Skip to main content
Fig. 5 | Genome Biology

Fig. 5

From: Epistatic and allelic interactions control expression of ribosomal RNA gene clusters in Arabidopsis thaliana

Fig. 5

Genetic evidence of the interaction between rDNA clusters. a The proportion of RNA-seq reads expressing a particular reporter variant (y-axis) against the proportion of DNA-seq reads accounting for the existence of the same variant (x-axis) for parental accessions Algutsrum (8230) and TDr-9 (6195). Error bars represent standard deviations of two biological replicates. The dashed line represents the one-to-one ratio between DNA and RNA. b Linkage mapping of the expression of a TDr-9 rDNA-2-specific variant (position 1861 in the ETS, T to G) in 68 F2 individuals derived from the selfed F1 progeny of a cross between ♀ Algutsrum x ♂ TDr-9. c Similar to (b), but for a Algutsrum rDNA-4-specific variant (position 2445 in the 18S, T to C) in 183 F2 individuals. d Similar to (b) and (c), but for a Algutsrum rDNA-2-specific variant (position 3904 in the 18S, C to G) in 176 F2 individuals. e Similar to (b–d), but for a TDr-9 rDNA-4-specific variant (position 4078 in the ITS, C to deletion) in 162 F2 individuals. For subfigures (b–e), black lines indicate Simple Interval Mapping (SIM), while orange and red lines indicate Multiple-QTL Mapping (MQM) additive and dominance models, respectively. The horizontal solid and dashed gray lines correspond to the permutation test at 10% and 5% significance levels, respectively. f Schematic representation of the rDNA cluster combinations inherited by F2 individuals (cross-matches between schemes outside the matrix), and the resulting mean expression pattern of their rRNA genes according to all available rDNA cluster-specific variants (squares inside the matrix). Error bars represent standard deviations across the number of F2 individuals (n, which varies between different reporter variants and is given as a range in the figures) in each rDNA cluster combination. Dashed lines indicate the one-to-one ratio between DNA and RNA

Back to article page