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Abstract 

Background: Preeclampsia, one of the most lethal pregnancy-related diseases, is asso-
ciated with the disruption of uterine spiral artery remodeling during placentation. 
However, the early molecular events leading to preeclampsia remain unknown.

Results: By analyzing placentas from preeclampsia, non-preeclampsia, and twin preg-
nancies with selective intrauterine growth restriction, we show that the pathogenesis 
of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial 
cells. Delayed epigenetic reprogramming during early extraembryonic tissue develop-
ment leads to generation of excessive immature trophoblast cells. We find reduction 
of de novo DNA methylation in these trophoblast cells results in selective overexpres-
sion of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 
(paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred 
from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, 
only a low amount of PEG10 is transferred to maternal cells; however, in preeclamp-
sia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta 
signaling.

Conclusions: Our study reveals the intricate epigenetic mechanisms that regulate 
trans-generational genetic conflict and ultimately ensure proper maternal–fetal inter-
face formation.

Background
Preeclampsia (PE), a pregnancy-specific disease, is characterized by endothelial dys-
function and unmanageable hypertension that leads to multi-organ damage in the 
expectant mother. Each year, PE affects 3–5% of pregnancies, leading to at least 42,000 
maternal deaths globally [1, 2]. The curative effect of removing the placenta and fetus 
on PE indicates that the placenta may be the origin of all maternal syndromes. As one 
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of the “Great Obstetrical Syndromes” [3], PE exhibits a placenta that shares patho-
logical features with other diseases, such as fetal growth restriction (FGR) and pre-
term birth [3]. Anatomically, PE is characterized by incomplete development of the 
villous tree [4], reduced vascularization into the terminal villus [4, 5], and incomplete 
remodeling of maternal uterine spiral arteries [6, 7].

Population genetic studies have shown that susceptibility to PE involves a genetic 
component. PE is strongly associated with both the maternal and fetal genomes 
but less so with environmental factors [8, 9]. For the fetal genome, it was proposed 
that PE risk is inherited from the paternal copy [9]. Genome-wide association scans 
(GWAS) have revealed that PE risk is associated with various loci that are implicated 
in maternal hypertension susceptibility, endothelial cell development, and the expres-
sion of the fetal vascular epidermal growth factor (VEGF) receptor gene fms-related 
receptor tyrosine kinase 1 (FLT1) [10–16], suggesting that the genetic factors influ-
encing PE center on vascular development and function. A genetic association of PE 
to endothelial development genes in the maternal genome [15] and loci neighboring 
FLT1 in the fetal genome [13] suggests that PE results from the interaction between 
fetal and maternal cells.

Biochemically, PE is associated with elevated levels of angiotensinogen (AGT) [17–19], 
s-FLT1 [20–22], and soluble endoglin (s-Eng) [21, 23, 24], as well as reduced levels of 
PAPPA [25] and PlGF [21, 26–28] in the maternal serum, which collectively result in mater-
nal peripheral vasoconstriction [29], decreased arterial compliance [30], and organ dam-
age such as glomerular endotheliosis [31, 32]. Studies involving animal models [33, 34] and 
humans [6, 35] have revealed that these biochemical changes are attributed to trophoblast 
cells that invade the maternal uterus myometrium, suggesting that the interactions between 
trophoblast and endothelial cells may be central to PE pathogenesis.

Clinical, genetic, and anatomical data provide compelling evidence that the primary 
PE syndrome is due to a developmental defect in the maternal–fetal interface, i.e., the 
placenta. As an organ of the extraembryonic lineage, the placenta originates from the 
trophectoderm of the blastocyst. The specification and differentiation of placental cells 
are driven by genome-wide epigenomic reprogramming [36–39]. This overall epig-
enomic reprogramming during placental development is pivotal for proper placentation. 
This phenomenon not only establishes the proper cellular composition of the placenta 
but also regulates trans-generational conflict by modulating the gene expression levels 
that differentially affect maternal and fetal health. Shortly after zygote formation, global 
erasure of DNA methylation and H3K27me3 repressive marks results in a genome that 
is permissive for transcriptional activation during the zygote genome activation (ZGA) 
stage [40–43]. The reinstatement of repressive epigenetic marks on lineage specifica-
tion genes during subsequent development is instigated by the priming of maternal and 
ZGA-active transcription factor (TF) [44–46], the binding of polycomb group protein 
[47–49], and the de novo DNA methylation of CpG-island promoters [50]. Recent stud-
ies have shown that genomic DNA from PE placentas tend to be hypomethylated com-
pared with that from non-PE placentas [51–53], suggesting the occurrence of defects 
in DNA methylation during placenta development in PE. However, the precise molecu-
lar mechanism underlying the epigenetic and developmental alterations in PE remains 
unclear.
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In this study, through multi-omic integrative analysis of placentas from PE, non-PE, 
and twin pregnancies with selective intrauterine growth restriction, we revealed com-
plex epigenetic processes regulating trans-generational genetic conflict to ensure proper 
maternal–fetal interface formation. Our results showed how disruption of such pro-
cesses results in PE.

Results
Identification of pathogenic cells in PE

We sequenced single cells and bulk tissues of the placenta from both non-PE and PE 
pregnancies (Fig.  1a). Using 10 × Genomics single-cell RNA (scRNA) and single-cell 
chromatin accessibility (scATAC), we sequenced fetal and maternal surfaces of placentas 
obtained from 11 donors, including those with normal pregnancy (N = 2/1/1 [sample/
placenta/donor]), gestational diabetes mellitus (GDM) pregnancy (N = 2/1/1), preterm 
birth (N = 5/3/3), PE and GDM (PE-GDM) pregnancy (N = 6/3/3), and PE and FGR (PE-
FGR) pregnancy (N = 4/2/2), and a pair of placentas from a dizygotic twin pregnancy 
with selective intrauterine growth restriction (DCDA sIUGR, N = 2/2/1, only fetal sur-
face available) (“Methods,” Fig. 1a,b, Additional file 1: Fig. S1a-c; Additional file 2: Tables 
S1 and Additional file  3: Table  S2). Two (2) of these donors, a non-PE control donor 

Fig. 1 Pathogenic cells underlying preeclampsia. a Schematic overview of multi-omic study for PE 
pathogenic mechanism. 10 × Genomics single-cell RNA and ATAC sequencing were performed with 11 
donors (normal pregnancy: 1; GDM: 1; preterm birth: 3; PE and GDM (PE-GDM): 2; PE and FGR (PE-FGR): 
3; DCDA sIUGR: 1). Additionally, we supplemented this dataset with those of early-stage cells, i.e., public 
scRNA datasets pertaining to first-trimester placentas (PRJEB28266 and PRJNA492324) [54–57] and 
induced trophoblast stem cells (iTSCs, GSE150578 [58, 59]). Bulk genome-wide CpG capture bisulfite 
sequencing (DNAm-Seq) and ATAC sequencing were performed with 43 placenta samples (including 
24 control, 5 GHT, 14 PE). By integration of single-cell and bulk sequencing, we annotated the major cell 
types in placenta; identified that trophoblast and endothelial cells were the most PE-associated cell types; 
reconstructed the developmental trajectory of trophoblast; revealed master transcriptional factors during 
trophoblast development, uncovered causal effector for PE pathological phenotype by genetic tracing and 
immunohistochemistry, and identified their downstream target cell. b UMAP projection of major cell types in 
scRNA cells, including trophoblasts. c UMAP projection of cell origin in scRNA. Trophoblast (including VCTp, 
VCT, SCT, and EVT) and Hoffbauer cell (HB) are fetal originated (blue); immune cells (including monocyte, 
M2, NK, T, and B cell) are from the maternal (orange); endothelial and fibroblast/stromal cells are contributed 
by both fetal and maternal. d UMAP projection of phenotype in scRNA. Cells of control and PE placentas are 
intermingled in each cell type. iTSC cells from GSE150578 [58, 59] are majorly integrated with trophoblast 
progenitors (VCTp). The cell number of each type in control and PE was labeled. e UMAP projection of 
scATAC cells. VCT/VCTp cells are mixed in this modality, while CD4 and CD8 T cells are clearly segregated. 
f Known marker gene expression of scRNA cell clusters. g Chromatin accessibility on marker genes of 
scATAC cell clusters. Color bar on the left side indicates the cell type in Fig. 1e. h PE-associated cell types 
identified by both phenotype-gene expression association and GWAS-chromatin accessibility association. 
Large panel: prevalence of Scissor-inferred PE-associated cells with scRNA (x axis) and the prevalence of 
SCAVENGE-inferred PE-associated cells with scATAC (y-axis). VCTp/VCT clusters are associated with PE in 
terms of hereditary risk but not gene expression, suggesting their implication in PE might due to abnormal 
differentiation but not their own function. In contrast, both endothelial cells and EVT are associated with PE 
hereditary risk loci as well as gene expression, implying the direct pathogenic role of them in PE. Small panel: 
(left) Scissor-inferred single-cell association with RNA expression profile from control or PE placenta, showing 
that PE is mostly associated with endothelial cells, EVT, SCT, VCTp, and monocytes. (right) SCAVENGE-inferred 
scATAC association with PE-associated GWAS loci, showing that PE GWAS loci are associated with VCT, 
VCTp, EVT, SCT, macrophages, and endothelial cells. Abbreviation: DNAm-seq: genome-wide CpG capture 
bisulfite sequencing; GHT: gestational hypertension; VCTp: trophoblast progenitor; VCT: villous trophoblast; 
SCT: synciotrophoblast; EVT: extravillous trophoblast; Mono: monocyte; NK: natural killer cell; M2: type-2 
macrophage; HB: Hoffbauer cell; Fibro: fibroblasts/stromal cells; Endo: endothelial cells

(See figure on next page.)
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(2100042) and a DCDA sIUGR donor (2200314) (Additional file 2: Table S1), were not 
enrolled in the first study period (before 2021) but enrolled latter (after 2021) for inter-
nal validation. Hence, in Fig. 1b–h, we only used 9 donors out of 11. Additionally, we 
supplemented this dataset with those of early-stage cells, i.e., public scRNA datasets per-
taining to first-trimester placentas [54–57] and induced trophoblast stem cells (iTSCs) 
[58, 59]. We also sequenced non-PE control (N = 24), gestational hypertension (GHT) 
(N = 5), and PE (N = 14) placentas by genome-wide CpG capture bisulfite sequencing 
(DNAm-seq) and ATAC (Fig. 1a). These data were subjected to a multimodal integrative 
analysis. In the single-cell analysis, all non-PE samples were defined as control.

For scRNA analysis, datasets were integrated with potential batch effects removed by 
Harmony [60] prior to cell cluster identification using Seurat [61]. By identifying differ-
entially expressed genes in each single-cell cluster (Fig. 1f ), we annotated the major cell 
populations in the maternal–fetal interface in the scRNA dataset (“Methods,” Fig.  1b 
and Additional file 1: Fig. S1d-e). These included the major cell populations in tropho-
blast, i.e., progenitor villous cytotrophoblast (VCTp) cells, villous trophoblast (VCT) 
cells, syncytiotrophoblast (SCT) cells, and extravillous trophoblast (EVT) cells; stromal 

Fig. 1 (See legend on previous page.)
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cells with mixed arterial and venous endothelial cells, including vascular smooth mus-
cle cells, pericytes, and fibroblasts; and immune cells, including macrophages, mono-
cytes, NK cells, T cells, and B cells. These cells could be classified into three distinct 
groups based on their origin: fetal-originated cells (trophoblasts and fetal macrophage 
Hofbauer cells), maternal-originated cells (including T lymphocytes, B lymphocytes, 
maternal macrophages, monocytes, and NK cells), and mixed-origin cells (stromal 
cells, including endothelial cells, fibroblasts, smooth muscle cells, and pericytes) [55]. 
We further analyzed the expression levels of fetal- and maternal-cell-specific gene sets 
reported in Vento-Tormo et al. [55] in our scRNA dataset (Fig. 1b) to determine the cell 
origin of the mixed-origin cells (Fig. 1c and Additional file 1: Fig. S2a–l). All cell line-
ages described in Fig. 1b are present in the majority of the samples in this study (Addi-
tional file 1: Fig. S1e and Additional file 3: Table S2). Cells from control and PE placentas 
were well intermingled in each population (Fig. 1d and Additional file 3: Table S2). As 
expected, the iTSC population cultured in vitro [58, 59] was primarily colocalized with 
trophoblast progenitors (VCTp, Fig. 1d). Compared with control placentas, PE placen-
tas were depleted in terminally differentiated SCT and EVT, were relatively enriched 
in VCT, and exhibited an increased count of stromal cells (Additional file 1: Fig. S1d, 
e). We integrated scATAC data with scRNA data (Methods) to use scRNA labels as a 
guide for annotating these cells (Fig. 1e). Cell clustering and annotation were validated 
by analyzing chromatin accessibility around known marker genes (Fig. 1g). In general, 
scATAC-classified cell types showed consistent chromatin opening on known marker 
gene promoters (Additional file 1: Fig. S3a, b).

To identify cell types that are associated with PE pathogenesis, we first compared 
cell type composition between PE and control donors. PE placentas exhibited a dis-
proportionate composition of cell types, specifically trophoblasts, endothelial cells, 
and immune cells (Additional file 1: Fig. S1d). Using Scissor [62], we performed RNA 
expression similarity correlation analysis against public RNA-seq dataset of PE and 
control placentas [63, 64] (Fig.  1h inset, Additional file  1: Fig. S4 and S5) to search 
for scRNA cells whose expression profiles were associated with a specific phenotype. 
Orthogonally, we evaluated the association between single cells and the hereditary 
risk of PE by performing an enrichment analysis of PE-associated GWAS loci across 
scATAC profiles using SCAVENGE [65]. In the scRNA-based Scissor analysis, the 
PE phenotype was associated with endothelial cells, trophoblasts, and monocytes, 
whereas most other immune cells were associated with normal pregnancy (Fig.  1h, 
inset). In contrast, in the scATAC-based SCAVENGE analysis, hereditary risk loci for 
PE were associated with endothelial cells, trophoblasts, and macrophages (Fig.  1h, 
inset). Together, the two results identified EVT and endothelial cells were most sig-
nificantly associated with the PE phenotype in terms of both hereditary risk and 
phenotypic association (Fig.  1h), indicating that they were likely the key cell types 
underlying PE pathogenesis.

PE-associated trophoblast, including VCTp, VCT, and SCT, were predominantly 
enriched in PE placentas (Additional file 1: Fig. S4a, b). The relatively higher enrichment 
of hereditary PE risk loci in VCT/VCTp than phenotypic enrichment suggests that PE 
risk loci might affect the differentiation of these cells rather than their function (Fig. 1h).
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Developmental delay of PE trophoblast

To investigate the role of trophoblasts in PE, we used RNA velocity to time the devel-
opmental age of trophoblasts in control and PE. A total of 13,301 trophoblast cells were 
identified and classified into four distinct types: VCTp, characterized by high prolif-
eration and division activity (Additional file  1: Fig. S6a, b), VCT, SCT, and EVT, each 
defined by canonical markers (Fig. 2a and Additional file 1: S7a-b). The “developmental 
age” of trophoblasts was determined by RNA velocity in terms of latent time [66] and 
clustered using a bimodal Gaussian mixture model [67] (Fig.  2b). Control trophoblast 
cells (indicated as gray in Fig. 2b) were classified into two populations: a “juvenile” pop-
ulation, exhibiting a mean latent time of 0.15, and an “adult” population, exhibiting a 
mean latent time of 0.56 (Fig. 2b). However, PE trophoblast cells predominantly exhib-
ited an intermediate phenotype, i.e., a phenotype between the juvenile and adult stages 
(Fig. 2b). Using CytoTRACE [68], we assessed trophoblast differentiation and identified 
significant maturation delay in PE undifferentiated progenitors (VCTp-4) and termi-
nally differentiated trophoblasts (VCT-3, SCT-6/12, and EVT-9/13) (Fig. 2c and Addi-
tional file 4: Table S3). We performed an orthogonal analysis using EpiTrace [69] to infer 
trophoblast “mitosis aging rate” (age increase per gestational week) from scATAC data, 
showing that PE trophoblast cells exhibited a significantly decreased proliferation rate in 
each lineage (Fig. 2d).

By correlating the latent time with CytoTRACE scores, we determined that the juve-
nile cells correspond to the immaturely differentiated while adult cells are maturely 
differentiated (Fig. 2e, f ). Majority of trophoblasts were terminally differentiated in con-
trol placentas; however, there was a significant increase of immature trophoblasts and 
decrease of mature ones (Fig.  2e, f and Additional file  1: Fig. S8a). Cell cycle scoring 
based on scRNA data showed that actively dividing cells (G2M/S phase) were slightly 
increased in terminally differentiated trophoblasts, i.e., VCT-3/SCT-12/EVT-9 (Addi-
tional file 1: Fig. S8b), in PE.

In PE, excessive immature trophoblasts exist in the placenta (Fig. 2g). This phenom-
enon is not solely explained by earlier delivery of PE pregnancies, because the “adult” 
population of trophoblast emerge as early as 6–12 gestational week (gw) in control 
pregnancies (Additional file  1: Fig. S9a and S10). Trophoblasts in control pregnancies 
could be clearly separated into juvenile or adult population and the majority of juve-
nile populations in 3rd control placentas enrich in fetal sides (Additional file 1: Fig. S9b). 
Trophoblast on maternal side of control placentas show greater maturity than those on 
fetal sides (Additional file 1: Fig. S9b). However, in all PE pregnancies, trophoblasts were 
developmentally stalled at an intermediate stage (Additional file 1: Fig. S9c and Addi-
tional file 1: Fig. S10). In the comparison groups, 29gw control vs 32gw PE/30gw control 
vs 35gw PE/ 38 gw control vs 36 gw PE, though control placentas are at earlier gesta-
tional week than PE, they exhibit a higher proportion of adult populations (Additional 
file 1: Fig. S9b-c and Additional file 1: Fig. S10).

On the basis of the mitosis rate, mitosis activity, and developmental maturity data, we 
concluded that trophoblast development is slowed in PE, especially in terminally dif-
ferentiated SCT and EVT. Validation with an external dataset GSE173193 [70] showed 
similar trophoblast developmental delay in PE by CytoTRACE analysis (Additional file 1: 
Fig. S11).
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We then delineated the developmental trajectory of trophoblast cells by RNA 
velocity [66] and subsequently determined three major developmental trajectories 
culminating in VCT-3, SCT-12, and EVT-13/9, respectively (Additional file  1: Fig. 
S12a-b). In PE trophoblast, the trajectory separated from control since early stage 

Fig. 2 Developmental delay in PE trophoblasts. a UMAP projection of trophoblasts in scRNA. b RNA 
velocity derived latent time distribution for PE (pink) or control (gray) trophoblasts. Control trophoblasts 
were segregated into a juvenile (blue) population and an adult population (orange), while PE trophoblasts 
were stuck in the middle. c Stemness prediction by CytoTRACE of scRNA clusters of control (solid) and PE 
(transparent) trophoblasts. Significant delayed maturation was found for PE EVT and SCT. d Mitosis aging 
rate (age increase per gestational week) inferred by EpiTrace of scATAC clusters of control (gray) and PE 
(pink) trophoblasts, indicating significantly reduced cell proliferation/division in PE trophoblasts. P-values 
were tested by Wilcox test, raw P-value. e Scatter plot of stemness prediction (y-axis) and latent time of 
control trophoblasts, showing that the juvenile population is immature, and the developed population is 
mature. Distribution of latent time and CytoTRACE score were shown at the x- and y-axis, respectively. f In PE, 
developmentally delayed trophoblasts were found to be immature. g The frequency of immature trophoblast 
in termed placentas is significantly increased in PE compared to control (P = 0.03, P-value was tested by t-test, 
raw P-value). Immature trophoblasts were defined as CytoTRACE score < 0.2 and Latent Time value < 0.4, 
based on a Gaussian mixture model segregation
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(Additional file  1: Fig. S12a-b), leading to a significant reduction in terminally dif-
ferentiated cells (EVT-13/SCT-12) in PE (Additional file  1: Fig. S8a). These obser-
vations were consistent with orthogonal analysis with trajectories generated using 
Slingshot [71] (“Methods”) on diffusion map projection (Additional file 1: Fig. S12c-
d). Together, these results indicate a developmental trajectory switch in PE troph-
oblasts, characterized by early-onset developmental delay, resulting in impaired 
maturation of terminally differentiated EVT and SCT.

Early transcriptional defect in trophoblast development in PE

To determine the molecular mechanism underlying trophoblast developmental delay in 
PE, we analyzed transcriptional network among “velocity genes” identified by RNA veloc-
ity. Six master transcriptional binding site motifs regulating trophoblast developmental 
velocity genes were identified, including ZGA-related NFYA/NFYB/NFYC [46, 72], the 
polycomb repressor complex 2 (PRC2) complex members EZH2 [73] and YY1 [74], and 
a homeobox TF, PBX1 (Fig. 3a). By examining TF binding sites in each TF’s promoter, we 
found that NFYB served as the foremost upstream regulator, binding to the promoters of 
all the other five master TFs. NFYA/NFYC/PBX1 functioned as intermediate layer regu-
lators, regulating both themselves and EZH2/YY1, which were determined to be down-
stream, bottom layer regulators (Fig. 3b).

The enrichment analysis of TF binding sites in trophoblast cell type-specific velocity 
genes reveals that majority of VCTp-expressed velocity genes were controlled by NFYB 
(Fig. 3c), whereas those in VCT were regulated by NFYA/C and PBX1 and velocity genes 
in terminally differentiated SCT/EVT were exclusively controlled by PRC2 (Fig.  3c). 
Thus, trophoblast development was modulated by a cascade of master TFs. Despite no 
changes in RNA expression of master TFs (Additional file  1: Fig. S13a), we observed 
altered TF activities in PE with scATAC data: decreased NFYB/PBX1 activities in VCTp 
and VCT clusters; decreased NFYA/NFYC/YY1 activities in VCT clusters (Fig. 3d and 
Additional file 1: S13b). Due to a technical reason, we were unable to directly infer EZH2 
activity in the scATAC dataset together with other TFs. However, the activities of two of 
its upstream master regulators E2F4 and E2F7 were downregulated in PE trophoblasts 
(Additional file 1: Fig. S14). Changes in activities of TFs related to trophoblast differen-
tiation, including GCM1, TEAD4, and TFAP2C, were also detected (Fig. 3d and Addi-
tional file 1: Fig. S13b).

We further validated the relative expression level of gene sets under control of the 
master TFs with trophoblast in GSE173193 dataset [70]. We found that for all but one 
(NFYA gene set in SCT) cases, master TFs controlled genes were expressed in lower lev-
els in PE cells compared to control cells (Additional file 1: Fig. S15), confirming that the 
master TFs-regulated gene network is disrupted in PE trophoblasts.

A complementary assay was conducted to profile the transcriptional regulation 
through bulk ATAC sequencing of additional frozen placenta samples for validation 
(“Methods,” Additional file 1: Fig. S16 and Additional file 5: Table S4).
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From bulk ATAC data, we inferred TF binding activity (protection score) by compar-
ing control and PE placentas. In line with scATAC findings, ZGA-active TF, including 
DUX [44], NFYA/NFYB [46, 72], showed significantly decreased binding activity in PE 

Fig. 3 Early transcriptional defect during trophoblast development in PE. a The promoters of developmental 
switch genes (“velocity gene”) during trophoblast development predicted by RNA velocity are enriched 
with six core transcription factors in this gene set: NFYA, NFYB, NFYC, PBX1, EZH2, and YY1. b Transcriptional 
regulation network between the core transcription factors shows three tiers of regulation with NFYB 
controlling middle layer NFYA/C and PBX1, which in turns controls EZH2 and YY1. c TF binding activity, 
inferred by scATAC, of core transcription factors on the promoter of velocity genes, showing that NFYB is 
most active in VCT progenitor, whereas NFYA/C and PBX1 are most active in VCT, and EZH2/YY1 are most 
active in terminally developed EVT/SCT. d Heatmap of differential TF binding activity between PE and 
control in each trophoblast clusters. Left: Statistical significance (yellow: significant; black: non-significant), 
P-values were tested by Wilcox test and adjusted with Holm method; Right: Z-score of TF binding activity. 
Differential TF binding is most evident in early-stage VCTp and intermediate-stage VCT but not the terminally 
developed trophoblasts (SCT/EVT), suggesting an early developmental defect primes the pathogenic 
phenotype in terminally differentiated trophoblasts in PE. e Differential TF binding activity (protection ratio) 
between PE and control inferred by bulk ATAC-seq, showing significantly downregulated ZGA-associated 
transcription factors NFYA/B and DUX activity, and elevated ZNF384 activity in PE placenta. Bottom: averaged 
genome-wide chromatin accessibility profile around NFYA, NFYB, DUX and ZNF384 TFBS



Page 10 of 46Gong et al. Genome Biology          (2024) 25:117 

(Fig. 3e). Collectively, these results collaboratively revealed a disrupted core transcrip-
tion network in PE, participating trophoblast lineage determination is disrupted in PE.

Defective de novo DNA methylation on PRC2‑controlled regulatory loci results 

in imbalanced imprinted gene expression in placenta

Transcription network dysregulation during early trophoblast development in PE sug-
gested that either the expression or the function of the dysregulated master TFs were 
defective in PE. The expression of master TFs, however, did not differ between PE and 
control trophoblasts (Additional file  1: Fig. S13a). Notably, both the NFY family and 
PRC2 are closely associated with DNA methylation; the NFY family of TFs binds to 
methylated retrotransposon sequences [45] and the PRC2 complex binds to methylated 
CpG islands [73, 75]. Therefore, we hypothesized that, in PE, the dysregulation in the 
activity of master TFs in trophoblast may be due to defective DNA methylation. We then 
analyzed the epigenomic profiles of PE and control placentas to determine the mecha-
nism underlying early transcriptional dysregulation.

The placenta develops from extraembryonic tissue derived from the trophectoderm 
in the blastocyst while undergoing extensive epigenetic reprogramming, including de 
novo DNA methylation. By profiling whole-genome DNA methylation patterns in PE 
and control placentas, we identified a total of 60,515 differentially methylated loci in 
PE, including 2710 hypomethylated (PE-hypo) continuously differentially methylated 
regions (DMRs) and 1271 hypermethylated (PE-hyper) continuously DMRs (Additional 
file  6: Table  S5 and Additional file  1: Fig. S17a-b). PE-hypo DMRs were significantly 
hypomethylated in the maternal side, but not the fetal side, of PE placentas (Additional 
file 1: Fig. S18a). In contrast, hypermethylation of PE-hyper DMR was more significant 
in the fetal side of PE placenta (Additional file 1: Fig. S18b). These results suggest that 
DNA hypomethylation sites are specific for PE differentiated trophoblasts, whereas 
DNA hypermethylation sites are associated with all PE trophoblasts.

By averaging the DNA methylation level per DMR, we projected DNAm-seq data per-
taining to sequenced control and PE placentas together with a public single-cell WGBS 
data set pertaining to early embryonic development [42] as a UMAP. PE placentas stalled 
along the trajectory of trophoectoderm development toward trophoblast cells, indicat-
ing that DNA methylation in PE placentas was delayed (Fig. 4a). Trophoectoderm devel-
opmental trajectory based on chromatin accessibility at all DMRs in placental tissues 
and single cells of early embryonic developmental stages from publicly available data set 
[45, 76] suggested a similar scenario, i.e., PE placentas were situated midway along the 
trajectory from trophectoderm toward trophoblast (Fig. 4b). Together, these results indi-
cate that the epigenome reprogramming during extraembryonic development is delayed 
in the PE placenta.

We defined open DMRs as regions with trophoblast ATAC peak and differential DNA 
methylation. Open DMRs were significantly enriched only in placenta-accelerated 
genomic regions [77] but not human-specific accelerated regions [78] and vertebrate-
specific ultraconserved noncoding elements [79] (Fig.  4c), suggesting the functional 
relevance of DMRs in placenta development. We then annotated PE-specific DMRs 
using chromVAR [80]. Compared with PE-hyper DMRs, PE-hypo DMRs were enriched 
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in PRC2 complex-related TF binding sites, including EED/EZH2/JARID2/SUZ12/YY1 
(Fig.  4d), implying that defective DNA methylation in PE placenta affects PRC2 com-
plex binding and function. Furthermore, PE-hypo DMRs covered loci that underwent 
de novo DNA methylation during epigenetic reprogramming in extraembryonic tissues 
[50], as these loci were de novo methylated during extraembryonic tissue development 
(Additional file 1: Fig. S17b) and were extensively methylated in cancer tissue (Fig. 4e). 
DNA methylation on PE-hypo DMRs was severely aberrant in PE placentas (Fig.  4e), 
indicating a specific defect in extraembryonic tissue-specific de novo methylation. 
Conversely, PE-hyper DMRs (PE-Hyper cluster 4) were enriched in retrotransposon 
sequences (Fig.  4d). Typical hypomethylation in maternally imprinted retrotranspo-
sons, particularly those of the long terminal repeat 12 (LTR12) family of endogenous 
retroviruses (ERVs), was disrupted in PE placentas (Fig.  4d and Additional file  1: Fig. 
S19a). These maternally imprinted and paternally hypomethylated LTR12C elements 
were transiently active during ZGA (Additional file 1: Fig. S19b), possibly owing to the 
binding of NFYA/B/C in their terminal repeat sequences [45]. In fact, hypomethylated 
LTR12C in human sperm are more likely to be hypermethylated in PE (Additional file 1: 

(See figure on next page.)
Fig. 4 De novo DNA methylation defect on PRC2-controlled placenta regulatory loci results in imbalanced 
imprinted gene expression. a Cell evolution trajectory from zygote to placenta inferred by genome-wide 
DNA methylation sequencing data, showing delayed development of PE placenta in terms of DNA 
methylation. b Cell evolution trajectory from zygote to placenta inferred by chromatin accessibility on 
PE-specific differentially methylated region (DMR), showing delayed development of PE placenta in terms 
of chromatin accessibility on PE DMR. c Enrichment of opened (accessible) PE DMR in different types of 
genomic elements: ultraconserved noncoding elements (UCNE), placenta-accelerated genomic region 
(PAR), and human-specific accelerated region (HAR). Opened PE DMR is enriched in PAR but not HAR 
or UCNE, suggesting that they are functionally relevant to placental development, as the PAR regions 
undergone Darwinian positive selection in placental animals. P-value and odd’s ratio (OR) were calculated 
by Fisher’s exact test. Inset: schematic diagram of animal evolution and the time point where genomic 
regions (UCNE/PAR/HAR) were subjected to evolutionary selection. d Enrichment heatmap of TFBS and 
chromVAR-annotated genomic regions in PE DMR, showing that PRC2 complex-related genomic regions 
(H3K27me3 in trophectoderm and ESC, and the PRC2 complex components SUZ12, EZH2, JARID2, EED) 
were more likely to be subjected to DNA hypomethylation instead of hypermethylation in PE. On the other 
hand, NFYB binding sites and LTR12C elements are more likely to be hypermethylated in PE. e Sample-wise 
CpG methylation levels (box-and-whisker plot with mean, 0%-25%-75%-100% quantiles) of conserved 
PE-hypomethylated loci (top), human-specific PE-hypomethylated loci (middle), and PE-hypermethylated loci 
(bottom) of normal tissue (light blue, left), cancer tissue (dark blue, left), and placenta of normal pregnancy 
(dark green, right) and preeclampsia (light green, right) showing that PE-hypomethylated loci undergone 
similar hypermethylation in both placenta and cancer, suggesting these regions are the ones subjected 
to de novo DNA methylation during extraembryonic tissue development. In contrast, DNAm levels on 
PE-hypermethylated regions do not segregate cancer from non-malignant tissues, suggesting that they 
are under control of a different molecular mechanism. f Significant enrichment of all PE DMR on imprinted 
genes and PE-hypo DMR on h1 hESC EZH2 binding sites (P = 0.014, Z = 3.4795, PE DMR vs imprinted 
genes; P = 0.0099, Z = 26.9084, PE-hypo DMR x EZH2; Z test. Basal distribution was done by permutation 
performed × 1000 times. Expected number of overlap: black vertical line; alpha = 0.05 number of overlap: red 
vertical line; observed number of overlap: blue vertical line) on imprinted genes, indicating that imprinted 
genes were affected by DNA methylation defects in PE. g Differential expression of imprinted genes between 
PE and control single trophoblasts. Blue: maternal allele expressed (paternally imprinted); Pink: paternal allele 
expressed (maternally imprinted). P-values were calculated by Wilcox test and adjusted based on Bonferroni 
correction. h Log fold-change of imprinted gene expression between PE and control trophoblasts, showing 
that expressed maternal alleles (pink) is likely to be downregulated, while expressed paternal alleles (blue) is 
likely to be upregulated in PE. i Frequency of imprinted genes that has shown PE-specific upregulation (red: 
PE-enhanced) or downregulation (white: PE-attenuated) in trophoblasts, showing dysregulated imprinted 
gene expression in differentiated trophoblasts, while the paternal alleles were significantly more likely to be 
upregulated in SCT (P = 0.033, Fisher’s exact test)
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Fig. S20), suggesting that the establishment or post-zygotic maintenance/refinement of 
DNA methylation imprinting may be disrupted in PE.

Imprinting is modulated by DNA methylation and H3K27me3 modifications [81–83]. 
In PE, DMRs were significantly enriched in imprinted genes and binding sites of PRC2-
related genes, such as EZH2 (Fig. 4f and Additional file 1: Fig. S21), suggesting that de 
novo DNA methylation may further regulate imprinted gene expression in addition to 
the DNA methylation profile established during germline development. If such a case, 
we expect dysregulated imprinted gene expression in the PE placenta. This was validated 
by analyzing RNA expression in the scRNA dataset, which showed significant differ-
ential expression of imprinted genes in PE trophoblast (Fig. 4g, h and Additional file 7: 
Table S6). Notably, maternally imprinted genes were more likely to be upregulated in PE, 
whereas paternally imprinted (maternal allele expressed) genes were more likely to be 
downregulated in PE (Fig. 4g, h and Additional file 7: Table S6). The overexpression of 
imprinted genes was mostly exhibited by terminally differentiated SCT and EVT (Fig. 4i). 
In SCT, significantly more paternal allele-specific genes were overexpressed in PE (Fig. 4i, 
Additional file 1: Fig. S22 and Additional file 7: Table S6).

Fig. 4 (See legend on previous page.)
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Imprinting could also be regulated by H3K27me3 modification. We additionally pro-
filed H3K27me3 in PE and control placenta using CUT&Tag assay. In PE placentas, we 
identified 32,409 genomic regions with increased H3K27me3 modification (PE-gain), 
and 13,284 genomic regions with decreased H3K27me3 modification (PE-lost), com-
pared to control placentas (Additional file 1: Fig. S23a-c). The PE-lost regions are highly 
enriched around EZH2 binding site (Additional file 1: Fig. S23d). Overall, EZH2 loci are 
associated with decreased H3K27me3 modification in PE placenta (Fig. S23c). Many 
of these PE-lost, EZH2-bound regions were located on imprinted genes (Additional 
file  1: Fig. S24a). Compared to the maternally imprinted loci (expressing the paternal 
allele), paternally imprinted loci (expressing the maternal allele) are more likely to lost 
H3K27me3 modification in PE placentas (Additional file  1: Fig. S24b). Together, our 
results indicate that both molecular mechanisms regulating imprinted gene expression, 
namely H3K27-trimethylation and extraembryonic tissue-specific de novo DNA meth-
ylation, are defective in PE.

Excessive maternally imprinted gene product PEG10 in PE

We performed differential gene expression analysis in the trophoblast scRNA dataset. 
PE trophoblasts overexpressed PEG10, GADD45A, CCND1, SIGLEC6, and H2AZ1 
(Fig. 5a and Additional file 7: Table S6). On the other hand, the lncRNA MALAT1 and 
the canonical mature trophoblast marker genes CGA , HLA-G, and PGF are downregu-
lated in PE trophoblasts (Fig. 5a and Additional file 7: Table S6). GSEA enrichment of 
differentially expressed genes showed that PE trophoblasts exhibited increased gene set 
activities in “G2M checkpoint,” “E2F targets,” and “MYC targets” pathways (Additional 
file  1: Fig. S25a). These results are in concordance to the function of PE upregulated 
genes such as CCND1 (an important factor that regulates cell cycle) and GADD45A (an 
important factor that regulates chromatin accessibility and cell cycle). The results sug-
gest a scenario that in PE trophoblast, GADD45A expression is induced to arrest the 
cells at G2/M checkpoint from further division and differentiation, which is supported 
by cell cycle gene set expression scoring on single-cell RNA-seq dataset (Additional 
file 1: Fig. S25b).

Notably, we found an imprinted gene PEG10 was significantly upregulated in all 
trophoblast cells across various trophoblast lineages in PE (Fig. 5a and Additional file 1: 
Fig. S26). PEG10 was the most highly upregulated maternally imprinted gene in PE 
(Fig. 4g, Additional file 1: Fig. S22 and Additional file 7: Table S6). PEG10, which is a 
retrotransposon gene involved in trophoblast stem cell specification [84], functionally 
implicated in placenta development and embryogenesis [85].

In control samples, PEG10 expression gradually decreased during trophoblast differ-
entiation. In detail, PEG10 expression was high in VCTps and VCTs, but low in SCTs 
and EVTs (Fig. 5b, top panel). In contrast, in PE, the decrease in PEG10 expression was 
delayed, with significantly elevated expression in SCTs and EVTs both in our in-house 
sequenced trophoblast and external dataset GSE173193 [70] (Fig. 5b, top panel, Addi-
tional file 1: Fig. S11g and h). In the paired sIUGR placentas, the trend of PEG10 expres-
sion in the trophoblasts in normal fetus placenta was similar to control, whereas the 
FGR fetus placenta trophoblast phenocopied PE placenta (Fig. 5b, bottom panel). Since 
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Fig. 5 Excessive maternal imprinted gene product PEG10 in PE. a Differential expression of genes 
between PE and control trophoblasts, showing PEG10 among the most significantly upregulated genes 
in PE trophoblasts. P-values were calculated by Wilcox test and adjusted based on Bonferroni correction. 
b Expression of PEG10 in control, PE, and normal/FGR placentas from DCDA sIUGR twins, showing that 
PEG10 expression is gradually downregulated as trophoblast differentiate but this trend is blocked in PE or 
FGR placenta. c Significantly upregulated PEG10 expression in terminal SCT (SCT_12) cluster in PE or sIUGR 
FGR placenta (S) compared to their controls (L). P-value was determined by t-test, **: P < 0.01, ***: P < 0.001. 
Staining of PEG10 (yellow) is found in SCT lining the blood vessel (CD31 + , purple) but we noticed a faint 
staining of PEG10 in CD31 + endothelial compartment in this FGR placenta sample. d Single-cell PEG10 
expression (y-axis) and cell maturation (1-CytoTRACE, x axis) in SCT of PE and control placenta. PEG10 
expression is significantly correlated with cell maturity in an inverse manner (Cor.coef: 0.7369 (control)/0.5982 
(PE); P-value: both < 2.2*1e − 16), indicating that PEG10 overexpression in PE is due to developmental delay 
of trophoblasts. e OPAL multiplex immunohistochemistry staining (brown: IHC stain; blue: DAPI) of CD31 
(left) and PEG10 (right) in control (top) and PE (bottom) placentas, showing villous void of (asterisk) or with 
narrow, deformed fetal capillary vessel (arrows) in PE, together with excessive PEG10 expression. f OPAL 
multiplex immunohistochemistry staining of PEG10 (yellow), CD31 (purple), CK7 (cyan) in control (top) and 
PE (bottom) placenta, showing that PEG10 is found not only in non-CD31 trophoblast (CK7 +) cells in control 
but is additionally found in endothelial (CD31 +) cells in PE. g Immunofluorescence intensity of PEG10 in 
trophoblasts (T) or endothelial cells in normal (control) or PE placenta, showing significantly elevated PEG10 
protein level in PE trophoblasts as well as endothelial cells. P-values were tested by Wilcox test, not adjusted. 
**: P < 0.01, ***: P < 0.001. h Immunofluorescence intensity of PEG10 in trophoblasts or endothelial cells from 
the paired normal (NT) and FGR placentas from the sIUGR pregnancy, showing significantly elevated PEG10 
protein level in FGR cells. P-values were tested by Wilcox test, not adjusted. i Frequency of trophoblasts or 
endothelial cells that are positive with PEG10, in control and PE placentas, showing increased PEG10-positive 
cells in abnormal placenta. Abbreviation: DCDA: Dichorionic diamniotic twin pregnancy; sIUGR: selective 
intrauterine growth retardation. NT: normal fetus; FGR: fetal growth restriction; SPE: severe preeclampsia
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sIUGR placentas share a similar maternal environment, these results indicate that cell-
autonomous transcriptional regulation underlies PEG10 expression dynamics.

PEG10 overexpression was most evident in terminally differentiated SCT-12 in either 
PE or sIUGR/FGR placenta (Fig.  5c). Immunohistochemistry validated the protein 
expression of PEG10 in perivascular SCTs, and weak but consistent PEG10 staining was 
observed within the CD31 + endothelial cells (Fig. 5c). Correlation analysis between the 
differentiation status deduced by CytoTRACE and PEG10 expression levels in SCTs sug-
gested that PEG10 expression was a function of differentiation status in both control and 
PE placenta (Fig. 5d). Hence, the delayed maturation of trophoblasts, most evidently in 
SCTs, underlies PEG10 overexpression.

Through OPAL multiplex immunohistochemistry, we determined the protein expres-
sion of PEG10 in singleton PE, control, and DCDA PE placentas (Fig.  5e, f ). The PE 
placenta exhibited an increased degree of PEG10 staining in villous that was void or 
contained deformed and narrow fetal capillaries (Fig.  5e). Consistent with the results 
of scRNA, PEG10 immunofluorescent intensity in trophoblasts (CK7 +), and the frac-
tion of PEG10 + trophoblast were significantly increased in PE (Fig.  5e–i) and sIUGR 
placentas (Fig.  5h). In addition to PE-specific PEG10 overexpression in trophoblast, 
we observed a significant increase in PEG10 expression in CD31 + endothelial cells, in 
terms of both staining intensity (Fig. 5f–h) and cell count (Fig. 5i). These results indicate 
that trophoblasts exhibiting developmental delay in FGR (sIUGR) and PE placenta over-
express PEG10.

PEG10 is transferred from the trophoblast to maternal endothelial cells

PEG10 is an ancient retroviral Gag gene encoded by a domesticated endoretrovirus 
(ERV). It binds to 5′ and 3′ UTR of its transcript, leading to the formation of virus-
like particles (VLPs) [86]. These VLPs are secreted via the exosome pathway and trans-
ferred into other cells. PEG10 protein and RNA transcripts levels were increased in PE 
trophoblasts and non-trophoblast cells, including endothelial cells (Fig. 5a, e–h and 6b, 
e). However, scATAC data showed that the PEG10 locus was only accessible in tropho-
blast cells and inaccessible in all other cells (Fig. 6a and Additional file 1: Fig. S27a). The 
PEG10 locus was differentially methylated in the gamete germline (termed germline dif-
ferentially methylated region, gDMR [87], Additional file 1: Fig. S27a). We found that the 
PEG10 gDMR was bound by the PRC2 complex component EZH2 and that it exhibited 
specific DNA hypomethylation and increased H3K27ac modification in the PE placenta 
(Fig. 6a and Additional file 1: Fig. S27b), indicating either a loss-of-imprinting or loss-
of-de-novo-methylation around the region, resulting in reduced PRC2 binding and dys-
regulated expression of PEG10 during trophoblast lineage differentiation in PE.

We further analyzed the structure of PEG10 RNA transcript across various cell types. 
Compared with those in control, single cells in PE exhibited increased expression of 
PEG10 RNA transcripts (Fig. 6b). In fetal trophoblast, the sequenced RNA reads were 
biased toward the 5′ UTR, suggesting active ongoing transcription (Fig. 6b). On the con-
trary, in other cells, including fetal and maternal endothelial cells and maternal immune 
cells, the sequenced RNA reads were biased toward the 3′ UTR. The fraction of reads 
corresponding to the 3’ UTR was increased in non-trophoblasts compared to tropho-
blasts (Fig.  6b, right panel), suggesting more mature transcripts in non-trophoblasts. 
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Fig. 6 PEG10 is transferred from trophoblast to maternal endothelial cells. a Chromatin accessibility of 
VCT, SCT, EVT, endothelial cells (Ec) and fibroblasts (Fb), and H3K27ac Cut-and-Tag signals (Additional file 1: 
Fig. S27) from control and PE placentas, around the PEG10/SGCE locus. Compared to trophoblasts, Ec 
and Fb have little chromatin accessibility on PEG10 locus, despite the significant upregulation of PEG10 
transcripts and proteins in PE Ec. The PEG10 locus is subjected to imprinting (gDMR), controlled by EZH2, 
hypomethylated in PE, and shows PE-specific increase of H3K27ac modification (Additional file 1: Fig. 
S27), indicating PE-specific epigenomic activation of PEG10 locus. b scRNA sequencing reads from fetal 
trophoblasts, fetal endothelial cells, maternal endothelial cells, and maternal immune lymphoid (B/NK/T) cells 
on PEG10 genomic region. PE cells show significantly higher PEG10 expression. RNA reads covering PEG10 
3′UTR in trophoblasts are significantly lower compared to those in non-trophoblast cells, suggesting most 
PEG10 transcript in non-trophoblast cell are mature and spliced. c A trio pedigree of a PE pregnancy, where 
the mother (2005139) suffered SPE during pregnancy. The father and progeny carried a paternal-specific 
PEG10 SNP allele (T/A) and the mother is wild-type (T/T). scRNA sequencing reads from the 2005139 
placenta showing that all transcripts covering the SNP, regardless of their cell-of-origin, carried the paternal A 
allele, suggesting a fetal origin of these RNA in maternal cells. d Differential expressed genes between PE and 
control endothelial cells, labelled with scATAC-silent, scRNA-upregulated genes (pink). Transcripts of these 
genes shared common 5′UTR and 3′UTR sequence motives with sequence similarity (inset), suggesting that 
they are likely to be bound with similar RNA-binding protein and might be transported from trophoblast to 
endothelial cells with this protein. P-values were calculated by Wilcox test and adjusted based on Bonferroni 
correction. e scATAC-silent, scRNA-upregulated genes in fetal and maternal endothelial cells from control and 
PE placenta, showing that these transcripts were similarly upregulated in fetal and maternal endothelial cells 
in PE. f Aggregated scATAC coverage tracks for trophoblasts (VCT: N = 10299 + 47086; SCT: N = 230 + 3495; 
EVT: N = 1062 + 6366, control + PE) and endothelial cells (Ec: N = 293 + 395, control + PE) on cargo genes 
NOTUM, S100P, TIMP2, and PAPPA2. Cargo gene region are highlighted in pink. Adjacent genomic regions 
were shown to control for scATAC validity in Ec
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These results, in concordance with reported 3′ UTR-biased RNA levels in exosome [88] 
and the transfer of PEG10 VLPs between cells [86], suggest that PEG10 gene product 
may be exported to non-trophoblast cells from trophoblasts.

In our cohort, we identified a family where the father and fetus were heterozygous for 
a PEG10 SNP allele chr7:94665871 T > A (genotype T/A), whereas the PE mother was 
homozygous for the wild-type allele on this locus (genotype T/T) (Fig. 6c, left panel). All 
PEG10 RNA reads (100%) in fetal trophoblast and endothelial cells harbored the pater-
nal allele (A). Interestingly, PEG10 transcripts in maternal immune and endothelial cells 
harbored the same paternal PEG10 allele (A), indicating their fetal origin (Fig. 6c, right 
panel). Collectively, these results indicate cell-to-cell transfer of PEG10 transcripts from 
trophoblast to other cells. The persistent monoallelic expression of the paternal allele 
indicates that DNA hypomethylation at the PEG10 loci in PE results from defective de 
novo DNA methylation or H3K27me3 re-establishment, rather than germline imprint-
ing defects in the maternal gamete.

PEG10 VLPs are known to be capable of carrying other RNA transcripts, bound by 
PEG10 on their UTRs, into other cells. We hence identified a series of putative PEG10 
VLP “cargo genes”, which were characterized by the presence of RNA without an acces-
sible genomic locus in endothelial cells (“Methods,” Fig.  6d–f and Additional file  8: 
Table S7). Similarities between the 3′ and 5′ UTRs of these cargo genes (0.68, Z = 4.3) 
suggested that they may be bound by a similar RNA-binding protein (Fig. 6d and Addi-
tional file 1: Fig. S28). Several of these genes, such as HTRA1, TIMP2, ASCL2, and CSH1, 
were known to be functional in placentation and/or could be transferred to cultured 
trophoblast by trophoblast debris in ex vivo culture medium [88], suggesting that cargo 
genes shuttle from trophoblast to both maternal and fetal endothelial cells via PEG10 
VLP in PE placentas (Fig. 6d), similar to cell-free trophoblast “debris” described in a pre-
vious in vitro study [88].

We performed Pearson correlation analysis of the cargo transcript RNA expression 
profiles between endothelial cells and trophoblast (Additional file 1: Fig. S29) to deter-
mine whether PEG10 VLP-mediated RNA cargo transfer between cells was possible. 
Although we observed a high correlation between VCT/VCTp and early endothelial 
cell populations in control placentas, we also observed similarity between terminally 
differentiated trophoblast (EVT and SCT) and endothelial cells in PE (Additional file 1: 
Fig. S29), indicating increased cell-to-cell transfer of PEG10 VLP in PE. Collaboratively, 
these results suggest that PEG10-containing VLP production is amplified in PE, which 
results from defective de novo DNA methylation in trophoblast. The majority of tran-
scriptional alterations in endothelial cells in PE result from the trans-cellular transfer of 
RNA molecules from trophoblasts, potentially carried by PEG10 VLPs.

Excessive PEG10 disrupts maternal artery development to phenocopy arteriovenous 

malformation (AVM)

In PE, vascular development in both the fetus and mother was disrupted. Specifically, 
the remodeling of maternal uterine spiral arteries was incomplete, and fetal capillary 
vessels were underdeveloped, thereby leading to placental villus that was devoid of blood 
circulation. We analyzed angiogenesis by delineating the developmental trajectory of 
arterial endothelial cells by RNA velocity [66] (Fig. 7a and Additional file 1: Fig. S2a). The 
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results revealed that an arterial CD24 + cluster served as a progenitor cell population 
with heightened cell division activity (Fig. 7b,c and Additional file 1: Fig. S30a-b) that dif-
ferentiated into BMP6 + /SGK1 + capillaries (“BMP6” in Fig. 7a–d and Additional file 1: 
Fig. S2a-b; “Capillary” in Additional file 1: Fig. S30) or ACE + /SEMA3G + arteriole cells 

Fig. 7 Excessive PEG10 disrupts maternal artery development to phenocopy AVM. a Single-cell evolution 
trajectory inferred by RNA velocity of arterial/arteriole endothelial cells (Ec), projected on UMAP space. Arterial 
Ec evolve from the CD24 + cluster (Additional file 1: Fig. S2b) into BMP6 + (SGK1 + , capillary, Additional 
file 1: Fig.S2b) cluster or ACE + (SEMA3G + , arteriole, Additional file 1: Fig. S2b) cluster. ACE + populations. 
ACE + population give rise to two ACE + /PAPPA2 + populations that differs by CLIC3 expression. b Root and 
c terminal cell probability of single cells in each Ec cluster shows that the PAPPA2 + clusters of Ec are induced 
in PE. d Cell number of each Ec cluster in control and PE placenta, showing that the PAPPA2 + clusters are 
PE-specific. e Normalized enrichment score (NES, x axis) of gene pathways with differential activity between 
PE and control ACE + population in GSEA analysis. Only significantly different pathways (raw P-values < 0.05) 
were shown. Differential activities are shown with color (red: upregulation in PE; blue: downregulation in 
PE). f Non-arteriovenous malformation (AVM) brain endothelial signature (Signature control) expression in 
fetal and maternal-originated placental Ec in PE and control. g AVM signature [89] expression in fetal and 
maternal-originated placental Ec in PE and control. P-values were tested by Wilcox test, not adjusted, *: 
P < 0.05; ****: P < 2.2*10e − 6. h Gene expression of AVM-associated genes, including the hereditary AVM 
pathogenic gene ACVRL1 which interacts and is inhibited by PEG10, and PE-associated genes by GWAS study 
[15] in PE/control placenta Ec (left panel) or AVM/control brain Ec (right panel). Abbreviation: A + P: ACE2 + , 
PAPPA2 + ; A + P + C: ACE2 + , PAPPA2 + , CLIC3 + 
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(“ACE,” “A + P” [ACE and PAPPA2], “A + P + C’ [ACE, PAPPA2, and CLIC3] in Fig. 7a–d 
and Additional file 1: Fig. S2a-b; “Arteriole” in Additional file 1: Fig. S30a-b). In PE, two 
novel arteriole PAPPA2 + endothelial cell clusters, namely arterial A + P and arterial 
A + P + C, emerged (Fig. 7b). RNA velocity transfer probability analysis revealed that the 
root cell probability was high in arterial CD24 + and BMP6 + endothelial cells (Fig. 7c) 
and that terminal cell probability was high in PE-specific PAPPA2 + cells (Fig.  7d). 
Although the cell cycle activity of the progenitor cells was higher than that of the cap-
illary and arteriole endothelial cells in control, the cell cycle activity of capillary and 
arteriole endothelial cells was significantly elevated in PE (Additional file 1: Fig. S30b). 
Together, these results suggest the occurrence of induced differentiation of endothelial 
cells into a PAPPA2 + state in PE.

PEG10 protein product RF2 inhibited the TGF-beta co-receptor ACVRL1 (ALK1) and 
TGF-beta signaling in vitro [90]. In vivo, PEG10 knockout resulted in placenta develop-
ment failure [85] and defective fetal vascular development [91, 92]. As TGF-beta signal-
ing is essential for angiogenesis, and mutation in these genes results in major vascular 
developmental defects, such as congenital cardiovascular malformation or arteriovenous 
malformation [93–96] (OMIM #131300, #609192, #187300, #600376, #178600, #174900, 
#175050), we hypothesized that excessive PEG10 transferred to maternal endothelial 
cells may disrupt its development by affecting the TGF-beta signaling pathway. Indeed, 
gene set enrichment analysis of differentially expressed genes in the arteriole indicated 
significant attenuation of TGF-beta signaling, together with Wnt, IL-2, and IFN-a signal-
ing in arteriole endothelial cells in PE (Fig. 7e and Additional file 1: Fig. S31). Meanwhile, 
EMT activity and androgen signaling pathway were upregulated in arteriole endothelial 
cells in PE (Fig. 7e).

TGF-beta signaling is not only implicated in vascular development but is also known 
to be modulated by trophoblast-derived molecules. For example, MMP9/MMP2 is spe-
cifically expressed in EVT and SCT (Additional file 1: Fig. S7a) and regulates TGF-beta 
signaling intensity [97]. To validate TGF-beta signaling defects in endothelial cells in PE, 
we took advantage of the interesting duality of vascular malformation disease, namely 
AVM, and PE. AVM is also caused by loss-of-TGF-beta signaling [93–95]. Mutation in 
either endoglin (Eng) [12], an accessory TGF-beta receptor, or its co-receptor ACVRL1 
[98], which interacts with and is inhibited by PEG10 [90], causes AVM. Eng is known to 
be implicated in PE; excessive solutable endoglin (s-Eng) has been observed in the serum 
of patients with PE [21, 23, 24], and the overexpression of s-Eng has been observed to 
result in a PE-like phenotype in animal models [99]. Single-cell analysis of brain vascu-
lar endothelial cells has revealed similar downregulation of TGF-beta signaling in AVM 
arteries [89, 100]. We thus compared the gene expression profile between AVM and PE. 
Fetal and maternal endothelial cells exhibited an AVM-like gene expression pattern, i.e., 
the downregulation of control-specific arteriole genes and the upregulation of AVM-
specific gene activities (Fig. 7f, g).

The mirroring of gene expression profile between PE and AVM arterial endothe-
lial cells was found across individual AVM-specific and control-specific genes, as well 
as the expression of GWAS-associated genes of PE (Fig. 7h), including MECOM, a key 
endothelial TF that is significantly associated with PE [101–103]. In control placentas, 
the AVM-specific gene activity was lower in maternal endothelial cells than in fetal 
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endothelial cells (Fig.  7g). Considering that PEG10 was produced by fetal endothelial 
cell-proximal VCT but not the maternal endothelial cell-proximal SCT/EVT in con-
trol, these results collectively suggest that PEG10 induced TGF-beta signaling switch 
between maternal and fetal endothelial cells to divert differential developmental trajec-
tories for fetal and maternal blood vessels during placentation. The placental villous tree, 
which serves as an arteriovenous shunt between the remodeled maternal spiral artery 
and draining vein [104], is innervated by fine fetal capillaries [105, 106]. Coordinated 
enlargement of spiral artery opening and miniaturization of fetal capillary requires dif-
ferential angiogenic signaling. Although the loss of PEG10 results in the collapse of the 
fetal capillary vessel in villous [92], our results revealed that maternal vascular remod-
eling was affected by the fetal overexpression of PEG10.

PEG10 perturbs endothelial cell proliferation and function by negatively regulating 

TGF‑beta signaling

We experimentally validated whether PEG10 affects endothelial cell biology via TGF-
beta pathway in a human endothelial cell line (HUVEC), which has basal PEG10 expres-
sion (Additional file 1: Fig. S32). Overexpression of PEG10 increased the PEG10 RNA 
level up to 20-fold compared to control (Additional file 1: Fig. S32a) and elevated PEG10 
protein expression (Additional file  1: Fig. S32b). Knockdown of PEG10, on the other 
hand, significantly downregulated PEG10 on both transcriptional (Additional file 1: Fig. 
S32c) and protein levels (Additional file 1: Fig. S32d).

In the MTT assay, overexpression of PEG10 inhibited, while knockdown of PEG10 
accelerated HUVEC cell proliferation over a course of 4  days (Fig.  8a). In concord-
ance to this, scRNA sequencing of the same cells showed increased cell cycle gene set 
activity in PEG10 knockdown cells compared to control cells or PEG10 overexpression 
cells (Fig.  8b). Furthermore, PEG10 overexpression decreased tube formation activity 
(Fig.  8c,d), while PEG10 knockdown increased the tube formation activity of HUVEC 
cells compared to control cells (Fig.  8e,f ). PEG10 overexpression decreased the tube 
formed by ~ 3 folds and junction formed by ~ 2 folds (Fig. 8c,d). On the contrary, PEG10 
knockdown increased the tube formed by 50%, and junction formed by ~ 25% (Fig. 8e,f ).

In concordance to the cell proliferation and function experimental result, PEG10 over-
expression cells showed increased expression of cell cycle arrest-related gene such as 
GADD45A, and decreased expression of proliferation genes such as MKI67 and TOP2A 
(Fig. 9a). Notably, the TGF-beta signaling pathway components TGFB1, TGFBR2, and 
SMAD3 are upregulated in PEG10 knockdown cells (Fig.  9a). Gene set enrichment 
analysis showed that compared to PEG10 knockdown cells, PEG10 overexpression cells 
showed downregulated activities in cell proliferation (G2M-checkpoint, Mitotic spindle, 
E2F targets), TGF-beta-signaling, and angiogenesis pathways (Fig. 9b). The expression of 
angiogenesis and endothelia-related genes, such as SGK1, GDF15, and ACTN4 are dis-
rupted by PEG10 perturbation (Additional file  1: Fig. S33), suggesting possible down-
stream effector of PEG10-TGF-beta signaling and mimicking the phenotype observed 
in vivo for PE endothelial cells.

We then tested whether treating PEG10 overexpression cells with TGF-beta-1 pro-
tein could rescue their biological function. Compared to control condition, TGF-beta-1 
protein restored tube growth and junction formation in the PEG10 overexpression cells 
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(Fig. 9c, d). In general, TGF-beta-1 protein significantly improved junction and tube for-
mation number in the PEG10 overexpression cells (Fig. 9c,d), which restored junction 
and tube formation in PEG10 overexpression cells to a level not significantly different 
from the control cells (Fig.  9c,d). Together, these results showed that PEG10 disrupts 
endothelial cell biology via negatively regulating TGF-beta signaling.

Discussion
PE is clinically characterized as defective development of the placental villous tree, 
which is formed by trophoblasts [4, 5], the failure of uterine spiral artery remodeling, 
and deterioration of the endothelial vasculature [107]. Our results revealed a molecular 
account of PE pathogenesis.

Epigenetic mechanisms regulating trophoblast development in PE

The uterine spiral artery is the terminal branch of the uterine artery network and 
undergoes structural remodeling during implantation. The invasion of the spiral artery 
by EVTs blocks blood flow and replaces the inner wall of endothelial cells, resulting 
in the dilation of blood vessel termini [108]. The encroachment of the villous tree into 
the uterine cavity thus functions as an arteriovenous shunt between the uterine spiral 

Fig. 8 PEG10 overexpression negatively impacts endothelial cell proliferation and function. a Optical density 
in MTT assay of PEG10 in HUVEC cells transfected with control vector (OE-control) or PEG10-overexpression 
(PEG10-OE-1, PEG10-OE-2) vectors (left), or HUVEC cells transfected with control scrambled siRNA (siRNA 
control) or PEG10-targeting siRNA (PEG10-siRNA-1, PEG10-siRNA-2) (right). P-values were examined by 
t-test and adjusted with “BH” method. b Cell cycle-related gene expression score (S and G2/M) in PEG10 
RNAi, control, and PEG10 overexpression (OE) cells by single-cell RNA sequencing. c Junction count in tube 
formation assay for HUVEC cells transfected with control or PEG10-overexpression vectors. d Tube count in 
tube formation assay for HUVEC cells transfected with control or PEG10-overexpression vectors. e Junction 
count in tube formation assay for HUVEC cells transfected with control or PEG10-targeting siRNA. f Tube 
count in tube formation assay for HUVEC cells transfected with control or PEG10-targeting siRNA. P-values 
were examined by t-test, not adjusted
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artery (“arteriole”) and venous system [104], with notably reduced blood flow velocity 
and increased total blood flow perfusing the villi that enable efficient gas and nutrient 
exchange [109]. In PE, the villous tree is underdeveloped and many terminal villi lack 
capillary [4, 5]. This is accompanied by reduced spiral artery remodeling in the maternal 
myometrium [6, 7].

By comparing individual cells derived from the placenta of PE and normal pregnan-
cies, we corroborated and expanded upon our prior findings regarding alterations in cel-
lular composition in PE [4, 7, 110–113]. Additionally, we identified previously unknown 
endothelial cells that are associated with PE. Particularly, we determined that in PE, 
defective epigenomic reprogramming including reduced de novo DNA methylation spe-
cific to extraembryonic tissue and dysregulated H3K27me3 modification coordinately 
stall the development of the trophoblast.

De novo DNA methylation of extraembryonic tissue-specific gene promoter has been 
extensively documented [50]. Our transcription network analysis in conjunction with 
DNA methylation profiling revealed that the PE phenotype may be pre-determined at 
the preimplantation stage as de novo DNA methylation occurs in the blastocyst stage. 
Additionally, we identified PE trophoblasts showing defective TF activities are primar-
ily early-stage trophoblast progenitor cells and VCT but not terminally differentiated 
SCT and EVT. Hence, these findings suggest that an early imbalance of growth factor 
signaling between the inner cell mass and trophectoderm results in defective placenta 

Fig. 9 PEG10 perturbs endothelial cell biology by negatively regulating TGF-beta signaling. a Differential 
gene expression between PEG10 overexpression (OE), PEG10 RNAi, and control cells. b Differential gene set 
enrichment activity between PEG10 OE and PEG10 RNAi cells. Blue arrows indicate TGF-beta signaling and 
green arrows show angiogenesis pathways. c The reduction of tube junction count in PEG10 overexpression 
cell is rescued by TGF-beta supplementation. d The reduction of tube count in PEG10 overexpression cell is 
rescued by TGF-beta supplementation. P-values were tested by t-test, not adjusted
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development. Additional investigations on organoids are necessary to clarify the precise 
molecular mechanisms involved in this process.

Retrovirus in placenta development

The emergence of placental structures is accompanied, and probably driven, by retro-
virus domestication. Retroviruses exploit the placenta as their waypoint of trans-gen-
erational infection [114]. Due to host–pathogen co-evolution, most endoretrovirus 
genes are silenced during the adult stage through DNA methylation [115, 116]. How-
ever, these genes are only transiently activated during embryogenesis owing to global 
demethylation [42]. The genes and products of endoretroviruses are often expressed in 
the placenta [117–119], with the promoter of retroviral genes serving as species-specific 
enhancer elements that are specifically active in the placenta [120–123]. The incorpora-
tion of endoretrovirus-encoded envelop proteins, such as Syncytin I and II, promotes 
trophoblast fusion, resulting in the formation of multi-nuclei giant cells that line the 
maternal–fetal interface [124–129]. Interestingly, various animal taxa have exhibited 
the incorporation of envelop proteins from various retroviruses, suggesting convergent 
selection of retrovirus-gene-mediated placental features [117, 124, 130–138]. The incor-
poration of retroviral genes into trophoblasts probably facilitates not only the cell–cell 
fusion but also the invasiveness of trophoblasts, as well as immune suppression on the 
maternal side.

The adaptation of the placenta results in an active battleground for parental genes. 
Theoretically, such conflict may arise due to zero-sum-like competition between the 
mother and the fetus, such as for the nutritional supply. In the loci regulating such effects 
in the fetal genome, the paternal allele exhibits a proclivity towards fetal growth, whereas 
the maternal allele tends to protect the mother. Furthermore, the paternal endoretro-
virus allele experiences reduced selection pressure for expression because it facilitates 
transmission of itself, in theory, to sibling littermates or the maternal body [139–141]. 
Examples that align with these theories include the LTR12 family of endoretrovirus, 
which are hypomethylated in the sperm and undergo ZGA-specific transcription. The 
transient expression of LTR12 endoretrovirus loci suggests a tight control over its chro-
matin accessibility, probably during the re-establishment of the global DNA methylation 
landscape. Although the functions of LTR12 endoretrovirus remain unclear, they may 
serve as an alternative 5′ promoter for downstream genes in certain cases [142]. On the 
contrary, two paternally imprinted endoretroviral genes, namely RTL1 and PEG10, are 
expressed and functional in the placenta [143].

Epigenetic reprogramming regulates endoretrovirus expression

PEG10 protein and RNA transcript are prevalent in the PE placenta but not in con-
trol (Figs. 5 and 6). Our findings indicate that trophoblast maturation is accompanied 
by reduced levels of PEG10 expression (Fig. 5d), suggesting the maturation-dependent 
expression of PEG10 in early trophoblasts such as TSC (VCTp) and VCT. The PEG10 
promoter is bound by PRC2 (Fig. 6a) and undergoes de novo DNA methylation during 
extraembryonic tissue development. In the PE placenta, LTR12C is commonly hyper-
methylated (Additional file 1: Fig. S18b), whereas PEG10 is maintained in a hypometh-
ylated state. The imbalance of de novo methylation effect on these loci, albeit both 
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hypomethylated at the paternal germline, may suggest a redirected de novo DNA meth-
ylation effort from one type of endoretrovirus to another.

In PE, the concomitant increase in H3K27ac and reduction in de novo DNA methyla-
tion on the PEG10 locus in the placenta (Fig. 6a and Additional file 1: Fig. S27) is con-
cordant with the overexpression of PEG10 in trophoblasts, especially in the terminally 
differentiated EVTs and SCTs (Fig. 5b, d). Although PEG10 is essential for villous blood 
vessel formation, the restriction of PEG10 expression to villous cytotrophoblasts may be 
essential to restrict its function exclusively to the fetal side instead of the maternal side. 
In the placenta of normal pregnancy, fetal capillaries in the villous tree are very fine, 
whereas the maternal spiral artery is deformed and wide open. The spatially adjacent 
blood vessels thus require differential regulation of angiogenesis.

PEG10 function in the regulation of angiogenesis via TGF‑beta

PEG10 is subjected to strong purifying selection (loss-of-function [LoF] intolerance 
score pLI = 0.87, with only 1 LoF SNV in 249,162 sequenced alleles in gnomAD), sug-
gesting its essentiality. In  vitro analysis and gain-of-function experiments have shown 
that PEG10 binds to its own UTR to form VLPs [86], which can be transferred to other 
cells. A similar transfer of exosome-like particles between trophoblasts and HUVEC cells 
has been previously documented [88]. PEG10 attenuates TGF-beta signaling by interact-
ing with TGF-beta co-receptor ACVRL1/ALK1, ultimately inhibiting its function [90]. 
Our results indicate that excessive PEG10 perturbs endothelial cell biology by negatively 
regulating TGF-beta signaling, to an extent that mirroring AVM formation. TGF-beta 
is a well-documented master regulator of angiogenesis. Mutations of genes in the TGF-
beta pathway underlied many human vascular developmental disorders. Interestingly, in 
PE, s-Eng are notably elevated in the serum, suggesting that antagonism of TGFb signal-
ing might be a common theme in regulating vascular remodeling and endothelial per-
meability in PE.

Conclusions
In our research, through single-cell analysis, we discovered developmental delays and 
transcriptional defects in PE trophoblasts. Our multimodal epigenomic studies showed 
that impaired extraembryonic tissue-specific de novo DNA methylation led to delayed 
development in PE trophoblasts. We observed excessive immature trophoblasts in PE 
placentas, which significantly upregulated maternally imprinted genes, notably PEG10. 
This gene can produce virus-like particles that transfer between cells. While PEG10 
expression is limited to fetal vessel-interacting VCT in normal pregnancy, the maternal 
vessel-interacting SCT and EVT overexpressed PEG10 in PE pregnancy, enabling PEG10 
VLP transfer into the maternal endothelial cells to induce ACE2 + /PAPPA2 + arteriole 
endothelial cells. These PE-specific endothelial cells are functionally defective marked 
by reduced TGF-beta and Wnt signaling. They share high transcriptomic similarity 
with other vascular malformation diseases caused by loss-of-TGF-beta signaling such 
as arteriovenous malformation. They also exhibit a gene expression profile indicative 
of impaired endothelial zonation. These results revealed how multi-layered epigenetic 
mechanism controls proper placentation, and how its disruption leads to a lethal preg-
nancy complication.
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Methods
Human biospecimens

This study was conducted in accordance with the measures of the People’s Republic of 
China on the administration of Human Assisted Reproductive Technology, the ethi-
cal principles of the Human Assisted Reproductive Technology, the Helsinki Declara-
tion, and the internal ethic protocols of Peking University Third Hospital, Guangdong 
Woman and Children’s Hospital, West China Second Hospital of Sichuan University and 
Zhongnan Hospital of Wuhan University.

The study protocol was approved by Peking University Third Hospital Medical Sci-
ence Research Ethics Committee (approval number: (2020)YiLun(310–02)), Peking 
University Institutional Review Board (approval number: IRB0001052-16009), Institu-
tional Review Board of Guangdong Woman and Children’s Hospital (approval number: 
YiLun[201701044]), Ethics Committee of the West China Second Hospital of Sichuan 
University (approval number: YiXueKeYan2020(064)) and Institutional Ethics Com-
mittee of Zhongnan Hospital of Wuhan University (approval number: 2015029 and 
2020102). Informed consent was obtained from the donors and their guardians. The 
study protocol was approved by the Institutional Review Board (IRB) of Peking Univer-
sity Third Hospital ((2020)YiLun(310–02) and IRB0001052-16009), IRB of Guangdong 
Woman and Children’s Hospital (YiLun[201701044]), IRB of West China Second Hos-
pital of Sichuan University (YiXueKeYan2020(064)), and IRB at Zhongnan Hospital of 
Wuhan University (approval number: 2015029 and 2020102). The human sample pres-
ervation by Department of Biological Repositories, Zhongnan Hospital of Wuhan Uni-
versity (official member of the International Society for Biological and Environmental 
Repositories-International Repository Locator, https:// irloc ator. isber. org/ detai ls/ 60) 
was approved by the Ethics Committee (approval number: 2017038) and China Human 
Genetic Resources Management Office, Ministry of Science and Technology of The Peo-
ple’s Republic of China (approval number: 20171793).

For 10 × single-cell RNA, single-cell ATAC, and immunostaining experiments, pla-
centa samples were collected from Peking University Third Hospital and West China 
Second Hospital of Sichuan University. For placenta ATAC-seq and CUT&Tag experi-
ments, placenta samples were collected from Peking University Third Hospital. For pla-
centa methylation capture sequencing experiments, placenta samples were collected 
from Peking University Third Hospital and Guangdong Woman and Children’s Hospital. 
FFPE tumor or normal tissue slides were collected from Zhongnan Hospital of Wuhan 
University, Wuhan, China.

Clinical assessment of human (pregnant female) phenotype was done according 
to ACOG guideline of hypertension in pregnancy [144]. Routine laboratory tests and 
pathology assessments were done according to the relevant Chinese clinical protocols.

Placentas were collected within 1 h of labor and transferred to laboratory in high glu-
cose + 10% FBS in DMEM. Placenta samples were resected in PBS from the maternal or 
fetal surface of placenta, 2 cm*1 cm in size, and within 4–5 cm from the root of umbili-
cal cord. For single-cell sequencing, CUT&Tag, or ATAC-seq, villous was further manu-
ally dissected from the maternal surface placenta with a pair of fine forceps for further 
processing. For methylation sequencing, placenta samples were flash frozen in liquid 
nitrogen and stored at − 80 °C.

https://irlocator.isber.org/details/60
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Cell culture

Human umbilical vein endothelial cells (HUVECs) were obtained and tested for 
mycoplasma non-contamination from the Chinese Academy of Sciences Cell Bank 
(Shanghai, China). The identification of the HUVEC cell line was conducted at the 
China Centre for Type Culture Collection in Wuhan, China. The cells were cultured 
and maintained in MEM medium supplemented with 10% fetal bovine serum and 1% 
penicillin/streptomycin with 5%  CO2 at 37 °C.

siRNA and plasmid transfection

The PEG10-target specific siRNA and negative control siRNA were purchased from 
Shanghai GenePharma Co., Ltd. The sense sequence of the siRNAs were as follows: 
PEG10 siRNA-1 (5ʹ-CCC ACU ACC UGA UGC ACA ATT-3ʹ), PEG10 siRNA-2 (5ʹ-GCA 
CUC GAU CUA UCG UCU UTT-3ʹ), and negative control siRNA (siRNA control) (5ʹ-
UUC UCC GAA CGU GUC ACG UTT-3ʹ). The plasmids for human PEG10, OE-PEG10 
(or PEG10 OE-1) was synthesized based on the sequence of NM_001172437.2 by 
GenScript Biotech while OE-PEG10-2ORF (PEG10 OE-2) was synthesized based 
on the sequence in Segel et al. [86] by GenScript Biotech. Two plasmids encode the 
same PEG10 amino acid sequence. Negative control vector for overexpression is 
pCMV-GFP-HA.

HUVECs were transfected with siRNA or plasmids using Lipofectamine 3000 
Transfection Kit (L3000-015, Invitrogen, USA), according to the manufacturer’s pro-
tocol. The gene silencing efficiency and overexpression efficiency of transfected cells 
were confirmed by qRT-PCR and Western blot.

Quantitative real‑time PCR (qRT‑PCR)

HiPure Total RNA Mini Kit (R4111-03, Magen, China) was utilized to extract total 
RNA from cell lines. The ReverTra Ace qPCR RT Kit (FSQ-101, Toyobo, Japan) was 
used for the reverse transcription. Five-hundred-nanogram cDNA templates were 
added to a PCR system with a final volume of 20 μl. The primer sequences are listed in 
the following table:

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

GAPDH CTG GGC TAC ACT GAG CAC C AAG TGG TCG TTG AGG GCA ATG 

PEG10 GAG CAC CAG GGA TTT CTC AGT GGT AGT TGT GCA TCA GGT AGTG 

Western blot analysis

The cells were lysed in RIPA buffer (containing protease inhibitor and phosphatase 
inhibitor) on ice for 30 min. The cell lysates were centrifuged at 12,000 g for 15 min 
and the supernatant was collected. For Western blots, total protein was separated 
using 10% SDS-PAGE gels, then transferred to PVDF membrane. Membranes were 
blocked with 5% skim milk in TBST buffer for 2 h at room temperature. The mem-
branes were then incubated separately with the appropriate primary antibodies, 
including anti-PEG10 (Proteintech Inc, China, Cat. #4412-1-AP, 1:1000 dilution for 
WB and anti-GAPDH (Proteintech Inc, China, Cat. #0004-1-Ig, 1:5000 dilution for 
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WB), for overnight at 4 °C. After washing three times with TBST buffer, membranes 
were incubated with secondary antibodies, including goat anti-mouse IgG (H + L) 
HRP (Sungene Biotech, China, Cat. #LK2003, 1:5000 dilution for WB) and goat anti-
rabbit IgG (H + L) HRP (Sungene Biotech, China, Cat. #LK2001, 1:5000 dilution for 
WB), for 2 h at room temperature. Bands were detected using the Clarity™ Western 
ECL Substrate kit (1705061, Bio-Rad, USA), and images of blots were taken by the 
BioSpectrum 515 Imaging System (UVP, USA).

MTT assay

The transfected cells were seeded in 96-well plates at a density of 3000 cells per well. 
After incubation of 1–4 days, each well was added 20 μL 5 mg/mL MTT (M5655, Sigma, 
USA) for 4 h at 37 ℃. The medium was removed and 150 μL of DMSO was added to dis-
solve the formazan precipitate in the 96-well plate. Finally, the absorbance of each well at 
570 nm was tested using a microplate reader (Molecular Devices, USA).

Tube formation assay in vitro

Tubule formation assays were performed as previously described [145]. The 96-well 
plates were coated with 50 µL of Matrigel (40183ES10, YEASEN, China) per well 
and incubated for 1  h. The transfected HUVECs (1.8 × cells per well) were seeded on 
Matrigel and cultured for 6 h. The tube formation of HUVECs was observed and pho-
tographed using a microscope, and the counts of tubes and junctions were analyzed by 
ImageJ.

For evaluating the effect of TGFb1 treatment on the tube formation, the transfected 
HUVECs were pretreated with 5 ng/mL TGFb1 (HZ-1011, Proteintech, China) for 12 h, 
and then seeded on the Matrigel for tube formation assay described above.

Statistical methods

Clinical phenotypes were summarized as mean (range lowest–highest) or mean (per-
centage). All statistics for clinical phenotype was done with t-test (two-sided) or Wil-
coxon Rank test (two-sided) if t-test was not applicable. Detailed statistical methods 
were briefly denoted in the figure legends or text accompanying. All statistical analyses 
in this study were performed using R (3.6.2) (http:// CRAN.R- proje ct. org).

Single‑cell RNA and chromatin accessibility sequencing

Fresh tissues were processed immediately after being obtained from donors. Tissues 
were cut into tiny pieces (< 1  mm diameter) and then subjected to dissociation using 
collagenase II (Biofrox Ltd., #2275MG100) and 100  μl of DNase (Servicebio Ltd., 
#1121MG010) at 37 °C for 1 h. After dissociation, cells were filtered with 40 μm BD fil-
ter mesh and subsequently centrifuged at 250 g for 5 min. Cell pellets were washed in 
PBS twice and resuspended in 1 ml ice-cold RBC lysis buffer and incubated at 4 °C for 
10 min. Ten milliliters of ice-cold PBS was added to the tube and subsequently centri-
fuged at 250 g for 10 min. After decanting the supernatant, the pellet was resuspended 
in 5  ml of calcium- and magnesium-free PBS containing 0.04% weight/volume BSA. 
Cells were counted using Trypan blue (Solarbio, Beijing, China). For chromatin acces-
sibility sequencing, approximately 10^6 cells were used for nucleus extraction. Nucleus 

http://CRAN.R-project.org
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extraction were performed as 10 × single-cell library preparation was done according 
to the manufacturer’s protocol. Chrominum Single Cell 3’ V3 kits and ATAC V2 kits 
were used. For RNA sequencing, single-cell suspensions were loaded onto a Chromium 
Single-Cell Controller Instrument (10 × Genomics) to generate single-cell gel beads in 
emulsions (GEMs) targeting ~ 8000 cells. After generation of GEMs, reverse transcrip-
tion reactions were engaged to generate barcoded full-length cDNA, which was followed 
by disruption of emulsions using the recovery agent, and then cDNA clean-up was per-
formed with DynaBeads Myone Silane Beads (Thermo Fisher Ltd.). Next, cDNA was 
amplified by PCR. Subsequently, the amplified cDNA was fragmented, end-repaired, 
A-tailed, and ligated to an index adaptor, and then the library was amplified. The scRNA 
libraries were sequenced aiming to have ~ 5000 reads per cell on Illumina Novaseq6000 
with paired-end 150-bp reads. Sequencing was performed at Berry Genomics, Beijing, 
China. QC metrics is described in Additional file 9: Table S8.

For ATAC analysis, tagmentation was performed according to the manufacturer’s 
protocol. After tagmentation reaction, nucleus suspensions were loaded a Chromium 
Single-Cell Controller Instrument (10 × Genomics) targeting ~ 10^4 nucleus in one reac-
tion. After generation of GEMs, PCR reaction were performed to amplify the library. 
DNA clean-up was performed with size-selection XP beads. Libraries were sequenced 
aiming to have ~ 5000 reads per cell on Illumina Novaseq6000 with paired-end 50  bp 
reads. Sequencing was performed at Berry Genomics, Beijing, China. QC metrics is 
described in Additional file 9: Table S8.

Shared single‑cell profiling of RNA and chromatin accessibility (SHARE‑seq)

SHARE-seq experiment was performed with cryo-preserved transfected HUVEC cell 
line samples. The experiment was performed as described previously [146] with minor 
modifications: (1) After fixation, nuclei were isolated with Nuclei Lysis Buffer (10 mM 
Tris HCl pH 7.4, 10 mM NaCl, 3 mM  MgCl2, 0.1% Tween20, 0.1% NP40, 0.01% Digi-
tonin, 0.75%BSA) on ice for 10 min; (2) Input 20,000 nuclei for ATAC Tn5 tagmentation 
per reaction; (3) Samples were multiplexed by using different R1-barcode in one single 
SHARE-Seq reaction. (4) ATAC library was purified with QIAquick Gel Extraction Kit 
(Cat. 28704, Qiagen); (5) Input 150 ng cDNA for RNA library tagmentation and puri-
fied with 0.7 × AMPureXP beads (Cat. A63880, BECKMAN COULTER); (6) Each ATAC 
or RNA library from one single SHARE-Seq reaction was sequenced with MGI2000 
sequencer with PE150 format to target approximately 500  M raw reads on average. 
Sequencing was performed at Euler Technology, Beijing, China. QC metrics is described 
in Additional file 9: Table S8.

Chromatin accessibility sequencing (ATAC‑seq) on bulk placenta tissue

Twenty-milligram flash-frozen placenta tissue samples were minced using a double-
sized douncer (Sigma, #D8938) in 1xHB (0.25 M sucrose, 0.06 M KCl, 0.005 M  MgCl2, 
0.015 M NaCl, 0.01 M Tris HCl pH 7.5), added to 5 ml trypsin and 40 μl 5U/μl DNase I 
(Sigma, #D5025) and digested in 37 °C for 45 min, with two times of rotation in between 
to mix the reaction. The digested cells were then neutralized with equal volume DMEM 
(Thermo Fisher, #11995065) plus 10% FBS (Gibco, #16000044) and filtered through 
a 70-μm cell filter (BD Falcon, #352350). The homogenized sample was centrifuged at 
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500 g, 4 °C for 5 min. The sedimented cells were then resuspended in 400 μl 1xHB and 
washed once, transferred to 2  ml LoBind Tube (Eppendorf ), and washed again. Cells 
were counted using Trypan blue (Solarbio, Beijing, China). After quantification, the cells 
were then added to a 30%-40%-50% iodixanol (Sigma, #D1556) gradient and centrifuged 
at 3000 g, 20 min at 4  °C. The cell layer at 30%-40% interface was collected for library 
preparation. DNA library were prepared with a Tn5 transposase kit (Vazyme, #TD501) 
using 1 million cells per reaction according to the manufacturer’s protocol. After Tn5 
transposition and PCR amplification, the sequencing library were quality-controlled 
with SYBR-green-based qPCR using primers for house-keeping gene (GAPDH) pro-
moter and gene desert (chr5: 105187030–105190000) before sequencing. Each library 
was sequenced to 30  M reads on Novaseq6000 sequencer (Illumina, CA). Sequencing 
was performed at Berry Genomics, Beijing, China. QC metrics is described in Addi-
tional file 9: Table S8.

CutAndTag sequencing on dissociated cells

Digestion of placenta tissue follows the same protocol with bulk ATAC assay. After 
quantification, 50,000–100,000 cells were used for CutAndTag experiment. CutAndTag 
experiments were performed with NovoProtein CutAndTag 2.0 pAG-Tn5 kit (Novo-
Protein, #N259) according to the manufacturer’s protocol. Antibodies used in this 
study include the following: anti-H3K4me3 (Diagenode, #C154100003), anti-H3K27ac 
(Abcam, #ab4729), anti-CTCF (Abcam, #ab188408), anti-Histone H2A.Z (Abcam, 
#ab4174), anti-H3K27me3 (Abcam, Cat. #ab6002), goat anti-mouse IgG (Sangon, 
#D111024), and goat anti-rabbit IgG (Sangon, #D111018). Each library was sequenced 
to 2 × human genome coverage on Novaseq6000 sequencer (Illumina, CA) in PE150 
format. Sequencing was performed at Berry Genomics, Beijing, China. QC metrics is 
described in Additional file 9: Table S8.

Nucleic acid preparation for DNA and methylation sequencing

Tissue genomic DNA was extracted from oral swab or placenta tissue with Qiagen Ani-
mal Tissue DNA Extraction Kit (Qiagen, #69504) according to the manufacturer’s proto-
col. Genomic DNA from FFPE tissue slides were extracted using MagPure Tissue DNA 
DF Kit (Magen Inc., #MD5112-TL-06). Extracted DNA were quality-controlled by Qubit 
dsDNA HS assay (Thermo Fisher Ltd.) and Agilent 2100 Fragment Analyzer.

Single‑stranded DNA methylation capture sequencing

Genomic DNA (200 ng) were bisulfite converted using EZ-DNA Methylation-Gold Kit 
(Zymo, #D5006) according to the manufacturer’s protocol. After conversion, the DNA 
were subjected to a single-stranded library preparation protocol Tequila 7N (Euler 
Technology). In brief, the DNA were end-repaired using Klenow (NEB) and tailed with 
poly-A using TdT (Takara), ligated to a poly-T overhang adaptor using T4 DNA ligase 
(Enzymatics), and linearly amplified for 12 cycles using PhusionU (Thermo Fisher Ltd.). 
The linear products were then annealed to a 5’ adaptor with 7 bp 3’ random nucleotide 
overhang and amplified using adaptor oligos (Sangon, Shanghai, China) with Phusion 
(Thermo Fisher Ltd.), resulting in a library with proper Illumina sequencing adaptor 
ends ready for NGS. Hybridization was done with SeqCap EpiGiant Enrichment Probe 
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(Roche, #07138911001), oligos and SeqCap wash and binding buffers (Roche) follow-
ing the manufacturer’s protocol. After hybridization, the library was amplified using 
Phusion (Thermo Fisher Ltd.) for 8 cycles and sequenced on Novaseq6000 sequencer 
(Illumina, CA) to 100 M PE150 reads. Sequencing was performed at Berry Genomics, 
Beijing, China. QC metrics is described in Additional file 9: Table S8.

Genomic region lift‑over

For genomic regions lift-over between UCSC GRCh38, GRCh37, mm9, and pantro2, the 
R package easyLift (version: 0.2.1, https:// github. com/ caleb lareau/ easyL ift), the lift-over 
executable from UCSC Kent Utility (https:// genome. ucsc. edu/ cgi- bin/ hgLif tOver) and 
the lift-over synteny chain files from UCSC Genome Browser were used.

Genomic element annotation

Genomic element annotation was done using ANNOVAR (http:// annov ar. openb ioinf 
ormat ics. org/) and bedtools (https:// bedto ols. readt hedocs. io), where applicable. Differ-
ences on any class of genomic element were computed using Fisher’s exact test.

Single‑cell RNA data preprocessing and cell clustering

Loompy-Kallisto [147] was used for mapping the RNA data for gene expression anal-
ysis. Loom files were read in R by hdf5r (https:// cran.r- proje ct. org/ web/ packa ges/ 
hdf5r/ index. html) and preprocessed with Seurat 3.2.2 [61]. Quality control was done 
for every single sample individually to filter against gene counts, UMI counts, total 
reads, and mitochondrial reads. Generally, cells with > 10% mitochondrial reads, or 
with UMI < 600 or > 5000, or with gene counts > 5000 were filtered prior to subsequent 
analysis. Such quality control process might iterate at every subsequent step to ensure 
the stringency of analysis. Individual samples were processed through the Seurat pipe-
line. Data firstly passed DoubletFinder (2.0.3) [148] with standard parameters to filter 
against potential doublets. The filtered data were then normalized (Log Normalization 
by Seurat::NormalizeData), and top 2000 variable genes were identified. Ribosomal pro-
teins, heat shock proteins, and chaperones were intentionally removed from the variable 
gene list because of the highly inconsistent nature of their behaviors between different 
tissue types. Gene expression profile were then scaled and reduced by PCA using Seurat. 
Generally, ≥ 30 PCA components were included in subsequent steps. FindClusters func-
tion were initially performed using a high resolution then gradually lowered to ensure 
the final clusters are less than PC components. SingleR [149] annotation with human 
reference and conventional markers were used to initially categorize the cell clusters. 
Differentially expressed (DE) genes were identified with Seurat FindAllMarkers func-
tion with Wilcoxon test for the cell clusters. Comparison of the found DE genes with 
conventional markers was performed to ensure that clusters contain relatively pure cell 
population. Cell type-annotated cells were then separated into different subsets based on 
their types. Detailed cell types were classified manually according to known canonical 
markers and comparison with reference single-cell datasets. In this study, trophoblasts, 
endothelial cells, fibroblasts, CD8 T cells, CD4 T cells, NK cells, B cells, and myeloid 
cells were considered: “pools” for subsequent analysis. After preprocessing, similar type 
of cells from different samples were merged and re-analyzed. Quality control, doublet 

https://github.com/caleblareau/easyLift
https://genome.ucsc.edu/cgi-bin/hgLiftOver
http://annovar.openbioinformatics.org/
http://annovar.openbioinformatics.org/
https://bedtools.readthedocs.io
https://cran.r-project.org/web/packages/hdf5r/index.html
https://cran.r-project.org/web/packages/hdf5r/index.html
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identification, dimensionality reduction, cluster identification, differentially expressed 
gene identification, and cell type identification were iteratively performed on these 
“pure” sets of cells. In such setting, cell type composition between samples were rela-
tively homogeneous and usually it is unnecessary to perform data integration. When 
sample-driven variation is evident or in cases when dataset contains samples collecting 
from different sources, to control against technical variations, batch effect removal was 
performed using Harmony [60] with (vars.to.regress = ‘source’) option during data scal-
ing. Contaminant cells which mis-segregated into large pools were identified and put 
back into the unprocessed pool. Iterative processing of cells was done semi-automati-
cally until all cells were processed.

Cell cycle scoring

Single-cell RNA cell cycle gene set activity measurement and cell cycle classification 
was done with CellCycleScore function in Seurat [61] using the `cc.gene.2019` dataset 
as source of G2/M and S phase gene sets. For visualization, G2M.score and S.score of a 
single cell were added together to suggest the relative “actively proliferating” probability.

Developmental lineage analysis

Diffusion map of single-cell RNA expression data was computed with destiny [71] (ver-
sion: 3.0.1). RNA velocity analysis of single-cell RNA sequencing data was performed 
with scVelo [66] using Reticulate [150] in R (3.6.2) with Python3. With RNA velocity 
defined the root cluster, slingshot was performed on diffusion maps to produce mini-
mally spanning tree lineages.

Regulatory network inference with cisTarget

Velocity genes determined in RNA velocity analysis were categorized into co-regulatory 
modules by non-negative matrix factorization and transcriptional binding sites (TFBS) 
were extracted by RcisTarget [151] with the human GRCh38 -500 bp ~  + 100 bp data-
base downloaded from cisTopic [152] (hg38_refseq-r80_500bp_up_and_100bp_down_
tss.mc9nr.feather). After extraction, high-confidence co-regulator TF of regulons with 
NES > 3.0 were extracted from the data. Visualization of co-regulated transcription net-
work is performed with visNetwork (https:// cran.r- proje ct. org/ packa ge= visNe twork).

Differentiation potential assessment

Cellular differentiation potential was assessed by CytoTRACE (version: 0.1.0) [68]. 
Briefly, RNA expression matrix of single cells is extracted from Seurat object, with all 
transcripts regardless of their in-assay-variability. CytoTRACE analysis was performed 
on this matrix without downsampling. Per-cluster median CytoTRACE score was used 
as an index for the differentiation state of each cell cluster.

Differential expression in scRNA dataset

Differential expression (Additional file 7: Table S6) between any two sets of single cells 
were computed with FindAllMarkers function in Seurat with Wilcoxon test as default 
statistical method. The Log2FC threshold was set to be 0 and minimally expressed per-
centile was set to 0.1 (10%). Statistically, differentially expressed gene were determined 

https://cran.r-project.org/package=visNetwork
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from the resulting table using adjusted P-value (Berfernorri method) < 0.05 and 
abs(Log2FC) > 0.5 as threshold.

Define maternal or fetal origin of placental cells

Placental myeloid, endothelial fibroblast/stromal cells from both maternal and fetal ori-
gins. Maternal- or fetal-specific marker gene sets in each cell type were calculated by 
FindAllMarkers based on scRNA data of Vento-Tormo et  al. [55]. Significant marker 
genes were picked by the following criteria: (1) p_adj_val < 0.001; (2) avg_logFC > 1; (3) 
abs(pct.1-pct.2) > 0.3 between the annotated (WGS SNV based) fetal and maternal cells, 
which means the difference of cell fraction that positively expressing a certain gene 
between the given cluster and all other clusters is at least 30%. For example, if 60% of 
single cells in a cluster X expressed gene Y, compared to only 20% of single cells not in 
cluster X expressed gene Y, then the abs(pct.1—pct.2) is 0.4. This is followed by gene set 
activity measurement in single cells using Seurat::AddModuleScore. In-house sequenced 
single cells of each cell type are classified as maternal or fetal cells according to the gene 
set activities mentioned above.

Single‑cell chromatin accessibility data analysis

Single-cell ATAC (chromatin accessibility, scATAC) raw reads were mapped with cell-
ranger-atac [153]. The mapped fragment files were then processed by ArchR [154] (ver-
sion:1.0.1). Quality control, doublet identification, LSI-based dimensionality reduction, 
clustering, gene expression inference, peakset identification, and marker peak finding 
were all performed in ArchR. Batch effect removal was not involved in this analysis. 
Basically, cells from all samples were pooled in the initial analysis, manually annotated 
with known markers, and separated into different subsets. The subset data were then 
subjected to scRNA integration in ArchR using Seurat CCA algorithm, with constrains 
for integration on large pools of cell type. Peaks were called for each single-cell dataset 
using MACS2. Chromatin accessibility on given genomic regions was also calculated in 
ArchR for single-cell chromatin accessibility differential analysis. Transcription factor 
footprinting (activity measurement) was done in ArchR with chromVAR. Co-accessible 
regions were calculated with ‘addCoAccessibility’ (ArchR) (maxDist = 1000000) and fil-
tered with correlation > 0.1.

Extraction of cell‑specific reads for SNV analysis

The 10 × Genomics cellranger (4.0) pipeline was used for mapping the scRNA for SNV 
analysis. The scATAC data were mapped as described above. Barcodes of defined scRNA 
or scATAC cell groups were firstly curated from Seurat object. BAM files was then pro-
cessed by Rsamtools and reads of given specific cell barcodes were fetched. SNV were 
analyzed using samtools mpileup and visualized using IGV.

Definition of VLP cargo genes

Putative PEG10 cargo genes were defined as follows: (1) abs(LogFC) > 0.5 between PE 
PAPPA2 + endothelial cells compared to control PAPPA2-counterparts, or adjusted 
P-value < 0.01; 2. Completely inaccessible chromatin status in PE and control endothe-
lial cells. The PE-specific PEG10 cargo genes were defined as follows: (1) LogFC > 0.5 in 
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PE PAPPA2 + endothelial cells compared to control PAPPA2-counterparts, or adjusted 
P-value < 0.01; (2) LogFC > 0.5 in PE trophoblast cells compared to control, or adjusted 
P-value < 0.01; 3. Accessible chromatin peaks in trophoblast cells; (4) Completely inac-
cessible chromatin status in PE and control endothelial cells. For each putative cargo 
gene, manual visual inspection of scATAC tracks were performed to confirm the chro-
matin accessibility state in trophoblast and endothelial cells (Additional file 8: Table S7).

Sequence motif in cargo UTR 

5′ and 3′ UTR of all potential transcripts from cargo gene loci were extracted from ref-
erence genome (R package org.Hs.eg.db, version: 3.6.2). Motif finding and visualization 
was done with R package rGADEM. Motif PWM were generated with R package TFB-
Stools and similarity was calculated using Pearson’s method. To evaluate statistical sig-
nificance, background motifs were pulled from JASPAR (vertebrate non-redundant core 
motifs) or ORegAnno, and similarities between the background motifs and the found 
UTR motifs were calculated. Z-score deviation from the background distribution was 
then computed with scale function in R.

Bulk ATAC, Cut‑and‑Run, ChIP, and CutAndTag sequencing data preprocessing

Raw paired-end open chromatin tagmentation (ATAC), Cut-and-Run, ChIP, or CutAnd-
Tag sequencing data were mapped to human reference genome GRCh38 (Cut-and-Tag) or 
GRCh37 (Cut-and-Run, ChIP, and ATAC) using Bowtie2 (-k 10 --very-sensitive -X 2000) 
(https:// github. com/ BenLa ngmead/ bowti e2). All unmapped reads, non-uniquely mapped 
reads, reads with low mapping quality (MAPQ < 20), and PCR duplicates were removed. 
For CutAndTag sequencing libraries, data were used as is, because all CutAndTag libraries 
showed excellent concordance to reference peak sets in Encode library. As bulk placenta 
tissue ATAC-seq suffers greatly from cell debris containing free-floating cell-free DNA, 
we further filtered the libraries for quality control. The in-house ATAC-seq data were 
quality-controlled by assessing insertion size (using an in-house R script) and TSS enrich-
ment (using an in-house R script with GenomicRanges package (https:// github. com/ Bioco 
nduct or/ Genom icRan ges) measuring the depth ratio at the promoter region (refFlat anno-
tation from UCSC Genome Browser) (0 bp of TSS vs. 1kbp + / − of TSS). A QC-passed 
ATAC-seq library must have TSS enrichment of 6, mapped deduplicated sequencing frag-
ments ≥ 20 M PE reads, PCB1 > 0.9, PCB2 > 3 (https:// www. encod eproj ect. org/ pipel ines). 
Enrichment peaks were determined by intersecting peaks found from MACS2 callpeak (-f 
BAMPE, https:// github. com/ taoliu/ MACS) and Genrich (-r -m 1 -j; for ATAC only; and 
standard parameter for CutAndTag) (https:// github. com/ jsh58/ Genri ch). Further qual-
ity control of ATAC-seq libraries including read length, V-plot, and TSS enrichment were 
done with custom R script and deeptools (https:// github. com/ deept ools/ deepT ools). Relia-
ble peaks were identified with IDR (https:// www. encod eproj ect. org/ softw are/ idr). Reliable 
ATAC peaks from different set of data were converged with 1 bp minimum overlap and 
extended to the largest width of overlapping peaks. Joining these operation results in a set 
of non-overlapping, varied-width peaks across the genome encompassing all reliable open 
chromatin region.

https://github.com/BenLangmead/bowtie2
https://github.com/Bioconductor/GenomicRanges
https://github.com/Bioconductor/GenomicRanges
https://www.encodeproject.org/pipelines
https://github.com/taoliu/MACS
https://github.com/jsh58/Genrich
https://github.com/deeptools/deepTools
https://www.encodeproject.org/software/idr
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Correlation of bulk and single‑cell ATAC‑seq datasets

Coverage (RPKM) of ATAC-seq on IDR peaks were calculated for each sample, and 
Pearson correlation coefficient were calculated for each pair of samples in R (3.6.2).

Measurement of difference of bulk ATAC‑seq peaks

Read coverage of sequencing library were collected over the repeatable ATAC enrich-
ment peak mentioned above with Sambamba. Differential enrichment was performed 
with DESeq2 (https:// github. com/ mikel ove/ DESeq2) using standard parameters. For 
samples with few replicates, we adapted a general linear model approach for estimat-
ing difference following the method mentioned in Reilly et al. [155]. Differential ATAC 
peaks between preeclampsia and normal placenta are summarized in Additional file 5: 
Table S4.

Motif finding and transcription factor footprint analysis in bulk ATAC‑seq

Transcription factor binding motifs were collected from ReMap. Motifs were extracted 
using HOMER package (http:// homer. ucsd. edu/ homer/). Raw ATAC-seq data were pre-
processed using RGT-Hint (www. regul atory- genom ics. org/ hint) package with standard 
parameter (rgt-hint footprinting --atac-seq --paired-end) and matched to motifs (rgt-
motifanalysis matching --organism = hg19). Differential transcription factor footprint 
was analyzed by Hint (rgt-hint differential --organism = hg19 --bc) on three independent 
pairs of biological replicates between preeclampsia and non-preeclampsia placenta.

Histone modification analysis

Histone modification peaks were identified by MACS2 using following parameters: 
H3K4me3/H3K4me1/H3K27ac: -g hs -nomodel -nolambda; H3K27me3: -g hs --broad 
--broad-cutoff 0.05 -nomodel -nolambda. Weak (summed RPKM < 20) or irreproducible 
peaks were removed for further analysis. Histone modification peaks overlapping known 
ATAC enrichment peak were used for further analysis. Read coverage of histone modi-
fication sequencing library were collected over the repeatable ATAC-and-histone-mod-
ification enrichment peak mentioned above with Sambamba, and normalized to RPKM 
(reads per kilo million for library), and Z-normalized.

Broad H3K27me3 regions were called by macs2 (-f BAMPE -g hs -q 0.01 --broad 
--broad-cutoff 0.1 --nolambda --SPMR --nomodel -B). The called regions were merged 
to neighboring regions within + / − 5  kb to produce H3K27me3 domains. H3K27me3 
CUT&Tag RPKM on each domain were computed. Mean and standard deviation of 
H3K27me3 RPKM were calculated for each region for PE and control samples, respec-
tively. Differentially modified region were called as abs(mean(PE)-mean(control))/
(std(PE) + std(control)) > 2. Enrichment of EZH2-bound regions for H3K27me3 gain or 
loss in PE were done with regionR::permutationTest. Overall profile of H3K27me3 on 
EZH2-bound regions was computed by deepTools.

DNA methylation data processing

Raw bisulfite-converted DNA methylation sequencing data, either downloaded 
from NCBI SRA or directly from in-house sequencing, were processed using fastp 
[156] (--trim-front2 20 -w 20) (https:// github. com/ OpenG ene/ fastp) and mapped to 

https://github.com/mikelove/DESeq2
http://homer.ucsd.edu/homer/
http://www.regulatory-genomics.org/hint
https://github.com/OpenGene/fastp


Page 35 of 46Gong et al. Genome Biology          (2024) 25:117  

GRCh37 + decoy reference genome using BWA-Meth (https:// github. com/ brentp/ bwa- 
meth) using standard parameters. Mapped data were deduplicated and sorted using 
Sambamba (https:// github. com/ biod/ samba mba) and Samblaster (https:// github. com/ 
Grego ryFau st/ sambl aster). CpG methylation levels were extracted using Pile-O-Meth 
(https:// github. com/ dprya n79/ Methy lDack el) toolkit. For all libraries, conversion rate 
was quality-controlled by CHH methylation level > 99%. Basic statistics of in-house 
sequencing library were further quality-controlled by on-target rate and on-target cov-
erage with bedtools (https:// github. com/ arq5x/ bedto ols), and duplication rate and map-
ping rate with Sambamba.

For mouse data of extraembryonic tissue (ExE) methylation [50], the sequencing reads 
were similarly preprocessed and mapped to mm9 reference. ExE-specific de novo meth-
ylation region from Smith et al. [50] were directly used. To compare methylation level 
on human homologous regions, these mouse methylation regions were lifted-over from 
mm9 to GRCh37.

For Chimpanzee data of sperm methylation, the processed CpG methylation level from 
Molaro et al. [157] was directly used, with lift-over from hg18 and pantro2 to GRCh37.

Differential methylation analysis

CpG methylation level (beta: defined as reads of C nucleotide over total read coverage 
on a single C or G base on CpG loci) was measured for each CpG loci across the genome 
as mentioned above using Pile-O-Meth. For each locus, beta from preeclampsia or non-
preeclampsia (including normal, gestational hypertension, and gestational diabetes) 
pregnant female were summarized in R (3.6.2) using an in-house script. Differentially 
methylated loci (DML) were defined as follows: (1) P < 0.01 for t-test between preec-
lampsia- and non-preeclampsia individuals; (2) beta difference between preeclampsia 
and non-preeclampsia individuals > 0.1.

Differentially methylated region (DMR) analysis

Initial DMR candidate were made by merging within-100 bp-apart DML. The average 
beta of each initial DMR were calculated as mean beta of all CpG encompassed in the 
DMR. This average beta was subjected to t-test, and P < 0.01 regions were selected as 
candidate “seed” DMR. Segments of methylation difference level were computed using 
a circular binary segmentation approach on beta difference between preeclampsia and 
non-preeclampsia placenta with DNAcopy (https:// github. com/ veses han/ DNAco py). 
K-means clustering was performed using R (3.6.2) on the methylation beta difference on 
each segment, and clusters of segments fully encompassed candidate “seed” DMR were 
selected as true DMR candidate (Additional file 6: Table S5).

Pseudotime analysis of methylation data

Single-cell or bulk methylation sequencing (bisulfite sequencing: WGBS, GSE81233 
[42, 158]) data and metadata were collected from NCBI SRA. In-house data were 
described as mentioned before. Data mapping was done with Monocle3 (https:// 
github. com/ cole- trapn ell- lab/ monoc le3) with standard practices, with the mean beta 
value as “expression value.” In this and the following combined ATAC-seq analysis, we 
chose Monocle3 over other tools because of its simplicity in processing large number 

https://github.com/brentp/bwa-meth
https://github.com/brentp/bwa-meth
https://github.com/biod/sambamba
https://github.com/GregoryFaust/samblaster
https://github.com/GregoryFaust/samblaster
https://github.com/dpryan79/MethylDackel
https://github.com/arq5x/bedtools
https://github.com/veseshan/DNAcopy
https://github.com/cole-trapnell-lab/monocle3
https://github.com/cole-trapnell-lab/monocle3


Page 36 of 46Gong et al. Genome Biology          (2024) 25:117 

of individually sequenced scATAC/scWGBS libraries and to combine them together 
with bulk sequencing data. Dispersion was estimated with negative binomial model. 
Mean beta values from PE-hypermethylated LTR12C regions and PE-hypomethylated 
de novo methylated loci in extraembryonic tissue are used for clustering and pseu-
dotime analysis. Data were preprocessed using 10 dimensions with UMAP. To clus-
ter samples from different techniques, we used “align_cds” function from Monocle3 
using mutual nearest neighbour alignment method [159] and performed pseudotime 
trajectory analysis on these aligned data.

Pseudotime analysis of ATAC‑seq data

Single-cell or bulk ATAC sequencing data (SRP163205 [45] and GSE101571 [76]) 
and metadata were collected from NCBI SRA. In-house data were described as men-
tioned before. The overall processing was similar to pseudotime analysis of methyla-
tion data mentioned above, with the only difference that ATAC-seq RPKM from all 
DMR regions were used as “expression level” in the analysis.

Overlapping region analysis

DMR and ATAC-seq peak regions were overlapped with known ultraconserved non-
coding elements (UCNE) [79], human-accelerated regions (HAR) [78], and placen-
tal animal-specific accelerated regions (PAR) [77] and statistical significance of set 
enrichment were calculated with Fisher’s exact test in R (3.6.2). For DMR region over-
lapping with known imprinted genes, imprinted gene list is downloaded from https:// 
www. genei mprint. com/ and only experimentally validated imprinted genes were 
used. Permutation-based overlap size statistics is performed by regioneR (v1.28.0). 
Statistics of DMR region overlapping with all known chromVAR [80] region annota-
tion sets is performed by LOLA (v1.26.0).

Sequencing of a paternally derived PEG10 allele

The paternally derived PEG10 allele chr7:94665871 T > A was initially discovered by 
comparing the single-cell RNA-seq data on fetal and maternal faces of placenta of a 
PE female, 2005139. Presence of the allele in placental trophoblast was confirmed by 
scATAC SNV analysis. However, the maternal cells have no scATAC reads covering 
on this region, probably because of no expression of PEG10 in the maternal cells. Oral 
swabs of the mother (2005139), father (2105466), and progeny (2105342, after birth) 
were taken and Sanger-sequenced using primers 5′CAC ATC CTC TCT GAA ACG 
GCT3′ and 5′CCT TTC CAC ACT GCA CCG AT3′. Primer validity was confirmed 
with in-house known heterozygous carrier and homozygous wild-type controls of the 
same allele. Low-pass WGS (LWGS) with standard double-stranded library prepa-
ration assay using in-house adaptors were also used to confirm haplotype transmis-
sion of the T allele in progeny was from mother. To do this, LWGS data were mapped 
using bwa-mem and SNV were analyzed using sentieon DNAscope. Haplotype analy-
sis was done with Eagle [160].

https://www.geneimprint.com/
https://www.geneimprint.com/
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RNA velocity in arterial and trophoblast cells

RNA dynamical velocity analysis of single-cell 3′ RNA sequencing data, including infer-
ring dynamical streamline, computing dynamic genes, latent time, and the probability 
of root cell and terminal cell, was performed with scVelo [66] using Reticulate [150] in R 
(3.6.2) with Python 3 and following standard protocol. PE and control trophoblast were 
performed RNA velocity separately, while PE and control arterial cells were performed 
as a whole.

Association of PE transcriptome with single‑cell RNA profiles by Scissor

Raw data of bulk placenta RNA-seq was downloaded from GSE148241 [63, 64] and 
mapped by STAR [161] to give read count matrix covering genes. The parameters used 
in mapping and quantification were as follows: alignment was performed with STAR 
(version 2.5.3a). STAR reference genome was built with ’--runMode genomeGenerate 
--runThreadN 16 --genomeDir b37/STAR-genome --genomeFastaFiles b37/human_
g1k_v37_decoy.fasta --sjdbGTFfile b37/Homo_sapiens.GRCh37.82.gtf --sjdbOver-
hang 100’. Alignment was performed with ’--chimSegmentMin 20 --chimScoreMin 5 
--quanMode GeneCounts --twopassMode Basic --outSAMtype BAM SortedByCoor-
dinate’. The quantified gene table was then passed to DEseq2 [162] and analyzed with 
the default parameter, only filtering for genes that are expressed. Expressed genes were 
filtered as ’count >  = 10’. Differentially expressed genes were defined as the pvalue (raw 
P-value) < 0.05 and absolute value of log2FoldChange (original log2 fold change) > 0.5.

The correlation between bulk PE placental transcriptome and scRNA placental cell 
was inferred by Scissor [62] (https:// sundu anchen. github. io/ Sciss or/ vigne ttes/ Sciss or_ 
Tutor ial. html), setting alpha = 0.05, family = “binomial”, cutoff = 0.2 (the default setting, 
Scissor selected cells should not exceed 20%). To avoid technical aberration caused by 
the imbalance of single-cell number in each cell type, scRNA placental cells were down-
sampled to 1000 cells per cell type. The Scissor-positive cell is defined as the average 
of correlations with all bulk samples is greater than 0 and the number of positive cor-
relations is larger than the number of negative correlations, and the Scissor-negative 
cell is defined as the average of correlations with all bulk samples is less than 0 and the 
number of negative correlations is larger than the number of positive correlations. By 
Scissor::reliability.test, the p-value of Scissor identified association is 0.000 and AUC is 
0.8738095.

Association of PE GWAS risk loci with single‑cell chromatin accessibility profiles 

by SCAVENGE

For GWAS risk loci association, PE-associated GWAS loci from [102] were downloaded 
from GWAS catalog. The raw genotyping dataset is not publicly available and fine-map-
ping of risk loci is impossible. To take an approximation of posterior probability of asso-
ciation, we then took the log of adjusted P-value of these significantly associated loci and 
normalized them to a max of 1. A peak-x-cell matrix is extracted from the full scATAC 
dataset from ArchR and subjected to LSI, MNN analysis in SCAVENGE [65]. Z-scores of 
loci enrichment in single cells, and cell–cell similarity-based propagation of the Z-score, 
were performed with SCAVENGE. The seed cells were selected as the top 0.1% Z-score 
enriched cells. Cells with top 25% TRS were considered positively associated with trait.

https://sunduanchen.github.io/Scissor/vignettes/Scissor_Tutorial.html
https://sunduanchen.github.io/Scissor/vignettes/Scissor_Tutorial.html
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Immunostaining

Placenta tissues (from 3 SPE, 3 control, and 1 SPE with sIUGR donors) were processed 
with standard paraffin section protocol to 10–30-µm-thick slides. Immunostain-
ing with primary antibodies, including Anti-PEG10 (1:1500, Abcam, ab215035), 
Anti-CK7 (1:1500, Abcam, ab9021) and Anti-CD31 (1:1000, Abcam, ab9498), and 
DAPI followed the instruction of Opal 7 color manual Kit (AKOYA Biosciences, 
NEL811001KT). Fluorescent slides were scanned using the PhenoImager (Akoya Bio-
sciences) using × 20 objective with the following exposure times: DAPI MSI, 0.38 ms; 
Cy5 MSI (PEG10), 17.33  ms; Cy3 (CD31), 15.76  ms; FITC (CK7), 6.58  ms. Images 
were generated using inForm software (Akoya Biosciences).

Automatic quantification of fluorescent staining intensity

Image exportation was done by inForm Tissue Finder software (version: 2.6). After 
exportation, the images were imported to Fiji to split into different channels. Chan-
nel-specific images were imported into R (version: 4.1.1). Masking was performed to 
get endothelial and trophoblast cells, by identifying the contour with CD31 or CK7 
staining. Quantification of PEG10 intensity inside of cell contours was subsequently 
performed. Masking and quantification were performed with computeFeatures.basic 
function from EBImage (package version 4.34.0).

Gene set enrichment analysis

Differentially expressed gene set between PE and control arterial cells were calcu-
lated by Seurat::FindAllMarkers, setting min.diff.pct = 0, logfc.threshold = 0, only.
pos = F. Gene set enrichment analysis was performed with fgsea [163] R package 
(version:1.18.0), with differentially expressed genes in PE and msigdbr [164] database 
(verrsion: 7.5.1, category = "H" or "C2"). Significant pathway is defined as pval (raw 
P-value) < 0.05 and the absolute value of NES > 1.

Similarity between AVM and PE arterial endothelial cells

The brain vessel single-cell RNA-seq dataset was downloaded from NCBI GEO 
(GSE187875 [89, 100]) and used with its original cell type and pathology annotation. 
Seurat (v4.0) were used to extract differentially expressed genes (DEG) specifically 
upregulated in AVM or control arterial endothelial cells. Seurat::AddModuleScore was 
used to calculate the gene set activity in fetal and maternal endothelial cells of placenta.

Correlation of cargo expression profile (Additional file 1: Fig. S29)

scRNA-upregulated, scATAC-silent genes were firstly selected as mentioned in “Defi-
nition of VLP cargo genes.” The mean expression levels of these genes in each cell 
type were extracted for PE and control samples, respectively. For each type of sample, 
Pearson’s correlation was performed between all cell types.

Mitosis aging rate determination using EpiTrace

Mitosis age of single cells in the scATAC dataset were inferred by EpiTrace [69] 
(https:// github. com/ Magpi ePKU/ EpiTr ace) following the standard protocol. Briefly, 

https://github.com/MagpiePKU/EpiTrace
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chromatin accessibility on age-associated DML sites were measured for each cell and 
the resulting score is subjected to iterative HMM smoothing-approximation. The 
deduced cell mitotic age is then divided by gestation week of the sample, to give a 
single-cell mitotic aging rate which approximates cell proliferation rate. Differences 
between mitotic aging rate were measured by Wilcox test.
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