Skip to main content
Figure 4 | Genome Biology

Figure 4

From: Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development

Figure 4

A survey of both conserved and novel small RNAs in the tammar genome. (a) Size ranges of the major classes of small RNAs. The x-axis shows number of reads mapped to the tammar genome while the size of the read in nucleotides is on the y-axis. Boxes denote each major class analyzed in the tammar. Classes targeted for sequencing and full annotation include the miRNAs (18 to 22 nucleotides), the piRNAs (28 to 32 nucleotides) and the newly discovered crasiRNAs (35 to 45 nucleotides). (b) Five tammar miRNA libraries (brain, liver, fibroblast, ovary and testis) were pooled and mapped to the tammar genome. miRNAs with a complete overlap with miRBase entries mapped to the tammar genome were considered conserved and annotated according to species. Heat map showing the frequency of conserved mirBase entries per tissue and per species as identified in the tammar. A high degree of overlap (that is, conservation) was observed between tammar and human for fibroblast and testis, but a relatively low degree of overlap was observed for the brain. (c) The complex tammar centromere. Genome browser view of chromatin immunoprecipitation-sequencing (ChIP-Seq) for DNA bound by the centromere-specific histone CENP-A mapped to a centromeric contig (top, blue). Nucleotide position on the contig is shown on the x-axis and depth of reads shown on the y-axis. Tracks illustrated: MACs peak (model-based analyses of Chip-Seq (black); locations for mapped reads of crasiRNAs (red); location of annotated centromere sequences (in this example, the centromeric LINE L6; purple); modeler repeat prediction track (green). crasiRNAs co-localize to DNA found in CENP-A-containing nucleosomes and are enriched in regions containing known centromere sequences.

Back to article page