Skip to main content
Fig. 4 | Genome Biology

Fig. 4

From: Comprehensive assessment of differential ChIP-seq tools guides optimal algorithm selection

Fig. 4

Accuracy profiles of DCS tools. a Schematic representation of accuracy profiles. Rows with yellow background show simulated or sub-sampled ChIP-seq signals. The reference region highlights the sample color with the higher signal. Regions with no difference are depicted in gray. The predicted regions from a DCS tool are highlighted with green and the calculated accuracy metrics with blue background. We investigated false positives, false negatives, and too long and too short regions, representing the false positive and false negative base pairs (bp), respectively with the constraint that the predicted regions overlapped with a reference region. b Bar charts show the false discovery rate (FDR), the false omission rate (FOR), the percentage of too short, and the percentage of too long bp for the best-performing parameter sets of the top 5 DCS tool parameter combinations per scenario (from left/5th to the right/1st) based on AUPRC. TFs (left), sharp marks (middle), and broad marks (right) in the columns and 50:50 regulation (top) as well as 100:0 regulation (bottom) in the rows. Whiskers represent the standard deviation. c Example coverage plot of DCSsub sub-sampled H3K27ac reads (samples in row 1 (red) and 2 (blue)) representing sharp marks with the respective reference regions (row 3). In row 3 upregulation in sample 1 is indicated in red, downregulation in blue. Rows 4 to 8 show predicted regions from the best parameter setups of the top 5 DCS tools for sharp mark data and 50:50 regulation. The height of predicted regions represents the − log10 of p-value, adjusted p-value, or FDR or the score derived from the respective DCS tool. Higher bars represent higher confidence in the indicated region

Back to article page