Skip to main content
Fig. 4 | Genome Biology

Fig. 4

From: Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models

Fig. 4

Mutations in the SARS-CoV-2 replication complex (nsp7, nsp8 and nsp12) and spike glycoprotein (S). a Active form of RNA-dependent RNA polymerase (nsp12) associated with the cofactors nsp7 and nsp8 (cryo-EM structure, PDB id 6yyt) [26]. b View of the proximity surrounding the loop where site 323 of nsp12 is located to nsp8 (red box). Pro323Leu is a frequent mutation in nsp12. View of the proximity between Ser25 in nsp7 and Asp163 in nsp8 (green box), which likely interact with each other via hydrogen bonds. The mutation Ser25Leu in nsp7 is fairly frequent. c Cryo-EM structure of the S trimer in the closed conformation showing the location of sites 614 (at end of S1 subunit, red square) and 483 (at the β-4,5 loop of the receptor-binding domain, orange square). The cryo-EM structure (PDB id 6vxx) was used in this image. Glycans are not depicted for clarity. The missing loops were modeled using the Rosetta framework [32, 72]. d Magnified view of the salt bridge network around Asp614 (red box), which may facilitate electrostatic-driven interactions within monomers. The mutation Asp614Gly is quite frequent (62% of sequences analyzed have it) (PDB id 6xr8) [73]. Magnified view of the interface between the spike RBD (pink) and ACE2 (orange) (orange box, PDB id 6 m17 [74]). Site 483 is located at the β-4,5 loop of RBD. The mutations Val483Gly, Val483Ala, and Val483Asp were identified in SARS-CoV-2

Back to article page