Skip to main content
Fig. 2 | Genome Biology

Fig. 2

From: Functional genomics analysis identifies T and NK cell activation as a driver of epigenetic clock progression

Fig. 2

Associations between clock CpG DNAm and gene expression. A Percentages of CpGs belonging to the clocks which associate with the expression of at least 1 gene in cis (<100 kB distance). B Overlap of the genes associating with clock CpGs in cis. The cells on the diagonal represent the total number of genes associating with the CpGs of the clock in cis, while the other cells represent the number of cis-genes shared between each clock pair. The color of each cell represents the percentage of the smaller gene set that overlaps with the larger gene set (0% = white, 100% = red). C Percentages of CpGs belonging to the clocks which associate with the expression of at least 1, 10, or 100 genes in trans (>5 MB distance or different chromosomes). D Overlap of the genes associating with clock CpGs in trans. The cells on the diagonal represent the total number of genes associating with the CpGs of the clock in trans, while the other cells represent the number of trans-genes shared between each clock pair. The color of each cell represents the percentage of the smaller gene set that overlaps with the larger gene set (0% = white, 100% = red). Only trans-genes which were associated with at least 5% of any of the clocks were included. E Biological pathway gene ontology (GO) enrichments of trans-genes. Only trans-genes which were associated with at least 5% of any of the clocks were included. Networks were created using REVIGO, filtering out extremely similar GO-terms for clarity [11]. Nodes represent GO-terms, with node size depicting GO-term generality, and node color depicting enrichment p value. Highly related GO-terms which pass the similarity filter are connected by edges in the graph, with edge width representing term similarity

Back to article page