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Metabolic control analysis: biological applications and insights
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Abstract

Metabolic control analysis provides a robust mathematical and theoretical framework for describing
metabolic and signaling pathways and networks, and for quantifying the controls over these processes.
Its application has already shed light on some of the principles underlying the regulation of metabolic
pathways, and it is well suited to the analysis of the types of data emerging from genomic studies.

Modeling biological processes and systems
Mathematical modeling allows us to examine an event,
process or system that we are unable to observe or under-
stand directly because of its timing, magnitude, location or
complexity. Models enable us to view a process or system at
different organizational levels (for example, molecular or
organismal) ‘simultaneously’, and to test responses of the
system and its components to perturbations. Even incom-
plete or limited models can pinpoint missing or incorrect
pathways or components and can help ascertain the relative
importance of pathways and components in different scenar-
ios. Models can also elucidate underlying biological design
principles, sometimes challenging existing scientific dogma.
They do this by extending and integrating the effects of
assumptions made at one organizational level to others, and
by allowing the ‘visualization’ of hypothetical scenarios. The
term model is used broadly for the purposes of this article,
and is defined as any mathematical or theoretical framework
used to describe a component, process or system. This
description can take many forms and make use of a variety
of mathematical techniques (reviewed in [1]).

To describe biological systems, which are naturally complex
and integrated, properties at different organizational levels
must be related to each other in a meaningful way. Thus, the
properties of a system (‘systems properties’) must reflect
underlying molecular design principles, and equations
detailing molecular components must take into account
systems-level constraints and contexts. One such constraint
is capacity, the maximum allowable flux. The system, as an

entity, is not just an assemblage of its individual parts but
has ‘emergent’ properties of the whole [2]. For a simple
example, imagine a rubber ball that is cut into many small
pieces. Much can be learned about the properties of the ball
based on the individual cut pieces (for example, its elastic-
ity), but we wouldn’t know that the ball could roll.

Various modeling approaches have been used to study cellu-
lar metabolism and signaling (for reviews, see [3-7]). For the
analysis of metabolism, such approaches include kinetic
simulation, metabolic control analysis [8], biochemical
systems theory [9,10], metabolic pathway analysis [11,12],
and network analysis [6,13]. Signal transduction pathways
and networks have, for the most part, been described quali-
tatively by the sets of expressed genes associated with the
activation of a specific pathway [14,15]. Signaling has been
modeled, however, for certain well-defined systems using
detailed kinetics and neural-network-type approaches
[2,16]. In addition, Krauss and Brand [17] have recently
applied metabolic control analysis to signal transduction
pathways. A description of the specific focuses and features
of the above methods is not possible here. However, they can
generally be grouped according to the organizational level(s)
they describe and the type of data utilized. This article
focuses on metabolic control analysis, a method that inte-
grates ‘local’ kinetic information with systems-level informa-
tion to quantitate proportions of control exerted by different
components of a given pathway or system. The aim of this
review is to provide the reader with the basic framework for
understanding how (and why) metabolic control analysis can
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be used to examine specific systems and to elucidate funda-
mental underlying biological design principles, which are
independent of a particular system.

Metabolic control analysis

Theory

Metabolic control analysis provides a robust mathematical
and theoretical framework for describing metabolic and sig-
naling pathways and networks, and for quantifying the con-
trols over these processes. It can deal with systems of any
complexity or architecture and does not require all system
components to be known a priori, making it a valuable post-
genomic tool. It was developed in the 1970s by Kacser and
Burns [18] and Heinrich and Rapoport [19]. Since then, ded-
icated researchers have expanded and advanced metabolic
control analysis theory and applications, carefully defined

the associated terms, and developed analytical and educa-
tional tools [20-25].

Metabolic control analysis uses equations based on the
kinetics of enzymes (known as elasticity coefficients) to
parameterize control coefficients (which describe the
degree of control exerted by any given component on a par-
ticular output) resulting in response coefficients. The
response to a perturbation is quantified by the summation
of the response coefficients affecting the output of interest,
which depends on both the control coefficients (systems
properties) and elasticity coefficients (local properties). The
fundamental equations are presented in Box 1 (also see
Figure 1). It should be noted, explicitly, that the use of
metabolic control analysis is not limited to linear pathways,
but is also applicable to branching and cyclic pathways, and
enzyme cascades.

Box |

Metabolic control analysis uses control coefficients, elasticity coefficients, and response coefficients to quantify
responses to perturbations. The control and elasticity coefficients are scale-less terms of the form given in Equation |.
Control coefficients (C) define the degree of control that each step in a pathway has on system variables such as flux or
metabolite concentration. The control coefficient (C%) of Equation | describes the strength of the response in variable
A (e.g. flux), to a change in the steady-state rate (v,) of step i.
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As illustrated in Figure |, the flux control coefficient may range from | (complete control over a pathway) to 0 (no
control). For a given flux |, the sum of the control coefficients for all enzymes affecting J, must equal one. Thus control
coefficients are systems properties and are defined in the context and constraints of the system.

Elasticity coefficients (¢) define the sensitivity of an isolated (that is, local’) enzyme’s reaction rate (under the same con-
ditions as the system) to changes in a reaction parameter such as substrate concentration. The elasticity coefficient is
derived from the kinetics of a given enzyme and often reflects the fractional change in enzyme rate associated with a
fractional change in substrate concentration.

The connectivity theorems relate the systems properties of the pathway (C) to the local properties of an individual
enzyme’s kinetics (g) through a common intermediate metabolite (M). They describe how metabolic perturbations
propagate through the chain of enzymes comprising a metabolic network. Equation 2 details the connectivity relation-
ship - where A may be flux or metabolite concentration.

Sclepy =0 where A # [M] 2)
In addition to quantifying the control each step of a pathway exerts on a system variable (for example, flux), metabolic
control analysis allows us to quantify the response to an external perturbation using the partitioned response coeffi-
cient (R). As shown in Equation 3, an external effector (X) such as an inhibitor would affect the rate of some enzymes
in the pathway as quantified by enzyme elasticity coefficients. However, as these rates change, so do the system vari-
ables, as quantified by the control coefficient. The partitioned response coefficient therefore quantifies this change in
the system variable (A) as the sum of the effects through all the enzymes (i) affected by the external effector (X), as
shown in Equation 3.
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Flux control coefficients (C) for typical variations in pathway
flux (J) measured at step n with a steady-state rate (V) at
step i of a pathway. The coefficients are equal to the slope of
the tangent to the curve (shown) multiplied by the scaling
term v/.. This figure is adapted from [6].

Application to a specific system

Metabolic control analysis can be used to quantitate control
exerted by different components of a specific system and pin-
point areas requiring further experimentation. For example,
Krauss and Brand [17] recently used metabolic control analysis
to quantitate the contributions of known and unknown signal
transduction pathways in the early response of thymocytes to
mitogen (concanavalin A, ConA) stimulation. To apply meta-
bolic control analysis to a complex system containing both
metabolic and signaling components, they gathered large parts
of metabolism or signal transduction into ‘black-box’ groups of
reactions, coupled signal transduction events to cellular vari-
ables, and limited the time frame of observation. In particular,
thymocyte response to Con A stimulation was quantified by
measuring steady-state respiration rates, and signaling routes
(such as protein kinase C (PKC)) were grouped based on their
sensitivity to specific inhibitors. The effects of these known and
unknown signal transduction pathways on the mitochondrial
membrane potential, a key intermediate in respiration, were
also quantified. The analysis of the model system, presented in
Figure 2, resulted in a quantitative topology of signaling
routes involved in the early phase of mitogen stimulation of
thymocytes. Novel findings, such as the significant role played
by calcineurin signal transduction pathways (30% of total),
highlight areas for future experimental work.
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Elucidation of underlying biological design principles

The application of metabolic control analysis has altered our
basic understanding of metabolic control. In particular, the
belief that control over a pathway is dictated by a ‘rate-limit-
ing step’ is now obsolete and is being removed from the bio-
chemistry textbooks. Instead, it is replaced by the concept of
shared control, where many - or theoretically all - enzymes
in a pathway have a role in controlling the flux through the
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The model systems analyzed in [17], reproduced with
permission. (a) Mitogen stimulation of thymocyte
respiration is depicted as a single open arrow. Respiration is
targeted by the mitogen Con A via a number of signal
transduction pathways. Analysis of the system should allow
one to establish a topology of signal routes and to weight
the arrows extending through the signal transduction
intermediates (PKC, MAPK, calcineurin and the unidentified
pathways). (b) The system depicted in (a) in 2 modified
form. Fewer signal transduction pathways are considered,
but their interaction is studied with respect to two blocks of
reactions that participate in respiration: the producers and
the consumers of the mitochondrial membrane potential
(AWm). The responses of these target pathways to Con A
via the signal transduction pathways considered can be
determined using specific inhibitors of signal transduction
(bisindolylmaleimide | and cypermethrin), electron transport
(myxothiazol) and ATP synthesis (oligomycin).
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pathway. Implicit in this is the idea that the regulation of cell
metabolism requires coordinate change in the activities of
many enzymes (‘multisite modulation’ [26]). The validity of
this notion has been supported by bioengineers’ lack of
success in increasing a particular flux (product yield) by
overexpressing the ‘rate-limiting’ enzyme and success by
overexpressing a group of enzymes in a pathway. For
example, Niederberger et al. [27] found that overexpression
of four of the five enzymes in the yeast biosynthetic pathway
leading from chorismate to tryptophan was required to sig-
nificantly increase (more than eightfold) the production
of tryptophan.

If the coordinated expression of enzymes in a pathway is
required to significantly increase its flux, this should be an
underlying design principle of organisms. In fact, the coordi-
nated induction of enzymes to increase metabolic flux
through a pathway has long been observed in vivo. One of
many examples provided by Fell [21] is the urea synthetic
pathway. The rate of urea synthesis in rats responds propor-
tionately to the amount of protein in the diet. When rats are
fed on diets that increase urea output fourfold, eight of the
enzymes measured increased significantly, including all four
of the urea-cycle enzymes [28]. With DNA microarrays and
complete genome information, global expression data detail-
ing the coordinated induction of pathway enzymes may be
coupled with structural information on the organization of
genes for pathway enzymes in operons or in clusters with
common cis-acting elements (for example, see [29]). By per-
forming these types of analyses on organisms responding to
a variety of external effectors (such as nutrient conditions,
pathogens, and so on), and on diverse organisms, this
underlying design principle may be further explored.

Metabolic control analysis can also be used to explain why
most mutations in diploid organisms are ‘fully’ recessive.
Most enzymes have low-flux control coefficients; thus, a 50%
reduction in enzyme concentration resulting from a null
mutation in one allele of a diploid pair has little effect on the
pathway flux. In addition, because pathway flux is a systems
property, the influence of an alteration at one locus is mea-
sured in the whole system, minimizing the impact from any
one reduction. Kacser and Burns [30] therefore posited the
phenomenon of genetic dominance as the “inevitable conse-
quence of the kinetic structure of enzyme networks” and not a
result of natural selection. This conclusion was supported by
Orr [31], who found the same extent of recessive mutations in
artificial diploids created from the haploid organism
Chlamydomonas reinhardtii (where the possibility of selec-
tion in the diploid was eliminated). The existence of a
limited number of ‘partially’ recessive mutants, in which the
heterozygote has an intermediate phenotype, is also consis-
tent with metabolic control analysis. Theoretically, these
enzymes (with high control coefficients) would be more likely
to be a part of a very small pathway or the first enzyme of a
branching pathway. Despite these studies, the ‘inevitability’

of dominance is still debated [32]. With the availability of
complete genome information for a number of diploid
organisms, genomic information on natural variants (for
example, the Arabidopsis ecotypes Columbia and Landsberg
[33]), and numerous collections of mutants, this type of
question can now be addressed on a global scale.

Future directions and challenges

As illustrated above, metabolic control analysis is particu-
larly useful for describing the theoretical aspects of regula-
tion. This utility will continue to expand in the post-genomic
era, particularly with advances in the in vivo imaging and
quantitation of proteins and metabolites (for example, using
tracer nuclear magnetic resonance). Future modeling efforts
will require the integration or sampling of current mathe-
matical approaches, including metabolic control analysis, as
well as the development of new theoretical approaches and
tools. As models become more complex and integrated to
reflect the sheer volume of simultaneously occurring reac-
tions in a cell, the incorporation of Monte Carlo methods
(random sampling) and finite element analysis (approxima-
tions based on subdivision into smaller, more manageable
elements) is likely to be necessary. In addition, the platforms
and databases required to construct models of increasing
complexity need to be developed in an organized and collab-
orative manner and to be widely accessible [34]. Access to
the requisite computational resources will also become an
issue. Perhaps an institute similar to the National Center for
Atmospheric Research [35], which facilitates international
global climate change research, could help coordinate and
support biological modeling efforts.

Acknowledgements
My sincere thanks to David Fell, Stefan Krauss, Fred Ausubel and Julia
Dewdney for their comments on drafts of this manuscript.

References

I. Gershenfeld N: The Nature of Mathematical Modeling. Cambridge Uni-
versity Press; 1999.

2. Bhalla US, lyengar R: Emergent properties of networks of bio-
logical signaling pathways. Science 1999, 283:381-387.

3. Collado-Vides ], Magasanik B, Smith TF: Integrative Approaches to Mol-
ecular Biology. Cambridge, MA: MIT Press; 1996.

4. Giersch C: Mathematical modeling of metabolism. Curr Opin
Plant Biol 2000, 3:249-253.

5. Palsson B: The challenges of in silico biology. Nat Biotechnol
2000, 18:1147-1150.

6. Fell DA, Wagner A: The small world of metabolism. Nat Biotech-
nol 2000, 18:1112-1122.

7.  Weng G, Bhalla US, lyengar R: Complexity in biological signal-
ing systems. Science 1999, 284:92-96.

8. Poolman MG, Fell DA, Thomas S: Modelling photosynthesis and
its control. | Exp Bot 2000, 51:319-328.

9. Ni T-C, Savageau M: Application of biochemical systems
theory to metabolism in human red blood cells. | Biol Chem
1996, 271:7927-7941.

10. Savageau MA: Power-law formalism: a canonical nonlinear
approach to modeling and analysis. In World Congress of Nonlin-
ear Analysts, 92, Vol 4. Edited by Lakshmikantham V. Berlin: Walter
de Gruyter; 1996.



20.

21.
22.
23.
24.

25.
26.

27.

28.
29.

30.
31
32.

33.

34.
35.

Schilling CH, Schuster S, Palsson BO, Heinrich R: Metabolic
pathway analysis: basic concepts and scientific applications
in the post-genomic era. Biotechnol Prog 1999, 15:296-303.
Edwards S, Palsson BO: Systems properties of the
Haemobphilus influenzae Rd metabolic genotype. | Biol Chem
1999, 274:17410-17416.

Jeong H., Tombor B, Albert R, Oltavai N, Barabasi, A-L: The large-
scale organization of metabolic networks. Nature 2000,
407:651-654.

Fambrough D, McClure K, Kazlauskas A, Lander ES: Diverse signal-
ing pathways activated by growth factor receptors induce
broadly overlapping, rather than independent, sets of genes.
Cell 1999, 97:724-741.

Pawson T, Saxton TM: Signaling networks - do all roads lead to
the same genes? Cell 1999, 97: 675-678.

Kholodenko BN, Demin OV, Moehren G, Hoek |B: Quantification
of short term signaling by the epidermal growth factor
receptor. | Biol Chem 1999, 274:30169-30181.

Krauss S, Brand MD: Quantitation of signal transduction. FASEB
J 2000, 14: in press.

Kacser H, Burns JA: Control of enzyme flux. Symp Soc Exp Biol
1973, 27:65-104.

Heinrich R, Rapoport TA: A linear steady-state treatment of
enzymatic chains. Eur | Biochem 1974, 42:89-95.

Fell DA: Metabolic control analysis - a survey of its theoreti-
cal and experimental development. Biochem | 1992, 152:313-
330.

Fell D: Understanding the Control of Metabolism. London: Portland
Press; 1997.

Heinrich R, Schuster S: The Regulation of Cellular Systems. New York:
Chapman and Hall; 1996.

Cornish-Bowden A: Metabolic control analysis in theory and
practice. Adv Mol Cell Biol 1995, 11:21-64.

MCA website [http://gepasi.dbs.aber.ac.uk/metab/mca]

Bionet metabolic regulation newsgroup [bionet.metabolic-reg]
Fell DA, Thomas S: Physiological control of metabolic flux: the
requirement for multisite modulation. Biochem | 1995, 311:35-
39.

Niederberger P, Prasad R, Miozzari G, Kacser H: A strategy for
increasing an in vivo flux by genetic manipulations of the
tryptophan system of yeast. Biochem | 1992, 287:473-479.
Schimke RT: Adaptive characteristics of urea cycle enzymes
in the rat. | Biol Chem 1962, 237:459-468.

Tavazoie S, Hughes ]D, Campbell M), Cho R}, Church GM: System-
atic determination of genetic network architecture. Nat
Genet 1999, 22:281-285.

Kacser H, Burns JA: The molecular basis of dominance. Genetics
1981, 97:639-666.

Orr HA: A test of Fisher’s theory of dominance. Proc Natl Acad
Sci USA 1991, 88:11413-11415.

Grossniklaus U, Madhusudhan MS, Nanjundiah V: Nonlinear
enzyme kinetics can lead to high metabolic flux control
coefficients: implications for the evolution of dominance.
J Theor Biol 1996, 182:299-302.

The Arabidopsis Information Resource [http://www.arabidop-
sis.org]

Alliance for Cellular Signaling [http://afcs.swmed.edu/]

National Center for Atmospheric Research
[http://ncar.ucar.edu/ncar]

http://genomebiology.com/2000/ | /6/reviews/103 1.5




	Modeling biological processes and systems
	Metabolic control analysis
	Theory
	Application to a specific system
	Elucidation of underlying biological design principles

	Future directions and challenges
	Acknowledgements
	References

