Skip to main content
Fig. 1 | Genome Biology

Fig. 1

From: High-throughput techniques enable advances in the roles of DNA and RNA secondary structures in transcriptional and post-transcriptional gene regulation

Fig. 1

Schematics of DNA and RNA structures. A The canonical right handed double helix, also known as B DNA secondary structure. B Z-DNA forms a left-handed double helix. C G-quadruplexes are formed by the stacking of multiple G-quartets held together by Hoogsteen hydrogen bonds (top). Four guanines establish hydrogen bonds with each other to form a G-quartet (bottom). Hoogsteen hydrogen bonds are highlighted in blue. The monovalent cation that can stabilize the G-quadruplex structure is marked with M. D Hairpins are formed at inverted repeats, in which the stem base pairs hybridize with hydrogen bonds, while the loop remains single-stranded. E Slipped-strand mispairing at tandem repeats results in slipped structure formation. F Depiction of a homopurine-homopyrimidine sequence with mirror symmetry. H-DNA is a triple helix secondary structure where the third strand hybridizes with Hoogsteen hydrogen bonds with the duplex DNA, while the fourth strand remains single stranded. G R-loops are formed co-transcriptionally at the template strand. The nascent RNA produced by the RNA-polymerase hybridizes with the template strand to form an R-loop structure, while the non-template strand remains single-stranded

Back to article page