Skip to main content

Advertisement

Fig. 1 | Genome Biology

Fig. 1

From: Measuring the reproducibility and quality of Hi-C data

Fig. 1

Overview of the study. a Schematic showing the approach for generating noise-injected Hi-C matrices. In the upper panel, we generate two types of noise from real Hi-C data (center): random ligation noise (right) and genomic distance effect noise (left). The three matrices are then mixed to generate noisy datasets (lower panel). By changing the mixing proportions, we can create datasets with varying percentages of noise. b To benchmark the performance of various quality control and reproducibility measures, we compiled a large number of Hi-C replicates from 13 cell types and simulated noise-injected datasets from the original data. Real and simulated datasets binned at different resolutions and downsampled to different coverage levels are the inputs to reproducibility and quality control measures where each replicate pair and single replicate are assigned a score. Performance of each measure is evaluated on their ability to correctly rank real and simulated datasets. c Summary of the basic principles of the four reproducibility methods evaluated in this study

Back to article page