smith†‡, E Smith†‡,
JL Tupy†‡, C Wiel†‡, GM Rubin*†‡§ and SE Lewis†‡

Addresses: *Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA. †Department of Molecular and Cellular
Biology, Life Sciences Addition, University of California, Berkeley, CA 94720-3200, USA. ‡FlyBase-Berkeley, University of California,
Berkeley, CA 94720-3200, USA. §Genome Sciences Department, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley,
CA 94720, USA.

Correspondence: CJ Mungall. E-mail: cjm@fruitfly.org

Abstract

We describe here our experience in annotating the Drosophila melanogaster genome sequence, in
the course of which we developed several new open-source software tools and a database
schema to support large-scale genome annotation. We have developed these into an integrated
and reusable software system for whole-genome annotation. The key contributions to overall
annotation quality are the marshalling of high-quality sequences for alignments and the design of a
system with an adaptable and expandable flexible architecture.

Published: 23 December 2002

Genome Biology 2002, 3(12):research0081.1–0081.11

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2002/3/12/research/0081

© 2002 Mungall et al., licensee BioMed Central Ltd
(Print ISSN 1465-6906; Online ISSN 1465-6914)

Received: 25 October 2002
Accepted: 28 November 2002

Rationale
The information held in genomic sequence is encoded and

highly compressed; to extract biologically interesting data we

must decrypt this primary data computationally. This gener-

ates results that provide a measure of biologically relevant

characteristics, such as coding potential or sequence similarity,

present in the sequence. Because of the amount of sequence to

be examined and the volume of data generated, these results

must be automatically processed and carefully filtered.

There are essentially three different strategies for whole-

genome analysis. The first is a purely automatic synthesis

from a combination of analyses to predict gene models. The

second aggregates analyses contributed by the research com-

munity that the user is then required to integrate visually on

a public website. The third is curation by experts using a full

trail of evidence to support an integrated assessment.

Several groups charged with rapidly providing a dispersed

community with genome annotations have chosen the purely

computational route; examples are Ensembl [1] and the

National Center for Biotechnology Information (NCBI) [2].

Approaches using aggregation adapt well to the dynamics of

collaborative groups which are focused on sharing results as

they accrue; examples are the University of California Santa

Cruz (UCSC) genome browser [3] and the Distributed Anno-

tation System (DAS) [4]. For organisms with well estab-

lished and cohesive communities the demand is for carefully

reviewed and qualified annotations; this approach was

adopted by three of the oldest genome-community data-

bases, SGD for Saccharomyces cerevisiae [5], ACeDB for

Caenorhabditis elegans (documentation, code and data

available from anonymous FTP servers at [6]) and FlyBase

for Drosophila melanogaster [7].

We decided to examine every gene and feature of the

Drosophila genome and manually improve the quality of the

2 Genome Biology Vol 3 No 12 Mungall et al.

annotations [8]. The prerequisites for this are: first, a com-

putational pipeline and a database capable of both monitor-

ing the pipeline’s progress and storing the raw analysis;

second, an additional database to provide the curators with a

complete, compact and salient collection of evidence and to

store the annotations generated by the curators; and third,

an editing tool for the curators to create and edit annotations

based on this evidence. This paper discusses our solution for

the first two requirements. The editing tool used, Apollo, is

described in an accompanying paper [9].

Our primary design requirement was flexibility. This was to

ensure that the pipeline could easily be tuned to the needs of

the curators. We use two distinct databases with different

schemata to decouple the management of the sequence

workflow from the sequence annotation data itself. Our

long-term goal is to provide a set of open-source software

tools to support large-scale genome annotation.

Sequence datasets
The sequence datasets are the primary input into the

pipeline. These fall into three categories: the D. melanogaster

genomic sequence; expressed sequences from D. melano-

gaster; and informative sequences from other species.

Release 3 of the D. melanogaster genomic sequence was

generated using bacterial artificial chromosome (BAC)

clones that formed a complete tiling path across the genome,

as well as whole-genome shotgun sequencing reads [10].

This genomic sequence was ‘frozen’ when, during sequence

finishing, there was sufficient improvement in the quality to

justify a new ‘release’. This provided a stable underlying

sequence for annotation.

In general, the accuracy and scalability of gene-prediction

and similarity-search programs is such that computing on

20 million base (Mb) chromosome arms is ill-advised, and

we therefore cut the finished genomic sequence into smaller

segments. Ideally, we would have broken the genome down

into sequence segments containing individual genes or a

small number of genes. Before the first round of annotation,

however, this was not possible for the simple reason that the

position of the genes was as yet unknown. Therefore, we

began the process of annotation using a non-biological

breakdown of the sequence. We considered two possibilities

for the initial sequence segments, either individual BACs or

the segments that comprise the public database accessions.

We rejected the use of individual BAC sequences and chose

to use the GenBank accessions as the main sequence unit for

our genomic pipeline because the BACs are physical clones

with physical breaks, while the GenBank accession can sub-

sequently be refined to respective biological entities. At

around 270 kilobases (kb), these are manageable by most

analysis programs and provide a convenient unit of work for

the curators. To minimize the problem of genes straddling

these arbitrary units we first fed the BAC sequences into a

lightweight version of the full annotation pipeline that esti-

mated the positions of genes. We then projected the coordi-

nates of these predicted genes from the BAC clones onto the

full-arm sequence assembly. This step was followed by the

use of another in-house software tool to divide up the arm

sequence, trying to simultaneously optimize two constraints:

to avoid the creation of gene models that straddle the bound-

aries between two accessions; and to maintain a close corre-

spondence to the pre-existing Release 2 accessions in

GenBank/EMBL/DDBJ [11-13]. During the annotation

process, if a curator discovered that a unit broke a gene, they

requested an appropriate extension of the accession prior to

further annotation. In hindsight we have realized that we

should have focused solely on minimizing gene breaks

because further adjustments by GenBank were still needed

to ensure that, as much as possible, genes remained on the

same sequence accession.

To re-annotate a genome in sufficient detail, an extensive set

of additional sequences is necessary to generate sequence

alignments and search for homologous sequences. In the

case of this project, these sequence datasets included assem-

bled full-insert cDNA sequences, expressed sequence tags

(ESTs), and cDNA sequence reads from D. melanogaster as

well as peptide, cDNA, and EST sequences from other

species. The sequence datasets we used are listed in Figure 1

and described more fully in [8].

Software for task monitoring and scheduling
the computational pipeline
There are three major infrastructure components of the

pipeline: the database, the Perl module (named Pipeline),

and sufficient computational power, allocated by a job-man-

agement system. The database is crucial because it main-

tains a persisting record reflecting the current state of all the

tasks that are in progress. Maintaining the jobs, job parame-

ters and job output in a database avoids some of the inherent

limitations of a file-system approach. It is easier to update,

provides a built-in querying language and offers many other

data-management tools that make the system more robust.

We used a MySQL [14] database to manage the large number

of analyses run against the genome, transcriptome and pro-

teome (see below).

MySQL is an open-source ‘structured query language’ (SQL)

database that, despite having a limited set of features, has

the advantage of being fast, free, and simple to maintain.

SQL is a database query language that was adopted as an

industry standard in 1986. An SQL database manages data

as a collection of tables. Each table has a fixed set of columns

(also called fields) and usually corresponds to a particular

concept in the domain being modeled. Tables can be cross-

referenced by using primary and foreign key fields. The data-

base tables can be queried using the SQL language, which

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2002/3/12/research/0081.3

allows the dynamic combination of data from different

tables [15]. A collection of these tables is called a database

schema, and a particular instantiation of that schema with

the tables populated is a database. The Perl modules provide

an application programmer interface (API) that is used to

launch and monitor jobs, retrieve results and support other

interactions with the database.

There are four basic abstractions that all components of the

pipeline system operate upon: a sequence, a job, an analysis

and a batch. A ‘sequence’ is defined as a string of amino or

nucleic acids held either in the database or as an entry in a

FASTA file (usually both). A ‘job’ is an instance of a particu-

lar program being run to analyze a particular sequence, for

example running BLASTX to compare one sequence to a

peptide set is considered a single job. Jobs can be chained

together. If job A is dependent on the output of job B, then

the pipeline software will not launch job A until job B is com-

plete. This situation occurs, for example, with programs that

require masked sequence as input. An ‘analysis’ is a collec-

tion of jobs using the same program and parameters against

a set of sequences. Lastly, a ‘batch’ is a collection of analyses

a user launches simultaneously. Jobs, analyses and batches

all have a ‘status’ attribute that is used to track their progress

through the pipeline (Figure 2).

The three applications that use the Perl API are the

pipe_launcher script, the flyshell interactive command line

interpreter, and the internet front end [16]. Both

pipe_launcher and flyshell provide pipeline users with a

variety of powerful ways to launch and monitor jobs, analy-

ses and batches. These tools are useful to those with a basic

Figure 1
Gadfly data sources and analyses. This figure provides an overview of the pipeline analyses that flow into the central annotation database (Gadfly) and are
provided to the curators for annotation. The D. melanogaster-specific datasets (dark blue) are one of the following: nucleic acids, peptides (from SPTR:
SWISS-PROT/TrEMBL/TrEMBLNEW [31]), or transposable elements (the source of the sequences are listed in the light-blue column). The nucleic acids
are aligned using sim4 and the peptides using BLASTX. The transposable elements are the product of a more detailed analysis [46] and their coordinates
were recorded directly in Gadfly. The peptide datasets from other species (yellow) were obtained from SWISS-PROT and aligned using BLASTX. We
used TBLASTX to translate (in all six frames) and align the rodent UniGene [47] and insect ESTs from dbEST [48] (green). For ab initio predictions on the
genomic sequence we used Genie [42], Genscan [43] and tRNAscan-SE [44]. BOP was used to filter BLAST and sim4 results and parse all the results to
output GAME XML; the results were recorded in Gadfly by loading the XML into the database.

Sim4

Sim4wrapBLASTN Sim4

Gadfly

BOP

Repeat-
masker BLASTX

TBLASTX GenscanGenie

tRNAscan-SE

Category Source

Release 2 transcripts Celera

ESTs BDGP plus dbEST

Complete cDNAs BDGP

Annotated reference
genome sequences
(ARGS)

GenBank

Insertion flanking
BDGP

Non-coding RNA FlyBase

Consensus sequences SWISS-PROT

Transposable elements BDGP

Other invertebrates

SPTR Primates

SPTR Rodents

SPTR Other vertebrates

C. elegans

S. cerevisiae

SPTR

SPTR

SPTR

Plants

M. musculus

Insects

SPTR

UniGene

dbEST

Drosophila
melanogaster
specific
sequences

Peptide
sequences
from other
species

Other species
EST sequences

BLASTX
Repeat-
masker

understanding of Unix and bioinformatics tools, as well as

those with a good knowledge of object-oriented Perl. The

web front end is used for monitoring the progress of the jobs

in the pipeline.

The pipe_launcher application is a command-line tool used

to launch jobs. Users create configuration files that specify

input data sources and any number of analyses to be per-

formed on each of these data sources, along with the argu-

ments for each of the analyses. Most of these specifications

can be modified with command line options. This allows

each user to create a library of configuration files for sending

off large batches of jobs that can be altered with command-

line arguments when necessary. Pipe_launcher returns the

batch identifier generated by the database to the user. To

monitor jobs in progress, the batch identifier can be used in

a variety of commands, such as ‘monitor’, ‘batch’, ‘delete-

batch’ and ‘query_batch’.

The flyshell application is an interactive command-line Perl

interpreter that presents the database and pipeline APIs to

the end user, providing a more flexible interface to users

who are familiar with object-oriented Perl.

The web front end allows convenient, browser-based access

for end users to follow the status of analyses. An HTML form

allows users to query the pipeline database by job, analysis,

batch or sequence identifier. The user can drill down

through batches and analyses to get to individual jobs and

get the status, raw job output and error files for each job.

This window on the pipeline has proved a useful tool for

quickly viewing results.

Once a program has successfully completed an analysis of a

sequence, the pipeline system sets its job status in the data-

base to FIN (Figure 2). The raw results are recorded in the

database and may be retrieved through the web or Perl inter-

faces. The raw results are then parsed, filtered and stored in

the database and the job’s status is set to PROCD. At this

point a GAME (Genome Annotation Markup Elements)

XML (eXtensible Markup Language [17]) representation of

the processed data can be retrieved through either the Perl

or web interfaces.

Analysis software
In addition to carrying out computational analyses, a critical

function of the pipeline is to screen and filter the output

results. There are two primary reasons for this: to increase

the efficiency of the pipeline by reducing the amount of data

that computationally intensive tasks must process, and to

increase the signal-to-noise ratio by eliminating results that

lack informative content. We now describe the auxiliary pro-

grams we developed for the pipeline.

Sim4wrap
Sim4 [18] is a highly useful and largely accurate way of align-

ing full-length cDNA and EST sequences against the genome

[19]. Sim4 is designed to align nearly identical sequences

and if dissimilar sequences are used, the results will contain

many errors and the execution time will be long. To circum-

vent this problem, we split the alignment of Drosophila

cDNA and EST sequences into two serial tasks and wrote a

utility program, sim4wrap, to manage these tasks. Sim4wrap

executes a first pass using BLASTN, using the genome

sequence as the query sequence and the cDNA sequences as

the subject database. We run BLASTN [20,21] with the ‘-B 0’

option, as we are only interested in the summary part of the

BLAST report, not in the high-scoring pairs (HSPs) portion

where the alignments are shown. From this BLAST report

summary sim4wrap parses out the sequence identifiers and

filters the original database to produce a temporary FASTA

data file that contains only these sequences. Finally we run

sim4 again using the genomic sequence as the query and the

minimal set of sequences that we have culled as the subject.

Autopromote
The Drosophila genome was not a blank slate because there

were previous annotations from the Release 2 genomic

sequence [22]. Therefore, before the curation of a chromosome

4 Genome Biology Vol 3 No 12 Mungall et al.

Figure 2
Pipeline job management. The pipeline database tracks the status of
jobs, analyses and batches. As indicated by the ovals, a batch is a
collection of analyses, and an analysis is a set of jobs. A job is a single
execution of a program on a single sequence (for example, BLASTX
similarity searching of a unit of genomic sequence). All three have a
current task status. The slowest running in the set dictates the status of
an analysis and a batch. Thus, in terms of analyses, the analysis status is
the same as the status of the slowest job in that analysis, and for
batches, the status is the same as the slowest analysis in that batch. The
allowed values for the status attribute are READY, RUN, FIN, PROCD,
UNPRC and FAIL. With respect to jobs, READY means the jobs are
ready to be sent to the pipeline queue, RUN means the jobs are on the
queue or being run, FIN means the jobs have run but have not yet been
processed by BOP to extract the results from the raw data, UNPRC
generally means there was an error in the processing step, FAIL means
there was an error in job execution, and PROCD means the jobs have
run and been processed by BOP.

FAIL

UNPRC

FIN

RUN

PROCD

READY

Batch

Analysis

Job

arm began, we first ‘autopromoted’ the Release 2 annota-

tions and certain results from the computational analyses to

the status of annotations. This simplified the annotation

process by providing an advanced starting point for the cura-

tors to work from.

Autopromotion is not a straightforward process. First, there

have been significant changes to the genome sequence

between releases. Second, all of the annotations present in

Release 2 must be accounted for, even if ultimately they are

deleted. Third, the autopromotion software must synthesize

different analysis results, some of which may be conflicting.

Autopromote resolves conflicts using graph theory and

voting networks.

Table 1 lists the programs and parameters that were used for

the analysis of the genomic sequence and peptide analysis.

Berkeley Output Parser filtering
We used relatively stringent BLAST parameters to preserve

disk space and lessen input/output usage and left ourselves

the option of investigating more deeply later. In addition, we

used the Berkeley Output Parser (BOP) with the following

adjustable parameters to process the BLAST alignments and

remove HSPs that did not meet our annotation criteria.

Minimum expectation is the required cutoff for a HSP. Any

HSP with an expectation greater than this value is deleted;

we used 1.0 x e-4 as a cutoff.

Remove low complexity is used to eliminate matches that

primarily consist of repeats; such sequences are specified as

a repeat word size - that is, the number of consecutive bases

or amino acids - and a threshold. The alignment is com-

pressed using Huffman encoding to a bit length, and hits

where all HSP spans have a score lower than this value are

discarded.

Maximum depth permits the user to limit the number of

matches that are allowed in a given genomic region. This

parameter applies to both BLAST and sim4. The aim is to

avoid excess reporting of matches in regions that are highly

represented in the aligned dataset, such as might arise

between a highly expressed gene and a non-normalized EST

library. The default is 10 overlapping alignments. However,

for sim4, we used a value of 300 to avoid missing rarely

expressed transcripts.

Eliminate shadow matches is a standard filter for BLAST

that eliminates ‘shadow’ matches (which appear to arise as a

result of the sum statistics). These are weak alignments to the

same sequence in the same location on the reverse strand.

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2002/3/12/research/0081.5

Table 1

Software used in the analysis pipeline

Program Data source Parameters

RepeatMasker [41] Transposable elements -parallel 2 -nolow -keepmasked

Sim4wrap Gadfly Release2 BLAST:

ESTs -B0 -V10000 -E1e-10

cDNA sequence reads Sim4

BDGP cDNAs -A 4

GenBank cDNAs

ARGS

Sim4 [18] Non-coding RNAs -A 4

WU-BLASTX [20] Fly -B800 -V800 -Z300000 -E1e-10

Community reports

WU-BLASTX Non-fly -B800 -V800 -Z300000 -E1e-10

SEG+XNU

WU-TBLASTX dbEST (insect) -B200 -V200 -Z300000 -E1e-10

UniGene (rodent) SEG+XNU

Genie [42]

Genscan [43]

tRNAscan-SE [44]

McPromoter [45]

ClustalW [34] version 1.8

Align

InterProScan [32]

Sequential alignments reorganizes BLAST matches if this is

necessary to ensure that the HSPs are in sequential order

along the length of the sequence. For example, a duplicated

gene may appear in a BLAST report as a single alignment

that includes HSPs between a single portion of the gene

sequence and two different regions on the genome. In these

cases the alignment is split into two separate alignments to

the genomic sequence.

Sim4 filtering
Our primary objective in using sim4 was to align Drosophila

ESTs and cDNA sequences only to the genes that encoded

them, and not to gene-family members, and for this reason

we applied stringent measures before accepting an align-

ment. For sim4 the filtering parameters are as follows.

Score is the minimum percent identity that is required to

retain an HSP or alignment; the default value is 95%.

Coverage is a percentage of the total length of the sequence

that is aligned to the genome sequence. Any alignments that

are less than this percentage length are eliminated; we

required 80% of the length of a cDNA to be aligned.

Discontinuity sets a maximum gap length in the aligned EST

or cDNA sequence. The primary aim of this parameter is to

identify and eliminate unrelated sequences that were physi-

cally linked by a cDNA library construction artifact.

Remove poly(A) tail is a Boolean to indicate that short ter-

minal HSPs consisting primarily of runs of a single base

(either T or A because we could not be certain of the strand)

are to be removed.

Join 5� and 3� is a Boolean operation and is used for EST

data. If it is true, BOP will do two things. First, BOP will

reverse complement any hits where the name of the

sequence contains the phrase ‘3prime’. Second, it will merge

all alignments where the prefixes of the name are the same.

Originally this was used solely for the 5� and 3� ESTs that

were available. However, when we introduced the internal

sequencing reads from the Drosophila Gene Collection

(DGC) cDNA sequencing project [23] into the pipeline this

portion of code became an alternative means of effectively

assembling the cDNA sequence. Using the intersection of

each individual sequence alignment with the genome

sequence a single virtual cDNA sequence was constructed.

Another tactic for condensing primary results, without

removing any information, is to reconstruct all logically pos-

sible alternative transcripts from the raw EST alignments by

building a graph from a complete set of overlapping ESTs.

Each node comprises the set of spans that share common

splice junctions. The root of the graph is the node with the

most 5� donor site. It is, of course, also possible to have more

than one starting point for the graph, if there are overlap-

ping nodes with alternative donor sites. The set of possible

transcripts is the number of paths through this tree(s). This

analysis produced an additional set of alignments that aug-

mented the original EST alignments.

External pipelines
Of the numerous gene-prediction programs available, we

incorporated only two into our pipeline. This was because

some of these programs are difficult to integrate into a

pipeline, some are highly computationally expensive and

others are only available under restricted licenses.

Rather than devoting resources to running an exhaustive

suite of analyses, we asked a number of external groups to

run their pipelines on our genomic sequences. We received

results for three of the five chromosome arms (2L, 2R, 3R)

from Celera Genomics, Ensembl and NCBI pipelines. These

predictions were presented to curators as extra analysis tiers

in Apollo and were helpful in suggesting where coding

regions were located. However, in practice, human curators

required detailed alignment data to establish biologically

accurate gene structures and this information was only avail-

able from our internal pipeline.

Hardware
As an inexpensive solution to satisfy the computational

requirements of the genomic analyses we built a Beowulf

cluster [24] and utilized the portable batch system (PBS)

software developed by NASA [25] for job control. A Beowulf

cluster is a collection of processor nodes that are intercon-

nected in a network and the sole purpose of these nodes and

the network is to provide processor compute cycles. The

nodes themselves are inexpensive off-the-shelf processor

chips, connected using standard networking technology, and

running open-source software; when combined, these com-

ponents generate a low-cost, high-performance compute

system. Our nodes are all identical and use Linux as their

base operating system, as is usual for Beowulf clusters.

The Beowulf cluster was built by Linux NetworX [26] which

also provided additional hardware (ICE box) and Clusterworx

software to install the system software and control and

monitor the hardware of the nodes. The cluster configuration

used in this work consisted of 32 standard IA32 architecture

nodes, each with dual Pentium III CPUs running at 700

MHz/1 GHz and 512 MB memory. In addition, a single

Pentium III-based master node was used to control the cluster

nodes and distribute the compute jobs. Nodes were intercon-

nected with standard 100BT Ethernet on an isolated subnet

with the master node as the only interface to the outside

network. The private cluster 100BT network was connected to

the NAS-based storage volumes housing the data and user

home directories with Gigabit ethernet. Each node had a 2 GB

6 Genome Biology Vol 3 No 12 Mungall et al.

swap partition used to cache the sequence databases from the

network storage volumes. To provide a consistent environ-

ment, the nodes had the same mounting points of the direc-

tories as all other BDGP Unix computers. The network-wide

NIS maps were translated to the internal cluster NIS maps

with an automated script. Local hard disks on the nodes

were used as temporary storage for the pipeline jobs.

Job distribution to the cluster nodes was done with the

queuing system OpenPBS, version 2.3.12 [25]. PBS was con-

figured with several queues and each queue having access to

a dynamically resizable overlapping fraction of nodes.

Queues were configured to use one node at a time, either

running one job using both CPUs (such as the multithreaded

BLAST or Interpro motif analysis) or two jobs using one

CPU each for optimal utilization of the resources. Because of

the architecture of the pipeline, individual jobs were often

small but tens of thousands of them may be submitted at any

given time. Because the default PBS first-in/first-out (FIFO)

scheduler, while providing a lot of flexibility, does not scale

up beyond about 5,000-10,000 jobs per queue, the sched-

uler was extended. With this extension the scheduler caches

jobs in memory if a maximum queue limit is exceeded. Job

resource allocation was managed on a per queue basis. Indi-

vidual jobs could only request cluster resources based on the

queue they were submitted to and each queue was run on a

strict FIFO basis. With those modifications PBS was scaled

to over 100,000 jobs while still permitting higher-priority

jobs to be submitted to a separate high-priority queue.

Storing and querying the annotation results:
the Gadfly database
A pipeline database is useful for managing the execution and

post-processing of computational analyses. The end result of

the pipeline process is streams of prediction and alignment

data localized to genomic, transcript or peptide sequences.

We store these data in a relational database, called Genome

Annotation Database of the Fly (Gadfly). Gadfly is the

second of the two database schemata used by the annotation

system and will be discussed elsewhere.

We initially considered using Ensembl as our sequence data-

base. At the time we started building our system, Ensembl

was also in an early stage of development. We decided to

develop our own database and software, while trying to

retain interoperability between the two. This proved diffi-

cult, and the two systems diverged. While this was wasteful

in terms of redundant software development, it did allow us

to hone our system to the particular needs of our project.

Gadfly remains similar in architecture and implementation

details to Ensembl. Both projects make use of the bioPerl

bioinformatics programming components [27-29].

The core data type in Gadfly is called a ‘sequence feature’.

This can be any piece of data of biological interest that can

be localized to a sequence. These roughly correspond to the

types of data found in the ‘feature table’ summary of a

GenBank report. Every sequence feature has a ‘feature type’ -

examples of feature types are ‘exon’, ‘transcript’, ‘protein-

coding gene’, ‘tRNA gene’, and so on.

In Gadfly, sequence features are linked together in hierar-

chies. For instance, a gene model is linked to the different

transcripts that are expressed by that gene, and these tran-

scripts are linked to exons. Gadfly does not store some

sequence features, such as introns or untranslated regions

(UTR), as this data can be inferred from other features.

Instead Gadfly contains software rules for producing these

features on demand.

Sequence features can have other pieces of data linked to

them. Examples of the kind of data we attach are: functional

data such as Gene Ontology (GO) [30] term assignments;

tracking data such as symbols, synonyms and accession

numbers; data relevant to the annotation process, such as

curator comments [8]; data relevant to the pipeline process,

such as scores and expectation values in the case of computed

features. Note that there is a wealth of information that we do

not store, particularly genetic and phenotypic data, as this

would be redundant with the FlyBase relational database.

A core design principle in Gadfly is flexibility, using a design

principle known as generic modeling. We do not constrain

the kinds of sequence features that can be stored in Gadfly,

or constrain the properties of these features, because our

knowledge of biology is constantly changing, and because

biology itself is often unconstrained by rules that can be

coded into databases. As much as possible, we avoid built-in

assumptions that, if proven wrong, would force us to revisit

and explicitly modify the software that embodies them.

The generic modeling principle has been criticized for being

too loosely constrained and leading to databases that are

difficult to maintain and query. This is a perceived weak-

ness of the ACeDB database. We believe we have found a

way round this by building the desired constraints into the

program components that work with the database; we are

also investigating the use of ontologies or controlled vocab-

ularies to enforce these constraints. A detailed discussion of

this effort is outside the scope of this paper and will be

reported elsewhere.

Figure 3 shows the data flow in and out of Gadfly. Computa-

tional analysis features come in through analysis pipelines -

either the Pipeline, via BOP, or through an external pipeline,

usually delivered as files conforming to some standardized

bioinformatics format (for example, GAME XML, GFF).

Data within Gadfly is sometimes transformed by other Gadfly

software components. For instance, just before curation of a

chromosome arm commences, different computational

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2002/3/12/research/0081.7

analyses are synthesized into ‘best guesses’ of gene models,

as part of the autopromote software we described earlier.

During the creation of Release 3 annotations, curators

requested data from Gadfly by specifying a genomic region.

Although this region can be of any size, we generally allo-

cated work by GenBank accessions. Occasionally, curators

worked one gene at a time by requesting genomic regions

immediately surrounding the gene of interest. Gadfly deliv-

ers a GAME XML file containing all of the computed results

and the current annotations within the requested genomic

region. The curator used the Apollo editing tool to annotate

the region, after which the data in the modified XML file was

stored in Gadfly.

The generation of a high-quality set of predicted peptides is

one of our primary goals. To achieve this goal, we needed a

means of evaluating the peptides and presenting this assess-

ment to the curators for inspection, so that they might

improve the quality of the predicted peptides iteratively.

Every peptide was sent through a peptide pipeline to assess

the predicted peptide both quantitatively and qualitatively.

Where possible, we wanted to apply a quantifiable metric,

requiring a standard against which we could rate the pep-

tides. For this purpose we used peptides found in SPTRREAL

(E. Whitfield, personal communication), a carefully

reviewed database of published peptide sequences, for com-

parison to our predicted proteins. SPTRREAL is composed of

3,687 D. melanogaster sequences from the SWISS-PROT

and TrEMBL protein databases [31] and provides a curated

protein-sequence database with a high level of annotation, a

minimal level of redundancy and the absence of any hypo-

thetical or computational gene models. Our program, PEP-

QC, performed this crucial aspect of the annotation process

and is described below. In cases where a known peptide was

unavailable, we used a qualitative measure to evaluate the

peptide. The peptide pipeline provided a BLASTP analysis

with comparisons to peptides from other model organism

genome sequences and InterProScan [32] analysis for

protein-family motifs to enable the curators to judge whether

the biological properties of the peptide were reasonable.

Each annotation cycle on a sequence may affect the primary

structure of the proteins encoded by that sequence and these

changes must therefore trigger a reanalysis of the edited

peptides. Whereas the genomic pipeline is launched at dis-

tinct stages, on an arm-by-arm basis, the peptide pipeline is

run whenever a curator changes a gene model and saves it to

the Gadfly database. To rapidly identify whether the peptide

sequence generated by the altered gene model has also

changed, the database uniquely identifies every peptide

sequence by its name and its MD5 checksum [33]. The MD5

checksum provides a fast and convenient way of determining

whether two sequences are identical. To determine whether

a peptide sequence has been altered is a simple comparison

of the prior checksum to the new checksum, allowing us to

avoid using compute cycles in reanalyzing sequences that

have not changed.

PEP-QC generates both summary status codes and detailed

alignment information for each gene and each peptide.

ClustalW [34] and showalign [35] are used to generate a mul-

tiple alignment from the annotated peptides for the gene and

the corresponding SPTRREAL peptide or peptides. In addition,

brief ‘discrepancy’ reports are generated that describe each

SPTRREAL mismatch clearly. For instance, an annotated

peptide might contain any or all of the mismatches in Table 2

(in this example, CG2903-PB is the initial FlyBase annotation

and Q960X8 is the SPTRREAL entry).

The quality assessments produced by the peptide pipeline

need to be available to the curators for inspection during

annotation sessions so that any corrections that are needed

can be made. Curators also need to access other relevant

FlyBase information associated with a gene in order to refine

an annotation efficiently. We developed automatically gener-

ated ‘mini-gene-reports’ to consolidate this gene data into a

single web page. Mini-gene-reports include all the names

and synonyms associated with a gene, its cytological location

and accessions for the genomic sequence, ESTs, PIR records

and Drosophila Gene Collection [23] assignments, if any. All

of these items are hyperlinked to the appropriate databases

for easy access to more extensive information. All literature

references for the gene appear in the reports, with hyper-

links to the complete text or abstracts. The mini-gene-

reports also consolidate any comments about the gene,

including amendments to the gene annotation submitted by

FlyBase curators or members of the Drosophila community.

The mini-gene-reports can be accessed directly from Apollo,

or searched via a web form by gene name, symbol, synonym

(including the FlyBase unique identifier, or FBgn) or

8 Genome Biology Vol 3 No 12 Mungall et al.

Figure 3
Pipeline dataflow. Finished genomic sequence is deposited in Gadfly, and
then fed to the pipeline database, which manages jobs, dispatching them
to the compute farm via PBS. When a job finishes, the pipeline database
stores the output. BOP filters this output and exports GAME XML to
Gadfly. A cycle of annotation consists of curators loading GAME XML
into Apollo, either directly from Gadfly or from a data directory. Modified
annotations are then written to a directory and loaded into Gadfly.

PBS

Apollo

BOP

Sequence

Sequence
finishingGadflyPipeline

FTP
directory

Compute
farm

genomic location. A web report, grouped by genomic

segment and annotator, is updated nightly and contains lists

of genes indexed by status code and linked to their individ-

ual mini-gene-reports.

Other integrity checks
Before submission to GenBank a number of additional

checks are run to detect potential oversights in the annota-

tion. These checks include confirming the validity of any

annotations with open reading frames (ORF) that are either

unusually short (less than 50 amino acids) or less than 25%

of the transcript length. In the special case of known small

genes, such as the Drosophila immune response genes

(DIRGs) [36], the genome annotations are scanned to

ensure that no well-documented genes have been missed.

Similarly, the genome is scanned for particular annotations

to verify their presence, including those that have been sub-

mitted as corrections from the community, or are cited in

the literature, such as tRNA, snRNA, snoRNA, microRNA or

rRNA genes documented in FlyBase. If the translation start

site is absent, an explanation must be provided in the com-

ments. Annotations may also be eliminated if annotations

with different identifiers are found at the same genome coor-

dinates or if a protein-coding gene overlaps a transposable

element, or a tRNA overlaps a protein-coding gene. Con-

versely, duplicated gene identifiers that are found at differ-

ent genome coordinates are either renamed or removed. A

simple syntax check is also carried out on all the annotation

symbols and identifiers. Known mutations in the sequenced

strain are documented and the wild-type peptide is submit-

ted in place of the mutated version.

The BDGP also submits to GenBank the cDNA sequence

from the DGC project. Each of these cDNA clones represents

an expressed transcript and it is important to the community

that the records for these cDNA sequences correctly corre-

spond to the records for the annotated transcripts in both

GenBank and FlyBase. This correspondence is accomplished

via the cDNA sequence alignments to the genome described

previously. After annotation of the entire genome was com-

pleted these results were used to find the intersection of

cDNA alignments and exons. A cDNA was assigned to a gene

when the cDNA overlapped most of the gene exons and the

predicted peptides of each were verified using a method

similar to PEP-QC.

Public World Wide Web interface
We provide a website for the community to query Gadfly.

This allows queries by gene, by genomic or map region, by

Gene Ontology (GO) assignments or by InterPro domains.

As well as delivering human-readable web pages, we also

allow downloading of data in a variety of computer-readable

formats supported by common bioinformatics tools. We use

the GBrowse [37] application, which is part of the GMOD

[38] collection of software for visualization and exploration

of genomic regions.

Software engineering
The main software engineering lesson we learned in the

course of this project was the importance of flexibility.

Nowhere was this more important than in the database

schema. In any genome, normal biology conspires to break

carefully designed data models. Among the examples we

encountered while annotating the D. melanogaster genome

were: the occurrence of distinct transcripts with overlapping

UTRs but non-overlapping coding regions, leading us to

modify our original definition of ‘alternative transcript’; the

existence of dicistronic genes, two or more distinct and non-

overlapping coding regions contained on a single processed

mRNA, requiring support for one to many relationships

between transcript and peptides; and trans-splicing, exhib-

ited by the mod(mdg4) gene [39], requiring a new data

model. We also needed to adapt the pipeline to different

types and qualities of input sequence. For example, to

analyze the draft sequence of the repeat-rich heterochro-

matin [40], we needed to adjust the parameters and datasets

used, but also to develop an entirely new repeat-masking

approach to facilitate gene finding in highly repetitive

regions. We are now in the process of modifying the pipeline

to exploit comparative genome sequences more efficiently.

Our intention is to continue extending the system to accom-

modate new biological research situations.

Improvements to tools and techniques are often as funda-

mental to scientific progress as new discoveries, and thus the

sharing of research tools is as essential as sharing the discov-

eries themselves. We are active participants in, and contrib-

utors to, the Generic Model Organism Database (GMOD)

project, which seeks to bring together open-source applica-

tions and utilities that are useful to the developers of biologi-

cal and genomic databases. We are contributing the software

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2002/3/12/research/0081.9

Table 2

Example of PEP-QC output

Peptide SPTRREAL

position position Discrepancy description

M1 M1..E88 Amino-terminal insertion: Q960X8
CG2903-PB Q960X8 contains an additional stretch of 88

amino acids

M163 K163 Internal substitution of one amino acid
CG2903-PB Q960X8

G1533..D1537 P1580..Q1589 Carboxy-terminal replacement of five
CG2903-PB Q960X8 amino acids with 10 amino acids

For each discrepancy we show the sequence affected and the position on
the sequence for both Gadfly and SWISS-PROT peptides. The peptide
sequence identifiers are in bold.

we have developed during this project to GMOD. Conversely,

we reuse the Perl-based software, GBrowse, from GMOD for

the visual display of our annotations.

Automated pipelines and the management of downstream

data require a significant investment in software engineer-

ing. The pipeline software, the database, and the annotation

tool, Apollo, as a group, provide a core set of utilities to any

genome effort that shares our annotation strategy. Exactly

how portable they are remains to be seen, as there is a trade-

off between customization and ease of use. We will only

know the extent to which we were successful when other

groups try to reuse and extend these software tools. Never-

theless, the wealth of experience we gained, as well as the

tools we developed in the process of reannotating the

Drosophila genome, will be a valuable resource to any group

wishing to undertake a similar exercise.

Acknowledgements
This work was supported by NIH grant HG00750 to G.M.R., by NIH
Grant HG00739 to FlyBase (W.M. Gelbart), and by the Howard Hughes
Medical Institute. We are grateful to our external contributors for finding
the time and resources to provide additional computation pipeline
results for us to consider: Karl Sirotkin (NCBI), Mark Yandell and Doug
Rusch (then at Celera Genomics and now with the BDGP and TCAG
respectively), and Emmanuel Mongin (Ensembl group). We also are deeply
grateful to our colleague Chihiro Yamada for his valuable comments on
this paper, and to Eleanor Whitfield at SWISS-PROT for providing the
SWISS-PROTREAL dataset.

References
1. Ensembl Analysis Pipeline

[http://www.ensembl.org/Docs/wiki/html/EnsemblDocs/Pipeline.html]
2. NCBI genome sequence and annotation process

[http://www.ncbi.nlm.nih.gov/genome/guide/build.html#annot]
3. Kent JW, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM,

Haussler D: The Human Genome Browser at UCSC. Genome
Res 2002, 12:996-1006.

4. Dowell RD, Jokerst RM, Day A, Eddy SR, Stein L: The Distributed
Annotation System. BMC Bioinformatics 2001, 2:7.

5. Saccharomyces genome database [http://genome-www.stan-
ford.edu/Saccharomyces/].

6. Durbin R, Thierry-Mieg J: A C. elegans database. 1991
[ftp://rtfm.mit.edu/pub/usenet/news.answers/acedb-faq]

7. FlyBase Consortium: The FlyBase database of the Drosophila
genome projects and community literature. Nucleic Acids Res
2002, 30:106-108.

8. Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS,
Hradecky P, Huang Y, Kaminker JS, Millburn GH, Prochnik SE, et al.:
Annotation of the Drosophila melanogaster euchromatic
genome: a systematic review. Genome Biol 2002,
3:research0083.1-0083.22.

9. Lewis SE, Searle SMJ, Harris NL, Gibson M, Iyer VR, Richter J, Wiel C,
Bayraktaroglu L, Birney E, Crosby MA, et al.: Apollo: A sequence
annotation editor. Genome Biol 2002, 3:research0082.1-0082.14.

10. Celniker SE, Wheeler DA, Kronmiller B, Carlson JW, Halpern A,
Patel S, Adams M, Champe M, Dugan SP, Frise E, et al: Finishing a
whole-genome shotgun: Release 3 of the Drosophila euchro-
matic genome sequence. Genome Biol 2002, 3:research0079.1-
0079.14.

11. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF:
GenBank. Nucleic Acids Res 1998, 26:1-7.

12. Stoesser G, Sterk P, Tuli MA, Stoehr PJ, Cameron GN: The EMBL
nucleotide sequence database. Nucleic Acids Res 1997, 25:7-14.

13. Tateno Y, Imanishi T, Miyazaki S, Fukami-Kobayashi K, Saitou N, Sug-
awara H, Gojobori T: DNA Data Bank of Japan (DDBJ) for

genome-scale research in life science. Nucleic Acids Res 2002,
30:27-30.

14. MySQL [http://www.mysql.com/]
15. Date CJ: An Introduction to Database Systems. Reading, MA: Addison-

Wesley; 1983.
16. FlyBase GadFly genome annotation database

[http://www.fruitfly.org/cgi-bin/annot/query]
17. Extensible markup language (XML) [http://www.w3.org/XML/]
18. Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W: A computer

program for aligning a cDNA sequence with a genomic
DNA sequence. Genome Res 1998, 8:967-974.

19. Haas BJ, Volfovsky N, Town CD, Troukhan M, Alexandrov N, Feld-
mann KA, Flavell RB, White O, Salzberg SL: Full-length messen-
ger RNA sequences greatly improve genome annotation.
Genome Biol 2002, 3:research0029.1-0029.12

20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. J Mol Biol 1990, 215:403-410.

21. WU-BLAST 2.0mp [http://blast.wustl.edu/]
22. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Ama-

natides PG, Scherer SE, Li PW, Hoskins RA, Galle RF: The genome
sequence of Drosophila melanogaster. Science 2000, 287:2185-
2195.

23. Stapleton M, Carlson J, Brokstein P, Yu C, Champe M, George R,
Guarin H, Kronmiller B, Pacleb J, Park S, et al.: A Drosophila full-
length cDNA resource. Genome Biol 2002, 3:research0080.1-
0080.8.

24. The Beowulf Project [http://www.beowulf.org/]
25. OpenPBS Public Home [http://www-unix.mcs.anl.gov/openpbs/]
26. Linux networX [http://www.linuxnetworx.com]
27. Chervitz SA, Fuellen G, Dagdigian C, Brenner SE, Birney E, Korf I:

Bioperl: standard Perl modules for bioinformatics. Objects in
Bioinformatics Conference, 1998
[http://www.bitsjournal.com/bioperl.html]

28. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C,
Fuellen G, Gilbert JGR, Korf I, Lapp H, et al.: The Bioperl toolkit:
Perl modules for the life sciences. Genome Res 2002, 12:1611-
1618.

29. bioperl.org [http://bioperl.org/]
30. The Gene Ontology Consortium: Gene Ontology: tool for the

unification of biology. Nature Genet 2000, 25:25-29.
31. Bairoch A, Apweiler R: The SWISS-PROT protein sequence

database and its supplement TrEMBL in 2000. Nucleic Acids
Res 2000, 28:45-48.

32. Zdobnov EM, Apweiler R: InterProScan - an integration plat-
form for the signature-recognition methods in InterPro.
Bioinformatics 2001, 17:847-848.

33. Preneel B: Analysis and design of cryptographic hash functions. PhD
Thesis, Katholieke University, Leuven, 1993.

34. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG,
Gibson TJ: CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res 1994, 22:4673-4680.

35. EMBOSS: showalign
[http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/showalign.html]

36. De Gregorio E, Spellman PT, Rubin GM, Lemaitre B: Genome-
wide analysis of the Drosophila immune response by using
oligonucleotide microarrays. Proc Natl Acad Sci USA 2001,
98:12590-12595.

37. Stein LD, Mungall CJ, Shu S-Q, Caudy M, Mangone M, Day A, Nick-
erson E, Stajich J, Harris TW, Arva A, Lewis S: The generic
genome browser: a building block for a model organism
system database. Genome Res 2002, 12:1599-1610.

38. Generic Model Organism Database Construction Set
[http://gmod.sourceforge.net]

39. Mongelard F, Labrador M, Baxter EM, Gerasimova TI, Corces VG:
Trans-splicing as a novel mechanism to explain interallelic
complementation in Drosophila. Genetics 2002, 160:1481-1487.

40. Hoskins RA, Smith CD, Carlson JW, Carvalho AB, Halpern A,
Kaminker JS, Kennedy C, Mungall CJ, Sullivan BA, Sutton GG, et al.:
Heterochromatic sequences in a Drosophila whole-genome
shotgun assembly. Genome Biol 2002, 3:research0085.1-0085.16.

41. RepeatMasker documentation
[http://ftp.genome.washington.edu/RM/RepeatMasker.html]

42. Reese MG, Kulp D, Tammana H, Haussler D: Genie - gene finding
in Drosophila melanogaster. Genome Res 2000, 10:529-538.

10 Genome Biology Vol 3 No 12 Mungall et al.

43. Burge C, Karlin S: Prediction of complete gene structures in
human genomic DNA. J Mol Biol 1997, 268:78-94.

44. Lowe TM, Eddy SR: tRNAscan-se: a program for improved
detection of transfer RNA genes in genomic sequence.
Nucleic Acids Res 1997, 25:955-964.

45. Ohler U, Liao G-C, Niemann H, Rubin GM: Computational analysis
of core promoters in the Drosophila genome. Genome Biol
2002, 3:research0087.1-0087.12.

46. Kaminker JS, Bergman C, Kronmiller B, Carlson J, Svirskas R, Patel S,
Frise E, Wheeler DL, Lewis SE, Rubin GM, et al.: The transposable
elements of the Drosophila melanogaster euchromatin - a
genomics perspective. Genome Biol 2002, 3:research0084.1-
0084.20.

47. Mus musculus UniGene
[http://www.ncbi.nlm.nih.gov/UniGene/query.cgi?ORG=Mm]

48. Expressed Sequence Tags database (dbEST)
[http://www.ncbi.nlm.nih.gov/dbEST]

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2002/3/12/research/0081.11

	Abstract
	Rationale
	Sequence datasets
	Software for task monitoring and scheduling the computational pipeline
	Analysis software
	Sim4wrap
	Autopromote

	Berkeley Output Parser filtering
	Sim4 filtering
	External pipelines
	Hardware
	Storing and querying the annotation results:the Gadfly database
	Other integrity checks
	Public World Wide Web interface
	Software engineering
	Acknowledgements
	References

