Knapp S, Chase MW, Clarkson JJ: Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon. 2004, 53: 73-82. 10.2307/4135490.
Article
Google Scholar
Renny-Byfield S, Chester M, Kovarik A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novak P, Chase MW, Leitch AR: Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol. 2011, 28: 2843-2854. 10.1093/molbev/msr112.
Article
CAS
PubMed
Google Scholar
Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR: The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot. 2008, 101: 805-814. 10.1093/aob/mcm326.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plant DNA C-values database. [http://data.kew.org/cvalues/]
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E: Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science. 1983, 220: 1049-1051. 10.1126/science.220.4601.1049.
Article
CAS
PubMed
Google Scholar
Ingle J, Timmis JN, Sinclair J: The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy, and genome size in plants. Plant Physiol. 1975, 55: 496-501. 10.1104/pp.55.3.496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narayan R: Nuclear DNA changes, genome differentiation and evolution in Nicotiana (Solanaceae). Plant Systematics Evol. 1987, 157: 161-180. 10.1007/BF00936195.
Article
CAS
Google Scholar
Narayan R, Rees H: Nuclear DNA, heterochromatin and phylogeny of Nicotiana amphidiploids. Chromosoma. 1974, 47: 75-83. 10.1007/BF00326273.
Article
Google Scholar
Sharma D, Firoozabady E, Ayres N, Galbraith D: Improvement of anther culture in Nicotiana: media, cultural conditions and flow cytometric determination of ploidy levels. Zeitschrift für Pflanzenphysiologie. 1983, 111: 441-451.
Article
Google Scholar
Bindler G, van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P: A microsatellite marker based linkage map of tobacco. Theor Appl Genet. 2007, 114: 341-349.
Article
CAS
PubMed
Google Scholar
Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD: Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics. 2006, 174: 1407-1420. 10.1534/genetics.106.062455.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu F, Eannetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD: COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet. 2010, 120: 809-827. 10.1007/s00122-009-1206-z.
Article
PubMed
Google Scholar
Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P: A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet. 2011, 123: 219-230. 10.1007/s00122-011-1578-8.
Article
PubMed
PubMed Central
Google Scholar
Tong Z, Yang Z, Chen X, Jiao F, Li X, Wu X, Gao Y, Xiao B, Wu W: Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breeding. 2012, 131: 674-680. 10.1111/j.1439-0523.2012.01984.x.
Article
CAS
Google Scholar
Ennajdaoui H, Vachon G, Giacalone C, Besse I, Sallaud C, Herzog M, Tissier A: Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Mol Biol. 2010, 73: 673-685. 10.1007/s11103-010-9648-x.
Article
CAS
PubMed
Google Scholar
Sallaud C, Giacalone C, Töpfer R, Goepfert S, Bakaher N, Rösti S, Tissier A: Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J. 2012, 72: 1-17. 10.1111/j.1365-313X.2012.05068.x.
Article
CAS
PubMed
Google Scholar
Maliga P, Svab Z: Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. Methods Mol Biol. 2011, 701: 37-50. 10.1007/978-1-61737-957-4_2.
Article
CAS
PubMed
Google Scholar
Thyssen G, Svab Z, Maliga P: Exceptional inheritance of plastids via pollen in Nicotiana sylvestris with no detectable paternal mitochondrial DNA in the progeny. Plant J. 2012, 72: 84-88. 10.1111/j.1365-313X.2012.05057.x.
Article
CAS
PubMed
Google Scholar
Pellny TK, Van Aken O, Dutilleul C, Wolff T, Groten K, Bor M, De Paepe R, Reyss A, Van Breusegem F, Noctor G: Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris. Plant J. 2008, 54: 976-992. 10.1111/j.1365-313X.2008.03472.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Priault P, Fresneau C, Noctor G, De Paepe R, Cornic G, Streb P: The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance. J Exp Bot. 2006, 57: 2075-2085. 10.1093/jxb/erj161.
Article
CAS
PubMed
Google Scholar
Stel'makh O, Kravets E, Emets A, Blium IB: Analysis of reproductive development of mutant Nicotiana sylvestris plants resistant to isopropyl-N-phenylcarbamate]. Tsitol Genet. 2005, 39: 15-
PubMed
Google Scholar
Yemets A, Stelmakh O, Blume Y: Effects of the herbicide isopropyl-N-phenyl carbamate on microtubules and MTOCs in lines of Nicotiana sylvestris resistant and sensitive to its action. Cell Biol Int. 2008, 32: 623-629. 10.1016/j.cellbi.2008.01.012.
Article
CAS
PubMed
Google Scholar
Sekine KT, Tomita R, Takeuchi S, Atsumi G, Saitoh H, Mizumoto H, Kiba A, Yamaoka N, Nishiguchi M, Hikichi Y: Functional differentiation in the leucine-rich repeat domains of closely related plant virus-resistance proteins that recognize common Avr proteins. Mol Plant Microbe Interact. 2012, 25: 1219-1229. 10.1094/MPMI-11-11-0289.
Article
CAS
PubMed
Google Scholar
Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS: Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot. 2003, 92: 107-127. 10.1093/aob/mcg087.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baldwin IT: Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity. J Chem Ecol. 1999, 25: 3-30. 10.1023/A:1020880931488.
Article
CAS
Google Scholar
Baldwin IT: Damage-induced alkaloids in tobacco: pot-bound plants are not inducible. J Chem Ecol. 1988, 14: 1113-1120. 10.1007/BF01019339.
Article
CAS
PubMed
Google Scholar
Eich E: Solanaceae and Convolvulaceae: Secondary Metabolites: Biosynthesis, Chemotaxonomy, Biological and Economic Significance (A Handbook). 2008, Springer
Book
Google Scholar
Smith C: Occurrence of L-nornicotine in Nicotiana sylvestris. J Economic Entomol. 1937, 30: 724-727.
Article
Google Scholar
Sisson V, Severson R: Alkaloid composition of the Nicotiana species. Beiträge zur Tabakforschung International. 1990, 14: 327-339.
CAS
Google Scholar
Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR, Chase MW: Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol. 2004, 33: 75-90. 10.1016/j.ympev.2004.05.002.
Article
CAS
PubMed
Google Scholar
Leffingwell J: Basic chemical constituents of tobacco leaf and differences among tobacco types. Tobacco: Production, Chemistry and Technology. 1999, Oxford, UK: Blackwell Sciences, 265-284.
Google Scholar
Wagner G: Leaf surface chemistry. Tobacco: Production, Chemistry and Technology. Edited by: Davis DL, Nielsen MT. 1999, Oxford: Blackwell Sciences, 292-303.
Google Scholar
Heemann V, Brümmer U, Paulsen C, Seehofer F: Composition of the leaf surface gum of some Nicotiana species and Nicotiana tabacum cultivars. Phytochemistry. 1983, 22: 133-135. 10.1016/S0031-9422(00)80073-4.
Article
CAS
Google Scholar
Wagner GJ: Accumulation of cadmium in crop plants and its consequences to human health. Adv Agronomy. 1993, 51: 173-212.
Article
CAS
Google Scholar
Rosén K, Eriksson J, Vinichuk M: Uptake and translocation of 109Cd and stable Cd within tobacco plants (Nicotiana sylvestris). J Environ Radioact. 2012, 113: 16-20.
Article
PubMed
Google Scholar
Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J: Genome sequence and analysis of the tuber crop potato. Nature. 2011, 475: 189-10.1038/nature10158.
Article
CAS
PubMed
Google Scholar
Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Egholm M: The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012, 485: 635-641. 10.1038/nature11119.
Article
CAS
Google Scholar
Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller L, Martin G: A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact. 2012, 25: 1523-1530. 10.1094/MPMI-06-12-0148-TA.
Article
CAS
PubMed
Google Scholar
Knapp S, Bohs L, Nee M, Spooner DM: Solanaceae - a model for linking genomics with biodiversity. Comp Funct Genomics. 2004, 5: 285-291. 10.1002/cfg.393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimmerman JL, Goldberg RB: DNA sequence organization in the genome of Nicotiana tabacum. Chromosoma. 1977, 59: 227-252. 10.1007/BF00292780.
Article
CAS
Google Scholar
Park M, Jo SH, Kwon JK, Park J, Ahn JH, Kim S, Lee YH, Yang TJ, Hur CG, Kang BC: Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genomics. 2011, 12: 85-10.1186/1471-2164-12-85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melayah D, Lim KY, Bonnivard E, Chalhoub B, Dorlhac de Borne F, Mhiri C, Leitch AR, Grandbastien MA: Distribution of the Tnt1 retrotransposon family in the amphidiploid tobacco (Nicotiana tabacum) and its wild Nicotiana relatives. Biol J Linn Soci. 2004, 82: 639-649. 10.1111/j.1095-8312.2004.00348.x.
Article
Google Scholar
Gazdova B, Široký J, Fajkus J, Brzobohatý B, Kenton A, Parokonny A, Heslop-Harrison JS, Palme K, Bezděk M: Characterization of a new family of tobacco highly repetitive DNA, GRS, specific for the Nicotiana tomentosiformis genomic component. Chromosome Res. 1995, 3: 245-254. 10.1007/BF00713050.
Article
CAS
PubMed
Google Scholar
Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C: Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics. 2007, 278: 1-15. 10.1007/s00438-007-0226-0.
Article
CAS
PubMed
Google Scholar
Renny-Byfield S, Kovařík A, Chester M, Nichols RA, Macas J, Novák P, Leitch AR: Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PloS One. 2012, 7: e36963-10.1371/journal.pone.0036963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregor W, Mette MF, Staginnus C, Matzke MA, Matzke AJM: A distinct endogenous pararetrovirus family in Nicotiana tomentosiformis, a diploid progenitor of polyploid tobacco. Plant Physiol. 2004, 134: 1191-1199. 10.1104/pp.103.031112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horáková M, Fajkus J: TAS49 a dispersed repetitive sequence isolated from subtelomeric regions of Nicotiana tomentosiformis chromosomes. Genome. 2000, 43: 273-284.
PubMed
Google Scholar
Bombarely A, Edwards KD, Sanchez-Tamburrino J, Mueller LA: Deciphering the complex leaf transcriptome of the allotetraploid species Nicotiana tabacum: A phylogenomic perspective. BMC Genomics. 2012, 13: 406-10.1186/1471-2164-13-406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin F, Bovet L, Cordier A, Stanke M, Gunduz I, Peitsch MC, Ivanov NV: Design of a Tobacco Exon Array with application to investigate the differential cadmium accumulation property in two tobacco varieties. BMC Genomics. 2012, 13: 674-10.1186/1471-2164-13-674.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P: The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009, 41: 1275-1281. 10.1038/ng.475.
Article
CAS
PubMed
Google Scholar
Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y: The sequence and de novo assembly of the giant panda genome. Nature. 2010, 463: 311-10.1038/nature08696.
Article
CAS
PubMed
Google Scholar
Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA: Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol. 2011, 30: 83-89. 10.1038/nbt.2022.
Article
PubMed
Google Scholar
Sierro N, Van Oeveren J, van Eijk MJ, Martin F, Stormo KE, Peitsch MC, Ivanov NV: Whole genome profiling physical map and ancestral annotation of tobacco Hicks broadleaf. Plant J. 2013, [http://dx.doi.org/10.1111/tpj.12247]
Google Scholar
Chen F, Mackey AJ, Vermunt JK, Roos DS: Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS One. 2007, 2: e383-10.1371/journal.pone.0000383.
Article
PubMed
PubMed Central
Google Scholar
Li L, Stoeckert CJ, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003, 13: 2178-2189. 10.1101/gr.1224503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics. 2007, 23: 257-258. 10.1093/bioinformatics/btl567.
Article
CAS
PubMed
Google Scholar
Guerinot ML: The ZIP family of metal transporters. Biochim Biophys Acta. 2000, 1465: 190-198. 10.1016/S0005-2736(00)00138-3.
Article
CAS
PubMed
Google Scholar
Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister D: The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J. 2002, 31: 589-599. 10.1046/j.1365-313X.2002.01381.x.
Article
CAS
PubMed
Google Scholar
Kim SA, Guerinot ML: Mining iron: iron uptake and transport in plants. FEBS Lett. 2007, 581: 2273-2280. 10.1016/j.febslet.2007.04.043.
Article
CAS
PubMed
Google Scholar
Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu JF, Huang JL, Yeh KC: Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol. 2009, 182: 392-404. 10.1111/j.1469-8137.2009.02766.x.
Article
CAS
PubMed
Google Scholar
GENEVESTIGATOR plant biology. [https://www.genevestigator.com/gv/plant.jsp]
Gainza-Cortés F, Pérez-Dïaz R, Pérez-Castro R, Tapia J, Casaretto JA, González S, Peña-Cortés H, Ruiz-Lara S, González E: Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L. BMC Plant Biol. 2012, 12: 111-10.1186/1471-2229-12-111.
Article
PubMed
PubMed Central
Google Scholar
Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H: The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav. 2012, 7: 0-1.
Article
Google Scholar
Gong JM, Lee DA, Schroeder JI: Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA. 2003, 100: 10118-10123. 10.1073/pnas.1734072100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Talke IN, Krämer U: Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell Online. 2012, 24: 708-723. 10.1105/tpc.111.095000.
Article
CAS
Google Scholar
Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y: The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 2007, 50: 207-218. 10.1111/j.1365-313X.2007.03044.x.
Article
CAS
PubMed
Google Scholar
Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y: AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol. 2006, 140: 922-932. 10.1104/pp.105.074146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bovet L, Feller U, Martinoia E: Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ Int. 2005, 31: 263-267. 10.1016/j.envint.2004.10.011.
Article
CAS
PubMed
Google Scholar
Gaillard S, Jacquet H, Vavasseur A, Leonhardt N, Forestier C: AtMRP6/AtABCC6, an ATP-Binding Cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biol. 2008, 8: 22-10.1186/1471-2229-8-22.
Article
PubMed
PubMed Central
Google Scholar
Bovet L: Heavy Metal Reduction in Planta. 2012, WO Patent WO/2012/028,309
Google Scholar
Korenkov V, King B, Hirschi K, Wagner GJ: Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol J. 2009, 7: 219-226. 10.1111/j.1467-7652.2008.00390.x.
Article
CAS
PubMed
Google Scholar
Shoji T, Kajikawa M, Hashimoto T: Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell Online. 2010, 22: 3390-3409. 10.1105/tpc.110.078543.
Article
CAS
Google Scholar
Kajikawa M, Shoji T, Kato A, Hashimoto T: Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco. Plant Physiol. 2011, 155: 2010-2022. 10.1104/pp.110.170878.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biastoff S, Brandt W, Dräger B: Putrescine N-methyltransferase - The start for alkaloids. Phytochemistry. 2009, 70: 1708-1718. 10.1016/j.phytochem.2009.06.012.
Article
CAS
PubMed
Google Scholar
Shoji T, Yamada Y, Hashimoto T: Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol. 2000, 41: 831-839. 10.1093/pcp/pcd001.
Article
CAS
PubMed
Google Scholar
Shoji T, Hashimoto T: Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant Cell Physiol. 2011, 52: 1117-1130. 10.1093/pcp/pcr063.
Article
CAS
PubMed
Google Scholar
Katoh A, Uenohara K, Akita M, Hashimoto T: Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol. 2006, 141: 851-857. 10.1104/pp.106.081091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gavilano LB, Siminszky B: Isolation and characterization of the cytochrome P450 gene CYP82E5v2 that mediates nicotine to nornicotine conversion in the green leaves of tobacco. Plant Cell Physiol. 2007, 48: 1567-1574. 10.1093/pcp/pcm128.
Article
CAS
PubMed
Google Scholar
Lewis RS, Bowen SW, Keogh MR, Dewey RE: Three nicotine demethylase genes mediate nornicotine biosynthesis in Nicotiana tabacum L.: Functional characterization of the CYP82E10 gene. Phytochemistry. 2010, 71: 1988-1998. 10.1016/j.phytochem.2010.09.011.
Article
CAS
PubMed
Google Scholar
Magoč T, Salzberg SL: FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011, 27: 2957-2963. 10.1093/bioinformatics/btr507.
Article
PubMed
PubMed Central
Google Scholar
Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K: De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010, 20: 265-272. 10.1101/gr.097261.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smit A, Hubley R, Green P: RepeatMasker Open-3.0. [http://www.repeatmasker.org/]
Price AL, Jones NC, Pevzner PA: De novo identification of repeat families in large genomes. Bioinformatics. 2005, 21: i351-i358. 10.1093/bioinformatics/bti1018.
Article
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST+: architecture and applications. BMC Bioinformatics. 2009, 10: 421-10.1186/1471-2105-10-421.
Article
PubMed
PubMed Central
Google Scholar
Frith MC, Hamada M, Horton P: Parameters for accurate genome alignment. BMC Bioinformatics. 2010, 11: 80-10.1186/1471-2105-11-80.
Article
PubMed
PubMed Central
Google Scholar
Kent WJ: BLAT - the BLAST-like alignment tool. Genome Res. 2002, 12: 656-664.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts A, Pimentel H, Trapnell C, Pachter L: Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics. 2011, 27: 2325-2329. 10.1093/bioinformatics/btr355.
Article
CAS
PubMed
Google Scholar
FastQC. [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/]
FASTX-Toolkit. [http://hannonlab.cshl.edu/fastx_toolkit/index.html]
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011, 29: 644-652. 10.1038/nbt.1883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012, 9: 357-359. 10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009, 25: 1105-1111. 10.1093/bioinformatics/btp120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Team RDC: R: A language and environment for statistical computing. 2008, Foundation Statistical Computing
Google Scholar
Chen H, Boutros PC: VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics. 2011, 12: 35-10.1186/1471-2105-12-35.
Article
PubMed
PubMed Central
Google Scholar
Kumar N, Skolnick J: EFICAz2. 5: Application of a high-precision enzyme function predictor to 396 proteomes. Bioinformatics. 2012, 28: 2687-2688. 10.1093/bioinformatics/bts510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arakaki AK, Huang Y, Skolnick J: EFICAz2: enzyme function inference by a combined approach enhanced by machine learning. BMC Bioinformatics. 2009, 10: 107-10.1186/1471-2105-10-107.
Article
PubMed
PubMed Central
Google Scholar
Tian W, Arakaki AK, Skolnick J: EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference. Nucleic Acids Res. 2004, 32: 6226-6239. 10.1093/nar/gkh956.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zdobnov EM, Apweiler R: InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001, 17: 847-848. 10.1093/bioinformatics/17.9.847.
Article
CAS
PubMed
Google Scholar