Skip to main content
Fig. 3 | Genome Biology

Fig. 3

From: Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations

Fig. 3

Yeast chromatin parameters inferred from imaging and Hi-C data. This figure shows the posterior probability densities of chromatin compaction C and persistence length P as inferred from a variety of experimental datasets. ag joint posterior probability densities for (P, C) obtained for different subsets of experimental data (af) or the whole experimental dataset (g), as detailed below. The two contour lines shown enclose 68% and 95% of the probability mass. Individual panels correspond to the following experimental datasets: (a) modes of 3D distances between eight pairs of loci on chromosome 14 measured by imaging in fixed cells (observable O6, Table 2). The dashed yellow curve has C P 0.7. b Median 3D distances between 62 pairs of telomeres measured by imaging in live cells [50] (O1). c Combined set of data from imaging, in live cell or fixed cell experiments. Solid lines: combined data from live cell imaging (111 data points, O1–O4); dotted lines: combined data from imaging fixed cells (28 data points, observables O5–O7). d All imaging data from fixed and live cells pooled together (O1–O7; 139 data points). e Summary statistics from genome-wide contact frequencies measured by Hi-C data (see Table 2 and Additional file 1: Supplementary Methods). Solid lines: Hi-C data from [29] (56 data points; O8). Dotted lines: Hi-C data from [30] (56 data points; O9). f Combination of the two Hi-C datasets [29, 30] (116 data points; O8, O9). g Combination of all experimental data from imaging and Hi-C (266 data points; O1–O9). h, i Probability densities for C (h) and P (i), obtained either from all the imaging data as in (d) (green), from the two Hi-C datasets as in (f) (blue) or from the combination of imaging and Hi-C data as in (g) (red)

Back to article page