Skip to main content
Fig. 6 | Genome Biology

Fig. 6

From: Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance

Fig. 6

Roles of ZmcPGM2 in regulation of maize drought tolerance. a Expression of ZmcPGM2 in maize plants grown under WW or DS conditions. DS2-4 indicates different stress levels. b Plants with different alleles (A/C) of chr5.S_10857363, which showed high LD with chr5.S_10856121 (R2 = 0.81), showed significantly different survival rates in the maize population. c Comparison of water loss rate between detached leaves of B73 wild type and Zmcpgm2 mutants. d Growth of B73 wild type and Zmcpgm2 mutant plants under well-watered (WW) and drought-stressed (DS) conditions followed by re-watering. Bar = 20 cm for all plants shown in this panel. e Comparison of the survival rates of B73 wild type and Zmcpgm2 mutant plants after drought stress. f–i Comparison of the photosynthetic rates (f), stomatal conductances (g), transpiration rates (h), and water use efficiencies (WUE, i) of B73 wild type and Zmcpgm2 mutant plants after ceasing watering at different time points. Days indicate the time after irrigation ceased. The embedded graph in (f) indicates the soil moistures (SM) at each time point without irrigation. Statistical significance was determined by Student’s t-test: *P < 0.05; **P < 0.01; ***P < 0.001. j, k Anthesis-silking intervals (ASI) of B73 and Zmcpgm2 mutant plants grown under WW (j) and DS (k) conditions. Means with letters a and b show significantly different by t test (P < 0.05)

Back to article page