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Abstract 

Background: Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Frequent
cytogenetic abnormalities that occur in HCC suggest that tumor-modifying genes (oncogenes or
tumor suppressors) may be driving selection for amplification or deletion of these particular
genetic regions. In many cases, however, the gene(s) that drive the selection are unknown.
Although techniques such as comparative genomic hybridization (CGH) have traditionally been
used to identify cytogenetic aberrations, it might also be possible to identify them indirectly from
gene-expression studies. A technique we have called comparative genomic microarray analysis
(CGMA) predicts regions of cytogenetic change by searching for regional gene-expression biases.
CGMA was applied to HCC gene-expression profiles to identify regions of frequent cytogenetic
change and to identify genes whose expression is misregulated within these regions. 

Results: Using CGMA, 104 HCC gene-expression microarray profiles were analyzed. CGMA
identified 13 regions of frequent cytogenetic change in the HCC samples. Ten of these regions
have been detected in previous CGH studies (+1q, -4q, +6p, -8p, +8q, -13q, -16q, -17p, +17q,
+20q). CGMA identified three additional regions that have not been previously identified by CGH
(+5q, +12q, +19p). Genes located in regions of frequent cytogenetic change were examined for
changed expression in the HCC samples. 

Conclusions: Our results suggest that CGMA predictions using gene-expression microarray
datasets are a practical alternative to CGH profiling. In addition, CGMA might be useful for
identifying candidate genes within cytogenetically abnormal regions.
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Background 
Aneuploidy is a common feature of cancer. Genetic alter-

ations such as amplification, deletion, translocation and

rearrangement could result in either gain-of-function or loss-

of-function mutations in genes that modulate aspects of cell

proliferation, differentiation, motility and survival. Whereas

cytogenetic profiling techniques, such as comparative

genomic hybridization (CGH) [1], have been useful in finding

genetic abnormalities, other experimental approaches are

frequently used to identify which specific gene(s) drive selec-

tion for the genetic aberration and contribute most to tumor

progression. Common gene identification techniques include

determining if a candidate gene contains a sequence muta-

tion and/or determining if the candidate gene or gene

product is abnormally expressed. As mutation analysis and

protein expression studies are time-consuming, increasingly
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high-throughput gene-expression profiling is being used to

identify abnormally expressed genes within a region of cyto-

genetic change [2-6]. 

Recently, several groups have observed that chromosomal

changes can lead to regional biases in gene-expression values

both in yeast (Saccharomyces cerevisiae) and in human

tumors and tumor-derived cell lines [2,3,7,8]. These studies

suggest that a fraction of gene-expression values (15-25%)

are regulated in concordance with gene dosage. A computa-

tional technique termed comparative genomic microarray

analysis (CGMA) has previously been used to identify regions

of allelic imbalance indirectly from gene-expression profiles

of human tumors [8]. CGMA predicts chromosomal amplifi-

cations and deletions by organizing gene-expression data by

genomic mapping location and scanning for regions that

contain a statistically significant number of gene-expression

values that change in the same relative direction. In this

study, we apply CGMA analysis to a large hepatocellular car-

cinoma microarray dataset to demonstrate its validity as an

alternative to CGH and to identify candidate genes in regions

of frequent cytogenetic change.

Primary liver cancer in adults is the sixth most common

form of cancer and the fourth leading cause of death from

cancer worldwide [9,10]. Through the examination of

hepatitis B virus (HBV)- and hepatitis C virus (HCV)-

induced tumors, two landmark CGH studies have suggested

that a subset of cytogenetic changes frequently occurs in

HCC [11,12]. These include frequent gain of chromosomes

1q, 6p, 8q, 17q and 20q and frequent loss of chromosomes

1p, 4q, 6q, 8p, 13, 16 and 17p [11,12]. In particular, gain of

chromosomes 1q and 8q has been associated with the early

development of HCC [12], whereas loss of chromosome 4q

has been linked to increased aggressiveness of established

tumors [11]. To determine whether gene-expression data

could be used to identify cytogenetic changes accurately, we

applied CGMA to a microarray dataset of HCC tumors and

compared the CGMA predictions to existing CGH data. For

HCC, CGMA was able to predict nearly all chromosomal

aberrations identified previously by CGH. In addition, from

the gene-expression data we also identified a set of genes

whose expression values change most within the regions of

cytogenetic change. These genes may represent candidate

genes whose expression changes drive selection for chromo-

somal gains or losses.

Results 
CGMA predictions of cytogenetic changes 
Normalized, log-transformed gene-expression data from 104

HCC gene-expression arrays [13] were obtained from the

Stanford Microarray Database [14]. As CGMA analysis yields

more intuitive predictions if the tumor expression data is

compared to a normal tissue reference, the original HCC

gene-expression data was mathematically transformed such

that the pooled cell-line reference was replaced by a normal

tissue reference ([3], see Materials and methods). Using this

transformation, gene-expression values from the tumor

sample are compared to corresponding values from non-can-

cerous tissue. Genomic regions that contain a disproportion-

ate number of genes that change expression in the same

relative direction (that is, show a gene-expression bias) may

indicate an underlying chromosomal gain or loss (Figure 1a)

[2,3,7,8]. Chromosomal regions that contained a gene-

expression bias with at least 95% confidence (a sign test

z-statistic of at least 1.96, see Materials and methods) were

identified for all 104 HCC expression profiles (Figure 1b). In

addition, genomic regions that contained significant gene-

expression biases in at least 35% of non-replicate samples

were identified (Figure 1c). A 35% threshold was chosen

because in previous CGMA profiling experiments this thresh-

old yielded the highest CGMA to CGH agreement ([8] and

data not shown). CGMA predicted frequent gains for chromo-

some 1q (gained in 72% of tumor samples), 6p (56%), 8q

(49%), 17q (46%), 20q (46%), 5q (42%), 19p (37%) and 12q

(35%). Frequent chromosomal losses were predicted for

chromosome 4q (lost in 66% of tumor samples), 17p (48%),

13 (39%), 16 (37%), and 8p (35%). To determine if CGMA

predictions were consistent with other cytogenetic profiling

studies, the CGMA data were compared with data from two of

the largest CGH profiling studies (67 and 50 samples, respec-

tively) using HCC tumors [11,12]. Of the 13 regions detected

by CGMA, 10 (77%) were also implicated by CGH (Figure 1c).

CGMA also detected three gained regions, chromosomes 5q,

12q and 19p, which were not implicated in the CGH analysis.

CGMA failed to discover two regions of loss detected by CGH

- chromosomes 1p and 6q. It is noteworthy that these particu-

lar losses were not identified in both CGH studies. These data

suggest that CGMA predictions produce results very similar

to traditional CGH profiling studies.

Comparison to previous HCC studies 
To date there have been at least 20 reports on the applica-

tion of CGH to HCC [11,12,15-32]. To determine whether

the differences between the CGMA predictions and the two

large CGH studies were similar to the experimental varia-

tion observed between different HCC CGH studies, predic-

tions produced by CGMA were compared to 13 different

HCC CGH profiling studies (Figure 2). CGMA produced 10

of 13 (77%) predictions that matched a consensus chromo-

somal aberration profile. On average, each CGH study

matched the consensus profile in 78�14% of the chromoso-

mal regions analyzed. Therefore, the variation in CGMA

results was similar to the variations between independent

CGH studies. These results suggest that CGMA profiling is

able to predict regions of frequent chromosomal imbalance

in HCC as well as CGH profiling. As only 4 of the 104 (4%)

samples analyzed scored positive for HCV infection, we

could not use this dataset to detect significant cytogenetic

differences between HCV-infected verses HBV-infected

individuals (data not shown).
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CGMA predictions of multifocal tumors 
Included in the set of HCC gene-expression profiles were

several cases in which multiple tumor nodules were removed

from the same patient. In some cases the nodules had related

gene-expression profiles (patients HK63, HK64, HK66)

whereas in other cases tumors from the same patient had dis-

tinctive profiles (HK65, HK67, HK85) [33]. In particular, in

patient HK67 the gene-expression profile from nodule

HK67.1 was distinct from the expression profiles from

nodules HK67.2 and HK67.3 [33]. Array CGH was used previ-

ously to determine the cytogenetic profiles of the tumor

nodules from this patient [33]. Array CGH identified common

cytogenetic abnormalities in patient HK67’s tumors, includ-

ing loss of chromosome 15q, an unusual gain of chromosome

19q, and loss of the centromeric region of chromosome 22.

However, additional cytogenetic changes were found in

tumors HK67.2 and HK67.3 that were not present in HK67.1.

The cytogenetic profiling data coupled with the observation

that HK67.2 and HK67.3 were both smaller in size and had an

increased mitotic index, suggested that HK67.1 was the

primary tumor and HK67.2 and HK67.3 were divergent

HK67.1 subclones. To determine whether CGMA predictions

agree with this monoclonal origin hypothesis, CGMA profiles

of patient HK67’s tumor nodules were isolated and organized

by hierarchical clustering (Figure 3). CGMA also detected the

common chromosome 19q gain and chromosome 15q loss in

the HK67 tumors. CGMA did not identify a common loss on

chromosome 22, however, CGMA identified other genetic

aberrations (+8q, -16q and -19q) consistently found in the

HK67 tumors. CGMA also identified additional aberrations

(+2q, +5q, +12q) present in H67.2 and H67.3 that were not

found in H67.1. Taken together, the CGMA data supports the

hypothesis that the H67.2 and HK67.3 tumor nodules proba-

bly arose from HK67.1, but that additional distinct cytoge-

netic events had occurred in these nodules during tumor

progression. In contrast, tumor nodules from patient HK64

have very similar gene-expression profiles and very similar

cytogenetic profiles as predicted by CGMA, suggesting that

these tumors have common origins and these nodules have

not diverged significantly from the original lineage. In addi-

tion, tumor nodules from patient HK85 showed distinctive

expression profiles and distinct HBV integration sites [33].

Similarly, the tumors from patient HK85 also show distinct

CGMA-predicted cytogenetic profiles, reflecting the indepen-

dent transforming mechanism (Figure 3). 

Identification of candidate genes in regions of
frequent cytogenetic change 
Frequent cytogenetic abnormalities suggest that tumor-

modifying genes (oncogenes or tumor suppressors) may be

Figure 1
Comparative genomic microarray analysis of hepatocellular carcinoma gene expression profiles. (a) A bar graph of log-transformed expression ratios
(tumor versus normal) for genes located on chromosome 8q for sample SF13. The gene-expression values are organized from the chromosome
telomere (top) to the centromere (bottom). A scale is shown above the graph. (b) CGMA expression profiles for 104 HCC tissue samples. Before
CGMA analysis, gene-expression ratios were transformed such that each tumor gene-expression value was compared to the expression value from the
non-cancerous tissue sample retrieved from the same patient. If the normal tissue was not present, the global mean of the non-tumor tissues was used.
Genomic regions that show a significant number of downregulated genes are shown in green whereas genomic regions that show a significant number of
upregulated genes are shown in red. The color intensity indicates the significance of the expression bias. The lowest-intensity color indicates a z-statistic
= 1.96 (� = 0.05) while the most intense color indicates a z-statistic < 3.29 (� < 0.001). The mean z-statistic for each genomic region is displayed in the
rightmost column. (c) Chromosomal regions that had a significant gene-expression bias in more than 35% of HCC samples are listed. Red represents
chromosomal gains and green represents losses. The corresponding percentages of samples that displayed frequent chromosomal aberrations identified
in two CGH studies. Values from Wong et al. [12] are represented as CGH1 and values from Marchio et al. [11] are represented as CGH2.

(a) (b) (c)



driving selection for the amplification or deletion of these

particular genetic regions [6,11,12,34-36]. An advantage of

using CGMA profiling rather than traditional molecular

genetic profiling is that access to gene-expression data is

inherent in the analysis. CGMA allows cytogenetic analysis

and the candidate gene approach to be performed with the

same dataset. For example, the c-myc oncogene has been

postulated to drive selection for frequent chromosome 8q

amplification. Though c-myc is located on a region that both

CGMA and CGH identify as frequently gained, c-myc’s

expression is increased more than twofold in less than 6% of

the samples. In fact, in 52% of the HCC tissue samples,

c-myc’s expression is downregulated (Table 1). This implies

that increased c-myc expression is not driving the selection

for the amplification of chromosomal region 8q in these

samples. In the small region of chromosome 8q presented in

Table 1, two other genes (for squalene monooxygenase and

pro2000) do show increased expression in a majority of

HCC samples. Consistent with previous reports examining

gene-expression levels in regions of cytogenetic change,

expression levels for a large percentage of genes in this

amplified region remain unchanged [3,5,8]. 

The set of genes that are consistently misregulated in regions

of frequent cytogenetic change as predicted by CGMA are

shown in Table 2. Platelet-derived growth factor receptor

alpha is consistently downregulated in a region of frequent

cytogenetic loss and this suggests that loss of a member of

this receptor gene family is important in HCC progression.

It has previously been reported that a transcript (PRLTS)

with sequence similarity to the extracellular domain of

platelet-derived growth factor receptor may also be a tumor

suppressor for HCC [35]. In addition, consistently increased

expression of the pituitary tumor transforming gene 1

oncogene (PTTG) is observed in these samples (Table 2).
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Figure 2
Thirteen hepatocellular carcinoma CGH studies compared to CGMA
predictions. Frequent chromosomal aberrations detected by 13 CGH
studies (see References) and by CGMA are displayed as a heat map. Green
indicates regions of frequent chromosomal loss and red indicates regions of
frequent chromosomal gain. At the right is a consensus profile of
chromosomal regions that were altered in at least 35% of the CGH studies.
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Figure 3
CGMA comparisons of multiple tumor nodules isolated from the same
patient. The data were generated and presented as in Figure 1. Tumor
sample names are presented as patient number with a tumor nodule
suffix. CGMA profiles were arranged by hierarchical clustering (average
linkage clustering) using the sign test z-statistic of each chromosomal
region [38].



PTTG maps to chromosome 5q, a region that was identified

as frequently changed by CGMA, but not identified in the

majority of CGH profiling studies. PTTP overexpression in

NIH 3T3 cells induces these cells to form tumors when

injected into nude mice. Overexpression of this gene may

result from frequent chromosomal amplification and may

participate in HCC tumor progression.

CGMA prediction software 
To assist in identifying regions of unidirectional gene-

expression bias, we have constructed a web-based program

that processes two-color gene-expression data and identifies

genomic regions that contain gene-expression biases. The

input for this program is a simple tab-delimited gene-

expression matrix file consisting of columns for the probe
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Table 1

Identification of HCC candidate genes located within a region of chromosome 8q

Transcript ID Locus Description CGMA* Measured† Changed‡

ENST00000276699 8q:127 Unknown (protein for mgc:14128) + +

ENST00000276704 8q:127 cDNA flj14825 fis, clone ovarc1000781 + +

ENST00000297857 8q:127 Zinc finger homeobox protein zhx1 (zhx1 protein) +

ENST00000287395 8q:127 Pro2000 + + +

ENST00000287394 8q:127 Similar to riken cDNA 2610509g12 gene +

ENST00000287387 8q:127 Hypothetical 23.7 kDa protein +

ENST00000287396 8q:127 Similar to Homo sapiens F-box protein fbx25 (fbx25) +

ENST00000262219 8q:127 Annexin a13 (annexin XIII) + +

ENST00000303616 8q:128 +

ENST00000287400 8q:128 + +

ENST00000297861 8q:128 +

ENST00000287402 8q:128 +

ENST00000297632 8q:128 +

ENST00000297630 8q:128 cDNA FLJ20772 FIS, Clone COL06053 +

ENST00000303545 8q:128 +

ENST00000276692 8q:128 Cda11 +

ENST00000276689 8q:128 NADH-ubiquinone oxidoreductase b22 subunit +

ENST00000287414 8q:128 Hypothetical protein kiaa0429 + +

ENST00000265896 8q:129 Squalene monooxygenase + + +

ENST00000303443 8q:129 +

ENST00000265897 8q:129 + +

ENST00000297614 8q:129 +

ENST00000287437 8q:129 cDNA flj32440 fis, clone skmus2001492 +

ENST00000297644 8q:129 G-protein-coupled receptor induced protein Gig2 +

ENST00000259534 8q:129 Contains a reverse transcriptase domain +

ENST00000297628 8q:130 +

ENST00000305022 8q:130 +

ENST00000297624 8q:130 +

ENST00000305005 8q:130 +

ENST00000287390 8q:130 Estradiol 17 beta dehydrogenase 4 EC 1.1.1 +

ENST00000297858 8q:130 Hypothetical 23.7 kDa protein +

ENST00000287393 8q:130 +

ENST00000297860 8q:130 +

ENST00000304916 8q:131 +

ENST00000304908 8q:132 +

ENST00000259523 8q:132 Myc proto-oncogene protein (c-Myc) + + -

ENST00000297727 8q:132 Contains a reverse transcriptase domain +

*Region of frequent CGMA-predicted cytogenetic change (+). †Expression was measured in the microarray experiment (+). ‡Expression increased (+) or
decreased (-) at least twofold in at least 50% of tumor samples. 



sequence identifier, probe name, and gene-expression ratios.

Because different microarray technologies use different

identifiers to describe the microarray probe, the program

translates probe sequence identifiers (ids) such as GenBank

accession numbers and UniGene cluster ids to Ensembl

transcript ids using precompiled sequence comparisons.

After data analysis, a summary table is displayed showing

chromosomal regions that show significant (� � 0.05) unidi-

rectional gene-expression bias highlighted in either red or

green, indicating either increased or decreased expression

biases, respectively. The program can also send several

output files to the user via e-mail. These files include a

summary report that contains the z-statistic for each chro-

mosomal region (positive for upregulated regions and nega-

tive for downregulated regions) and a list of genes located in

regions of frequent cytogenetic change. The program is

available at [37].

Discussion 
In this study we have used gene-expression profiling data to

predict cytogenetic changes that frequently occur in HCC.
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Table 2

Misregulated genes located in regions of frequent cytogenetic aberrations

Ensembl ID* Locus Name Fold change†

ENST00000271452 1q:165 Hypothetical protein NUF2R 10.4

ENST00000243893 20q:44 Ubiquitin-conjugating enzyme E2C 8.5

ENST00000216918 20q:30 Chromosome 20 open reading frame 1 7.2

ENST00000257535 5q:160 Pituitary tumor-transforming 1 6.7

ENST00000171466 1q:209 HSPC150 protein similar to ubiquitin-conjugating enzyme 5.6

ENST00000287395 8q:122 PRO2000 protein 4.7

ENST00000256686 12q:49 Hypothetical protein MGC5576 4.6

ENST00000229922 6p:18 Adenylyl cyclase-associated protein 2 4.6

ENST00000289943 1q:163 Ribonucleotide reductase M2 polypeptide 4.5

ENST00000271474 1q:165 Regulator of G-protein signalling 5 4.1

ENST00000230056 6p:22 Geminin 3.7

ENST00000263041 6p:56 Glutathione S-transferase A4 3.5

ENST00000245561 1q:156 Chromosome 1 open reading frame 2 3.4

ENST00000280896 4q:98 Alcohol dehydrogenase 4 (class II), pi polypeptide -42

ENST00000245182 16q:57 Metallothionein 1L -33

ENST00000225383 17q:64 RNA helicase-related protein -25

ENST00000257600 12q:105 deltex (Drosophila) homolog 1 -16.9

ENST00000239938 5q:140 Early growth response 1 -10

ENST00000271629 1q:152 Extracellular matrix protein 1 -9.6

ENST00000292494 8q:142 Lymphocyte antigen 6 complex, locus E -9.4

ENST00000283088 8p:1 KIAA0711 gene product -7.7

ENST00000250080 17p:8 Sex hormone-binding globulin -7

ENST00000266671 12q:76 Pleckstrin homology-like domain, family A, member 1 -7

ENST00000264005 16q:68 Lecithin-cholesterol acyltransferase -6.7

ENST00000280188 4q:175 Glycoprotein M6A -6.6

ENST00000262767 17q:80 Baculoviral IAP repeat-containing 5 (survivin) -6.6

ENST00000225831 17q:32 Small inducible cytokine A2 -5.9

ENST00000257290 4q:55 Platelet-derived growth factor receptor, alpha polypeptide -5.2

ENST00000273912 4q:83 Hypothetical protein -5.2

ENST00000219302 16q:2 Non-metastatic cells 3, protein expressed in -5

ENST00000255389 17q:22 Phosphatidylethanolamine N-methyltransferase -4.9

ENST00000218564 13q:95 Dopachrome tautomerase -4.8

ENST00000219163 16q:20 KIAA1504 protein -3.7

ENST00000253557 17q:31 Cyclin-dependent kinase 5, regulatory subunit 1 (p35) -3.6

*Genes whose expression changed at least twofold in 70% of tumor samples in the same relative direction as the cytogenetic change and are located in
regions identified as cytogenetically abnomal by CGMA in at least 35% of samples. †Fold difference in tumor tissue gene expression relative to non-
cancerous tissue.



Two landmark CGH analyses identified 12 different regions

of frequent imbalance. However, one study found 8 regions

and the other study found 11 [11,12]. Five of these 12 regions

were not found in both experiments. CGMA successfully

identified 10 of 12 regions previously distinguished by CGH.

CGMA also detected three regions that have not been impli-

cated by these CGH studies. On average however, 22% of

genomic regions indentified in a particular HCC CGH study

are not constantly identified in other studies. Therefore, the

three inconsistent CGMA predictions (3 of 13; 23%) are com-

parable to the inconsistencies between independent CGH

studies for HCC. 

Three additional regions were identified by CGMA that were

not identified by CGH. While these CGMA-predicted regions

were near the 35% cutoff for detection, they could represent

other regions of allelic imbalance yet to be detected by CGH.

It is also possible that biological mechanisms other than

cytogenetic change could influence expression in large

genomic regions and produce regional gene-expression

biases. Additional molecular genetic work will be required to

resolve these differences. 

If CGH data are not available for a particular cancer type,

but gene-expression profiling data are, then CGMA could

allow rapid prediction of the cytogenetic abnormalities that

frequently occur within that cancer type. Moreover, in

instances where gene-expression profiling reveals previously

unrecognized cancer subtypes, CGMA could determine

whether cytogenetic differences are responsible for these dif-

ferent subtypes. In cancer types where traditional cytoge-

netic profiling has already been carried out, CGMA

predictions could serve to confirm existing cytogenetic pro-

filing data and be used further to examine candidate genes

whose expression changes most within a region of frequent

cytogenetic change. In this way CGMA can be combined with

the candidate gene approach to identify genes that are

directly involved in tumor progression. 

Conclusions 
CGMA can be used to indicate chromosomal imbalances by

detecting chromosomal regions that contain a dispropor-

tionate number of gene-expression values that change in the

same relative direction. This analysis provides good evidence

that CGMA is a practical alternative to CGH cytogenetic pro-

filing when gene-expression profiling data is available.

Materials and methods 
Normalization and filtering 
Normalized, log-transformed gene-expression data for 104

HCC samples and 76 corresponding non-cancerous liver

gene-expression profiles [13] were obtained from the Stan-

ford Microarray Database [14]. Genes that were present in at

least 75% of samples (10,037 genes) were used for further

analysis. In this study, both the tumor samples and normal

tissue samples were compared to a pooled cell-line reference

[3]. To allow comparison of tumor gene-expression values to

gene-expression values from surrounding non-cancerous

tissue, new gene expression ratios, tumor verse normal

(T/N), were estimated. To create the new ratios, log-trans-

formed non-cancerous tissue ratios (N/U) were subtracted

from the log-transformed HCC tissue ratios (T/U) for each

gene such that log2(T/N) = log2(T/U) - log2(N/U). If an HCC

sample did not have a corresponding non-cancerous sample,

the global mean of the non-cancerous tissue gene-expression

ratios were used.

CGMA analysis 
To identify regional gene-expression biases, gene-expres-

sion values that map within a given chromosomal arm were

collected and a sign test for a one-sample mean/median

was used to determine whether a significant upward or

downward bias was present in the expression values. An

exception was made for chromosomes 13-16, 21 and 22.

These chromosomes are more telocentric and therefore

only their q-arms were tested for expression biases.

Sequence comparisons were used to map microarray probe

sequences (the sequences that are placed on the microar-

ray) to predicted Ensembl transcripts (Ensembl version

6.28) [8]. Included in the Ensembl transcript annotations

are chromosomal mapping locations at base-pair resolu-

tion. Redundancy introduced by replicate probes on the

array and/or multiple probes mapping to the same gene

were eliminated by averaging expression values that map to

identical transcripts. Of the filtered set of 10,037 genes,

6,274 genes (63%) were unique and had associated genomic

mapping information. 

A sign test for the one-sample mean/median was used to

determine whether a significant number of genes that map to

a given chromosomal region change in a unidirectional

manner. The algorithm scores a gene as up (+) or down (-)

regulated if the magnitude of the expression value change is

at least 1.8-fold. The sign test computes the probability, in the

form of a z-statistic, of finding x upregulated genes out of n

genes that change in a given genomic region. For simplicity,

the z-statistic is computed using the normal approximation to

the binomial distribution such that z = (2x - n)/sqrt(n).

Genomic regions that contained less than 15 changed gene-

expression values were excluded from further analysis. On

average, 160 gene-expression values were located to each

genomic region. The sign test z-statistic can be converted to a

significance value (�) based on the two-tailed z-statistic (z�/2)

critical values. For example, if z = 1.96, then � = 0.05; if

z = 2.58 then � = 0.01, and so on. 
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