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Background
Single-cell RNA sequencing (scRNA-seq) technologies are revolutionizing biomedi-
cal research by providing comprehensive characterizations of diverse cell populations 
in heterogeneous tissues [1, 2]. Unlike bulk RNA sequencing (RNA-seq), which meas-
ures the average expression profile of the whole tissue, scRNA-seq gives the expression 
profiles of thousands of individual cells in the tissue [3–7]. Based on this rich data, cell 
types may be discovered/determined in an unsupervised (e.g., [8, 9]), semi-supervised 
(e.g., [10–13]), or supervised manner (e.g., [14–16]). Despite the fast development, there 
are still limitations with scRNA-seq technologies. Notably, the cost for each scRNA-seq 
experiment is still high; as a result, most scRNA-seq data are from a single or a few bio-
logical samples/tissues. Very few datasets consist of large numbers of samples with dif-
ferent phenotypes, e.g., cancer vs. normal. This places great difficulties in determining 
how a cell type contributes to a phenotype based on single-cell studies (especially if the 
cell type is discovered in a completely unsupervised manner or if people have limited 
knowledge of this cell type). For example, without having single-cell data from multi-
ple cancer patients and multiple normal controls, it could be hard to computationally 
infer whether a cell type may promote or inhibit cancer development. However, such 
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association can be critical for cancer research [17], disease diagnosis [18], cell-type tar-
geted therapy development [19], etc.

Fortunately, this difficulty may be overcome by borrowing information from bulk 
RNA-seq data. Over the past decade, a considerable amount of bulk RNA-seq data from 
a large number of samples with different phenotypes have been accumulated and made 
available through databases like The Cancer Genome Atlas (TCGA) [20] and cBioPor-
tal [21, 22]. Data in these databases often contain comprehensive patient phenotype 
information, such as cancer status, cancer stages, survival status and time, and tumor 
metastasis. Combining single-cell data from a single or a few individuals and bulk data 
from a relatively large number of individuals regarding a particular phenotype can be a 
cost-effective way to determine how a cell type contributes to the phenotype. A recent 
method Scissor [23] took an essential step in this direction. It uses single-cell and bulk 
RNA-seq data with phenotype information to classify the cells into three discrete cate-
gories: Scissor+, Scissor−, and null cells, corresponding to cells that are positively asso-
ciated, negatively associated, and not associated with the phenotype.

Here, we present a method that takes another big step in this direction, which is called 
Single-Cell and bulk data-based Identifier for Phenotype Associated Cells or SCIPAC for 
short. SCIPAC enables quantitative estimation of the strength of association between 
each cell in a scRNA-seq data and a phenotype, with the help of bulk RNA-seq data with 
phenotype information. Moreover, SCIPAC also enables the estimation of the statisti-
cal significance of the association. That is, it gives a p-value for the association between 
each cell and the phenotype. Furthermore, SCIPAC enables the estimation of association 
between cells and an ordinal phenotype (e.g., different stages of cancer), which could be 
informative as people may not only be interested in the emergence/existence of cancer 
(cancer vs. healthy, a binary problem) but also in the progression of cancer (different 
stages of cancer, an ordinal problem).

To study the performance of SCIPAC, we first apply SCIPAC to simulated data under 
three schemes. SCIPAC shows high accuracy with low false positive rates. We further 
show the broad applicability of SCIPAC on real datasets across various diseases, includ-
ing prostate cancer, breast cancer, lung cancer, and muscular dystrophy. The association 
inferred by SCIPAC is highly informative. In real datasets, some cell types have definite 
and well-studied functions, while others are less well-understood: their functions may 
be disease-dependent or tissue-dependent, and they may contain different sub-types 
with distinct functions. In the former case, SCIPAC’s results agree with current biolog-
ical knowledge. In the latter case, SCIPAC’s discoveries inspire the generation of new 
hypotheses regarding the roles and functions of cells under different conditions.

Results
An overview of the SCIPAC algorithm

SCIPAC is a computational method that identifies cells in single-cell data that are asso-
ciated with a given phenotype. This phenotype can be binary (e.g., cancer vs. normal), 
ordinal (e.g., cancer stage), continuous (e.g., quantitative traits), or survival (i.e., survival 
time and status). SCIPAC uses input data consisting of three parts: single-cell RNA-seq 
data that measures the expression of p genes in m cells, bulk RNA-seq data that meas-
ures the expression of the same set of p genes in n samples/tissues, and the statuses/
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values of the phenotype of the n bulk samples/tissues. The output of SCIPAC is the 
strength and the p-value of the association between each cell and the phenotype.

SCIPAC proposes the following definition of “association” between a cell and a pheno-
type: A group of cells that are likely to play a similar role in the phenotype (such as cells 
of a specific cell type or sub-type, cells in a particular state, cells in a cluster, cells with 
similar expression profiles, or cells with similar functions) is considered to be positively/
negatively associated with a phenotype if an increase in their proportion within the tis-
sue likely indicates an increased/decreased probability of the phenotype’s presence. SCI-
PAC assigns the same association to all cells within such a group. Taking cancer as the 
phenotype as an example, if increasing the proportion of a cell type indicates a higher 
chance of having cancer (binary), having a higher cancer stage (ordinal), or a higher haz-
ard rate (survival), all cells in this cell type is positively associated with cancer.

The algorithm of SCIPAC follows the following four steps. First, the cells in the single-
cell data are grouped into clusters according to their expression profiles. The Louvain 
algorithm from the Seurat package [24, 25] is used as the default clustering algorithm, 
but the user may choose any clustering algorithm they prefer. Or if information of the 
cell types or other groupings of cells is available a priori, it may be supplied to SCIPAC as 
the cell clusters, and this clustering step can be skipped. In the second step, a regression 
model is learned from bulk gene expression data with the phenotype. Depending on the 
type of the phenotype, this model can be logistic regression, ordinary linear regression, 
proportional odds model, or Cox proportional hazards model. To achieve a higher pre-
diction power with less variance, by default, the elastic net (a blender of Lasso and ridge 
regression [26]) is used to fit the model. In the third step, SCIPAC computes the associa-
tion strength � between each cell cluster and the phenotype based on a mathematical 
formula that we derive. Finally, the p-values are computed. The association strength and 
its p-value between a cell cluster and the phenotype are given to all cells in the cluster.

SCIPAC requires minimum tuning. When the cell-type information is given in step 1, 
SCIPAC does not have any (hyper)parameter. Otherwise, the Louvain algorithm used 
in step 1 has a “resolution” parameter that controls the number of cell clusters: a larger 
resolution results in more clusters. SCIPAC inherits this parameter as its only parame-
ter. Since SCIPAC gives the same association strength and p-value to cells from the same 
cluster, this parameter also determines the resolution of results provided by SCIPAC. 
Thus, we still call it “resolution” in SCIPAC. Because of its meaning, we recommend set-
ting it so that the number of cell clusters given by the clustering algorithm is comparable 
to, or reasonably larger than, the number of cell types (or sub-types) in the data. We will 
see that the performance of SCIPAC is insensitive to this resolution parameter, and the 
default value 2.0 typically works well.

The details of the SCIPAC algorithm are given in the “Methods” section.

Performance in simulated data

We assess the performance of SCIPAC in simulated data under three different schemes. 
The first scheme is simple and consists of only three cell types. The second scheme is 
more complicated and consists of seven cell types, which better imitates actual scRNA-
seq data. In the third scheme, we simulate cells under different cell development stages 



Page 4 of 23Gan et al. Genome Biology          (2024) 25:119 

to test the performance of SCIPAC under an ordinal phenotype. Details of the simula-
tion are given in Additional file 1.

Simulation scheme I

Under this scheme, the single-cell data consists of three cell types: one is positively asso-
ciated with the phenotype, one is negatively associated, and the third is not associated 
(we call it “null”). Figure 1a gives the UMAP [27] plot of the three cell types, and Fig. 1b 
gives the true associations of these three cell types with the phenotype, with red, blue, 
and light gray denoting positive, negative, and null associations.

We apply SCIPAC to the simulated data. For the resolution parameter (see the “Meth-
ods” section), values 0.5, 1.0, and 1.5 give 3, 4, and 4 clusters, respectively, close to the 
actual number of cell types. They are good choices based on the guidance for choosing 

Fig. 1  UMAP visualization and numeric measures of the simulated data under scheme I. All the plots in 
a–e are scatterplots of the two dimensional single-cell data given by UMAP. The x and y axes represent the 
two dimensions, and their scales are not shown as their specific values are not directly relevant. Points in the 
plots represents single cells, and they are colored differently in each subplot to reflect different information/
results. a Cell types. b True associations. The association between cell types 1, 2, and 3 and the phenotype 
are positive, negative, and null, respectively. c Association strengths � given by SCIPAC under different 
resolutions. Red/blue represents the sign of � , and the shade gives the absolute value of � . Every cell is 
colored red or blue since no � is exactly zero. Below each subplot, Res stands for resolution, and K stands for 
the number of cell clusters given by this resolution. d p-values given by SCIPAC. Only cells with p-value < 0.05 
are colored red (positive association) or blue (negative association); others are colored white. e Results given 
by Scissor under different α values. Red, blue, and light gray stands for Scissor+, Scissor−, and background 
(i.e., null) cells. f F1 scores and g FSC for SCIPAC and Scissor under different parameter values. For SCIPAC, each 
bar is the value under a resolution/number of clusters. For Scissor, each bar is the value under an α
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this parameter. To show how SCIPAC behaves under parameter misspecification, we 
also set the resolution up to 4.0, which gives a whopping 61 clusters. Figure 1c and d give 
the association strengths � and the p-values given by four different resolutions (results 
under other resolutions are provided in Additional file 1: Fig. S1 and S2). In Fig. 1c, red 
and blue denote positive and negative associations, respectively, and the shade of the 
color represents the strength of the association, i.e., the absolute value of � . Every cell is 
colored blue or red, as none of � is exactly zero. In Fig. 1d, red and blue denote positive 
and negative associations that are statistically significant (p-value < 0.05 ). Cells whose 
associations are not statistically significant (p-value ≥ 0.05 ) are shown in white. To 
avoid confusion, it is worth repeating that cells that are colored in red/blue in Fig. 1c are 
shown in red/blue in Fig. 1d only if they are statistically significant; otherwise, they are 
colored white in Fig. 1d.

From Fig. 1c, d (as well as Additional file 1: Fig. S1 and S2), it is clear that the results of 
SCIPAC are highly consistent under different resolution values, including both the esti-
mated association strengths and the p-values. It is also clear that SCIPAC is highly accu-
rate: most truly associated cells are identified as significant, and most, if not all, truly null 
cells are identified as null.

As the first algorithm that quantitatively estimates the association strength and the 
first algorithm that gives the p-value of the association, SCIPAC does not have a real 
competitor. A previous algorithm, Scissor, is able to classify cells into three discrete cate-
gories according to their associations with the phenotype. So, we compare SCIPAC with 
Scissor in respect of the ability to differentiate positively associated, negatively associ-
ated, and null cells.

Running Scissor requires tuning a parameter called α , which is a number between 0 
and 1 that balances the amount of regularization for the smoothness and for the sparsity 
of the associations. The Scissor R package does not provide a default value for this α or 
a function to help select this value. The Scissor paper suggests the following criterion: 
“the number of Scissor-selected cells should not exceed a certain percentage of total cells 
(default 20%) in the single-cell data. In each experiment, a search on the above searching 
list is performed from the smallest to the largest until a value of α meets the above cri-
teria.” In practice, we have found that this criterion does not often work properly, as the 
truly associated cells may not compose 20% of all cells in actual data. Therefore, instead 
of setting α to any particular value, we set α values that span the whole range of α to see 
the best possible performance of Scissor.

The performance of Scissor in our simulation data under four different α values are 
shown in Fig. 1e, and results under more α values are shown in Additional file 1: Fig. S3. 
In the figures, red, blue, and light gray denote Scissor+, Scissor−, and null (called “back-
ground” in Scissor) cells, respectively. The results of Scissor have several characteristics 
different from SCIPAC. First, Scissor does not give the strength or statistical significance 
of the association, and thus the colors of the cells in the figures do not have different 
shades. Second, different α values give very different results. Greater α values generally 
give fewer Scissor+ and Scissor− cells, but there are additional complexities. One com-
plexity is that the Scissor+ (or Scissor−) cells under a greater α value are not a strict 
subset of Scissor+ (or Scissor−) cells under a smaller α value. For example, the num-
ber of truly negatively associated cells detected as Scissor− increases when α increases 
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from 0.01 to 0.30. Another complexity is that the direction of the association may flip 
as α increases. For example, most cells of cell type 2 are identified as Scissor+ under 
α = 0.01 , but many of them are identified as Scissor− under larger α values. Third, Scis-
sor does not achieve high power and low false-positive rate at the same time under any 
α . No matter what the α value is, there is only a small proportion of cells from cell type 2 
that are correctly identified as negatively associated, and there is always a non-negligible 
proportion of null cells (i.e., cells from cell type 3) that are incorrectly identified as posi-
tively or negatively associated. Fourth, Scissor+ and Scissor− cells can be close to each 
other in the figure, even under a large α value. This means that cells with nearly identical 
expression profiles are detected to be associated with the phenotype in opposite direc-
tions, which can place difficulties in interpreting the results.

SCIPAC overcomes the difficulties of Scissor and gives results that are more informa-
tive (quantitative strengths with p-values), more accurate (both high power and low 
false-positive rate), less sensitive to the tuning parameter, and easier to interpret (cells 
with similar expression typically have similar associations to the phenotype).

SCIPAC’s higher accuracy in differentiating positively associated, negatively associ-
ated, and null cells than Scissors can also be measured numerically using the F1 score 
and the fraction of sign correctness (FSC). F1, which is the harmonic mean of preci-
sion and recall, is a commonly used measure of calling accuracy. Note that precision and 
recall are only defined for two-class problems, which try to classify desired signals/dis-
coveries (so-called “positives”) against noises/trivial results (so-called “negatives”). Our 
case, on the other hand, is a three-class problem: positive association, negative associa-
tion, and null. To compute F1, we combine the positive and negative associations and 
treat them as “positives,” and treat null as “negatives.” This F1 score ignores the direction 
of the association; thus, it alone is not enough to describe the performance of an associ-
ation-detection algorithm. For example, an algorithm may have a perfect F1 score even 
if it incorrectly calls all negative associations positive. To measure an algorithm’s ability 
to determine the direction of the association, we propose a statistic called FSC, defined 
as the fraction of true discoveries that also have the correct direction of the association. 
The F1 score and FSC are numbers between 0 and 1, and higher values are preferred. A 
mathematical definition of these two measures is given in Additional file 1.

Figure 1f, g show the F1 score and FSC of SCIPAC and Scissor under different values 
of tuning parameters. The F1 score of Scissor is between 0.2 and 0.7 under different α’s. 
The FSC of Scissor increases from around 0.5 to nearly 1 as α increases, but Scissor does 
not achieve high F1 and FSC scores at the same time under any α . On the other hand, 
the F1 score of SCIPAC is close to perfection when the resolution parameter is properly 
set, and it is still above 0.90 even if the resolution parameter is set too large. The FSC 
of SCIPAC is always above 0.96 under different resolutions. That is, SCIPAC achieves 
high F1 and FSC scores simultaneously under a wide range of resolutions, representing a 
much higher accuracy than Scissor.

Simulation scheme II

This more complicated simulation scheme has seven cell types, which are shown in 
Fig.  2a. As shown in Fig.  2b, cell types 1 and 3 are negatively associated (colored 
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blue), 2 and 4 are positively associated (colored red), and 5, 6, and 7 are not associ-
ated (colored light gray).

The association strengths and p-values given by SCIPAC under the default resolu-
tion are illustrated in Fig. 2c, d, respectively. Results under several other resolutions 
are given in Additional file 1: Fig. S4 and S5. Again, we find that SCIPAC gives highly 
consistent results under different resolutions. SCIPAC successfully identifies three 
out of the four truly associated cell types. For the other truly associated cell type, cell 
type 1, SCIPAC correctly recognizes its association with the phenotype as negative, 
although the p-values are not significant enough. The F1 score is 0.85, and the FSC is 
greater than 0.99, as shown in Fig. 2f, g.

The results of Scissor under four different α values are given in Fig.  2e. (More 
shown in Additional file 1: Fig. S6.) Under this highly challenging simulation scheme, 
Scissor can only identify one out of four truly associated cell types. Its F1 score is 
below 0.4.

Fig. 2  UMAP visualization of the simulated data under a–g scheme II and h–k scheme III. a Cell types. b True 
associations. c, d Association strengths � and p-values given by SCIPAC under the default resolution. e Results 
given by Scissor under different α values. f F1 scores and g FSC for SCIPAC and Scissor under different 
parameter values. h Cell differentiation paths. The four paths have the same starting location, which is in 
the center, but different ending locations. This can be considered as a progenitor cell type differentiating 
into four specialized cell types. i Cell differentiation steps. These steps are used to create four stages, each 
containing 500 steps. Thus, this plot of differentiation steps can also be viewed as the plot of true association 
strengths. j, k Association strengths � and p-values given by SCIPAC under the default resolution



Page 8 of 23Gan et al. Genome Biology          (2024) 25:119 

Simulation scheme III

This simulation scheme is to assess the performance of SCIPAC for ordinal phenotypes. 
We simulate cells along four cell-differentiation paths with the same starting location 
but different ending locations, as shown in Fig. 2h. These cells can be considered as a 
progenitor cell population differentiating into four specialized cell types. In Fig. 2i, the 
“step” reflects their position in the differentiation path, with step 0 meaning the start and 
step 2000 meaning the end of the differentiation. Then, the “stage” is generated accord-
ing to the step: cells in steps 0 ∼ 500, 501∼1000, 1001∼1500, and 1501∼2000 are assigned 
to stages I, II, III, and IV, respectively. This stage is treated as the ordinal phenotype. 
Under this simulation scheme, Fig. 2i also gives the actual associations, and all cells are 
associated with the phenotype.

The results of SCIPAC under the default resolution are shown in Fig. 2j, k. Clearly, the 
associations SCIPAC identifies are highly consistent with the truth. Particularly, it suc-
cessfully identifies the cells in the center as early-stage cells and most cells at the end of 
branches as last-stage cells. The results of SCIPAC under other resolutions are given in 
Additional file 1: Fig. S7 and S8, which are highly consistent. Scissor does not work with 
ordinal phenotypes; thus, no results are reported here.

Performance in real data

We consider four real datasets: a prostate cancer dataset, a breast cancer dataset, a lung 
cancer dataset, and a muscular dystrophy dataset. The bulk RNA-seq data of the three 
cancer datasets are obtained from the TCGA database, and that of the muscular dys-
trophy dataset is obtained from a published paper [28]. A detailed description of these 
datasets is given in Additional file  1. We will use these datasets to assess the perfor-
mance of SCIPAC on different types of phenotypes. The cell type information (i.e., which 
cell belongs to which cell type) is available for the first three datasets, but we ignore this 
information so that we can make a fair comparison with Scissor, which cannot utilize 
this information.

Prostate cancer data with a binary phenotype

We use the single-cell expression of 8,700 cells from prostate-cancer tumors sequenced 
by [29]. The cell types of these cells are known and given in Fig. 3a. The bulk data com-
prises 550 TCGA-PRAD (prostate adenocarcinoma) samples with phenotype (cancer vs. 
normal) information. Here the phenotype is cancer, and it is binary: present or absent.

Results from SCIPAC with the default resolution are shown in Fig. 3b, c (results with 
other resolutions, given in Additional file 1: Fig. S9 and S10, are highly consistent with 
results here.) Compared with results from Scissor, shown in Fig. 3d, results from SCI-
PAC again show three advantages. First, results from SCIPAC are richer and more com-
prehensive. SCIPAC gives estimated associations and the corresponding p-values, and 
the estimated associations are quantitative (shown in Fig. 3b as different shades to the 
red or blue color) instead of discrete (shown in Fig. 3d as a uniform shade to the red, 
blue, or light gray color). Second, SCIPAC’s results can be easier to interpret as the red 
and blue colors are more block-wise instead of scattered. Third, unlike Scissor, which 
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produces multiple sets of results varying based on the parameter α —a parameter with-
out a default value or tuning guidance—typically, a single set of results from SCIPAC 
under its default settings suffices.

Comparing the results from our SCIPAC method with those from Scissor is non-triv-
ial, as the latter’s outcomes are scattered and include multiple sets. We propose the fol-
lowing solutions to summarize the inferred association of a known cell type with the 
phenotype using a specific method (Scissor under a specific α value, or SCIPAC with 
the default setting). We first calculate the proportion of cells in this cell type identified 
as Scissor+ (by Scissor at a specific α value) or as significantly positively associated (by 
SCIPAC), denoted by p+ . We also calculate the proportion of all cells, encompassing any 
cell type, which are identified as Scissor+ or significantly positively associated, serving 
as the average background strength, denoted by pa . Then, we compute the log odds ratio 
for this cell type to be positively associated with the phenotype compared to the back-
ground, represented as:

Fig. 3  UMAP visualization of the prostate cancer data, with a zoom-in view for the red-circled region (cell 
type MNP). a True cell types. BE, HE, and CE stand for basal, hillock, club epithelial cells, LE-KLK3 and LE-KLK4 
stand for luminal epithelial cells with high levels of kallikrein related peptidase 3 and 4, and MNP stands for 
mononuclear phagocytes. In the zoom-in view, the sub-types of MNP cells are given. b Association strengths 
� given by SCIPAC under the default resolution. The cyan-circled cells are B cells, which are estimated by 
SCIPAC as negatively associated with cancer but estimated by Scissor as Scissor+ or null. c p-values given by 
SCIPAC. The MNP cell type, which is red-circled in the plot, is estimated by SCIPAC to be strongly negatively 
associated with cancer but estimated by Scissor to be positively associated with cancer. d Results given by 
Scissor under different α values
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Similarly, the log odds ratio for the cell type to be negatively associated with the 
phenotype, ρ− , is computed in a parallel manner.

For SCIPAC, a cell type is summarized as positively associated with the phenotype 
if ρ+ ≥ 1 and ρ− < 1 and negatively associated if ρ− ≥ 1 and ρ+ < 1 . If neither condi-
tion is met, the association is inconclusive. For Scissor, we apply it under six different 
α values: 0.01, 0.05, 0.10, 0.15, 0.20, and 0.25. A cell type is summarized as positively 
associated with the phenotype if ρ+ ≥ 1 and ρ− < 1 in at least four of these α values 
and negatively associated if ρ− ≥ 1 and ρ+ < 1 in at least four α values. If these cri-
teria are not met, the association is deemed inconclusive. The above computation of 
log odds ratios and the determination of associations are performed only on cell types 
that each compose at least 1% of the cell population, to ensure adequate power.

For the prostate cancer data, the log odds ratios for each cell type using each 
method are presented in Tables S1 and S2. The final associations determined for each 
cell type are summarized in Table S3. In the last column of this table, we also indicate 
whether the conclusions drawn from SCIPAC and Scissor are consistent or not.

We find that SCIPAC’s results agree with Scissor on most cell types. However, there 
are three exceptions: mononuclear phagocytes (MNPs), B cells, and LE-KLK4.

MNPs are red-circled and zoomed in in each sub-figure of Fig. 3. Most cells in this 
cell type are colored red in Fig. 3d but colored dark blue in Fig. 3b. In other words, 
while Scissor determines that this cell type is Scissor+, SCIPAC makes the opposite 
inference. Moreover, SCIPAC is confident about its judgment by giving small p-val-
ues, as shown in Fig. 3c. To see which inference is closer to the biological fact is not 
easy, as biologically MNPs contain a number of sub-types that each have different 
functions [30, 31]. Fortunately, this cell population has been studied in detail in the 
original paper that generated this dataset [29], and the sub-type information of each 
cell is provided there: this MNP population contains six sub-types, which are den-
dritic cells (DC), M1 macrophages (Mac1), metallothionein-expressing macrophages 
(Mac-MT), M2 macrophages (Mac2), proliferating macrophages (Mac-cycling), and 
monocytes (Mono), as shown in the zoom-in view of Fig. 3a. Among these six sub-
types, DC, Mac1, and Mac-MT are believed to inhibit cancer development and can 
serve as targets in cancer immunotherapy [29]; they compose more than 60% of all 
MNP cells in this dataset. SCIPAC makes the correct inference on this majority of 
MNP cells. Another cell type, Mac2, is reported to promote tumor development [32], 
but it only composes less than 15% of the MNPs. How the other two cell types, Mac-
cycling and Mono, are associated with cancer is less studied. Overall, the results given 
by SCIPAC are more consistent with the current biological knowledge.

B cells are cyan-circled in Fig. 3b. B cells are generally believed to have anti-tumor 
activity by producing tumor-reactive antibodies and forming tertiary lymphoid struc-
tures [29, 33]. This means that B cells are likely to be negatively associated with can-
cer. SCIPAC successfully identifies this negative association, while Scissor fails.

LE-KLK4, a subtype of cancer cells, is thought to be positively associated with the 
tumor phenotype [29]. SCIPAC successfully identified this positive association, in 

ρ+ = log
p+/(1− p+)

pa/(1− pa)
.
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contrast to Scissor, which failed to do so (in the figure, a proportion of LE-KLK4 cells 
are identified as Scissor+, especially under the smallest α value; however, this propor-
tion is not significantly higher than the background Scissor+ level under the majority 
of α values).

In summary, across all three cell types, the results from SCIPAC appear to be more 
consistent with current biological knowledge. For more discussions regarding this data-
set, refer to Additional file 1.

Breast cancer data with an ordinal phenotype

The scRNA-seq data for breast cancer are from [34], and we use the 19,311 cells from 
the five HER2+ tumor tissues. The true cell types are shown in Fig. 4a. The bulk data 
include 1215 TCGA-BRCA samples with information on the cancer stage (I, II, III, or 
IV), which is treated as an ordinal phenotype.

Association strengths and p-values given by SCIPAC under the default resolution are 
shown in Fig. 4b, c. Results under other resolutions are given in Additional file 1: Fig. S11 
and S12, and again they are highly consistent with results under the default resolution. 
We do not present the results from Scissor, as Scissor does not take ordinal phenotypes.

In the SCIPAC results, cells that are most strongly and statistically significantly associ-
ated with the phenotype in the positive direction are the cancer-associated fibroblasts 
(CAFs). This finding agrees with the literature: CAFs contribute to therapy resistance 
and metastasis of cancer cells via the production of secreted factors and direct interac-
tion with cancer cells [35], and they are also active players in breast cancer initiation and 

Fig. 4  UMAP visualization of the breast cancer data. a True cell types. CAFs stand for cancer-associated 
fibroblasts, PB stands for plasmablasts and PVL stands for perivascular-like cells. b, c Association strengths 
� and p-values given by SCIPAC under the default resolution. Cyan-circled are a group of T cells that are 
estimated by SCIPAC to be most significantly associated with the cancer stage in the negative direction, and 
orange-circled are a group of T cells that are estimated by SCIPAC to be significantly positively associated 
with the cancer stage. d DE analysis of the cyan-circled T cells vs. all the other T cells. e DE analysis of the 
cyan-circled T cells vs. all the other cells. f Expression of CD8+ T cell marker genes in the cyan-circled 
cells and all the other cells. g DE analysis of the orange-circled T cells vs. all the other cells. h Expression of 
regulatory T cell marker genes in the orange-circled cells and all the other cells
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progression [36–39]. Another large group of cells identified as positively associated with 
the phenotype is the cancer epithelial cells. They are malignant cells in breast cancer tis-
sues and are thus expected to be associated with severe cancer stages.

Of the cells identified as negatively associated with severe cancer stages, a large por-
tion of T cells is the most noticeable. Biologically, T cells contain many sub-types, 
including CD4+, CD8+, regulatory T cells, and more, and their functions are diverse 
in the tumor microenvironment [40]. To explore SCIPAC’s discoveries, we compare T 
cells that are identified as most statistically significant, with p-values < 10−6 and circled 
in Fig. 4d, with the other T cells. Differential expression (DE) analysis (details about DE 
analysis and other analyses are given in Additional file 1) identifies seven genes upregu-
lated in these most significant T cells. Of these seven genes, at least five are supported 
by the literature: CCL4, XCL1, IFNG, and GZMB are associated with CD8+ T cell infil-
tration; they have been shown to have anti-tumor functions and are involved in cancer 
immunotherapy [41–43]. Also, IL2 has been shown to serve an important role in com-
bination therapies for autoimmunity and cancer [44]. We also perform an enrichment 
analysis [45], in which a pathway called Myc stands out with a p-value < 10−7 , much 
smaller than all other pathways. Myc is downregulated in the T cells that are identi-
fied as most negatively associated with cancer stage progress. This agrees with current 
biological knowledge about this pathway: Myc is known to contribute to malignant cell 
transformation and tumor metastasis [46–48].

On the above, we have compared T cells that are most significantly associated with 
cancer stages in the negative direction with the other T cells using DE and pathway anal-
ysis, and the results could suggest that these cells are tumor-infiltrated CD8+ T cells 
with tumor-inhibition functions. To check this hypothesis, we perform DE analysis of 
these cells against all other cells (i.e., the other T cells and all the other cell types). The 
DE genes are shown in Fig.  4e. It can be noted that CD8+ T cell marker genes such 
as CD8A, CD8B, and GZMK are upregulated. We further obtain CD8+ T cell marker 
genes from CellMarker [49] and check their expression, as illustrated in Fig. 4f. Marker 
genes CD8A, CD8B, CD3D, GZMK, and CD7 show significantly higher expression in 
these T cells. This again supports our hypothesis that these cells are tumor-infiltrated 
CD8+ T cells that have anti-tumor functions.

Interestingly, not all T cells are identified as negatively associated with severe cancer 
stages; a group of T cells is identified as positively associated, as circled in Fig. 4c. To 
explore the function of this group of T cells, we perform DE analysis of these T cells 
against the other T cells. The DE genes are shown in Fig.  4g. Based on the literature, 
six out of eight over-expressed genes are associated with cancer development. The 
high expression of NUSAP1 gene is associated with poor patient overall survival, and 
this gene also serves as a prognostic factor in breast cancer [50–52]. Gene MKI67 has 
been treated as a candidate prognostic prediction for cancer proliferation [53, 54]. The 
over-expression of RRM2 has been linked to higher proliferation and invasiveness of 
malignant cells [55, 56], and the upregulation of RRM2 in breast cancer suggests it to 
be a possible prognostic indicator [57–62]. The high expression of UBE2C gene always 
occurs in cancers with a high degree of malignancy, low differentiation, and high meta-
static tendency [63]. For gene TOP2A, it has been proposed that the HER2 amplification 
in HER2 breast cancers may be a direct result of the frequent co-amplification of TOP2A 
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[64–66], and there is a high correlation between the high expressions of TOP2A and the 
oncogene HER2 [67, 68]. Gene CENPF is a cell cycle-associated gene, and it has been 
identified as a marker of cell proliferation in breast cancers [69]. The over-expression of 
these genes strongly supports the correctness of the association identified by SCIPAC. 
To further validate this positive association, we perform DE analysis of these cells against 
all the other cells. We find that the top marker genes obtained from CellMarker [49] for 
the regulatory T cells, which are known to be immunosuppressive and promote can-
cer progression [70], are over-expressed with statistical significance, as shown in Fig. 4h. 
This finding again provides strong evidence that the positive association identified by 
SCIPAC for this group of T cells is correct.

Lung cancer data with survival information

The scRNA-seq data for lung cancer are from [71], and we use two lung adenocarcinoma 
(LUAD) patients’ data with 29,888 cells. The true cell types are shown in Fig.  5a. The 
bulk data consist of 576 TCGA-LUAD samples with survival status and time.

Association strengths and p-values given by SCIPAC are given in Fig.  5b, c (results 
under other resolutions are given in Additional file 1: Fig. S13 and S14). In Fig. 5c, most 

Fig. 5  UMAP visualization of a–d the lung cancer data and e–g the muscular dystrophy data. a True cell 
types. b, c Association strengths � and p-values given by SCIPAC under the default resolution. d Results 
given by Scissor under different α values. e, f Association strengths � and p-values given by SCIPAC under 
the default resolution. Circled are a group of cells that are identified by SCIPAC as significantly positively 
associated with the disease but identified by Scissor as null. g Results given by Scissor under different α 
values
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cells with statistically significant associations are CD4+ T cells or B cells. These associa-
tions are negative, meaning that the abundance of these cells is associated with a reduced 
death rate, i.e., longer survival time. This agrees with the literature: CD4+ T cells pri-
marily mediate anti-tumor immunity and are associated with favorable prognosis in lung 
cancer patients [72–74]; B cells also show anti-tumor functions in all stages of human 
lung cancer development and play an essential role in anti-tumor responses [75, 76].

The results by Scissor under different α values are shown in Fig. 5d. The highly scat-
tered Scissor+ and Scissor− cells make identifying and interpreting meaningful pheno-
type-associated cell groups difficult.

Muscular dystrophy data with a binary phenotype

This dataset contains cells from four facioscapulohumeral muscular dystrophy (FSHD) 
samples and two control samples [77]. We pool all the 7047 cells from these six sam-
ples together. The true cell types of these cells are unknown. The bulk data consists of 
27 FSHD patients and eight controls from [28]. Here the phenotype is FSHD, and it is 
binary: present or absent.

The results of SCIPAC with the default resolution are given in Fig. 5e, f. Results under 
other resolutions are highly similar (shown in Additional file 1: Fig. S15 and S16). For 
comparison, results given by Scissor under different α values are presented in Fig. 5g. 
The agreements between the results of SCIPAC and Scissor are clear. For example, both 
methods identify cells located at the top and lower left part of UMAP plots to be nega-
tively associated with FSHD, and cells located at the center and right parts of UMAP 
plots to be positively associated. However, the discrepancies in their results are also 
evident. The most pronounced one is a large group of cells (circled in Fig. 5f ) that are 
identified by SCIPAC as significantly positively associated but are completely ignored by 
Scissor. Checking into this group of cells, we find that over 90% (424 out of 469) come 
from the FSHD patients, and less than 10% come from the control samples. However, 
cells from FSHD patients only compose 73% (5133) of all the 7047 cells. This statistically 
significant (p-value < 10−15 , Fisher’s exact test) over-representation (odds ratio = 3.51) 
suggests that the positive association identified SCIPAC is likely to be correct.

Discussion
SCIPAC is computationally highly efficient. On an 8-core machine with 2.50 GHz CPU 
and 16 GB RAM, SCIPAC takes 7, 24, and 2 s to finish all the computation and give the 
estimated association strengths and p-values on the prostate cancer, lung cancer, and 
muscular dystrophy datasets, respectively. As a reference, Scissor takes 314, 539, and 171 
seconds, respectively.

SCIPAC works with various phenotype types, including binary, continuous, survival, 
and ordinal. It can easily accommodate other types by using a proper regression model 
with a systematic component in the form of Eq. 3 (see the “Methods” section). For exam-
ple, a Poisson or negative binomial log-linear model can be used if the phenotype is a 
count (i.e., non-negative integer).

In SCIPAC’s definition of association, a cell type is associated with the phenotype if 
increasing the proportion of this cell type leads to a change of probability of the phe-
notype occurring. The strength of association represents the extent of the increase or 
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decrease in this probability. In the case of binary-response, this change is measured by 
the log odds ratio. For example, if the association strength of cell type A is twice that of 
cell type B, increasing cell type A by a certain proportion leads to twice the amount of 
change in the log odds ratio of having the phenotype compared to increasing cell type 
B by the same proportion. The association strength under other types of phenotypes 
can be interpreted similarly, with the major difference lying in the measure of change in 
probability. For quantitative, ordinal, and survival outcomes, the difference in the quan-
titative outcome, log odds ratio of the right-tail probability, and log hazard ratio respec-
tively are used. Despite the differences in the exact form of the association strength 
under different types of phenotypes, the underlying concept remains the same: a larger 
(absolute value of ) association strength indicates that the same increase/decrease in a 
cell type leads to a larger change in the occurrence of the phenotype.

As SCIPAC utilizes both bulk RNA-seq data with phenotype and single-cell RNA-seq 
data, the estimated associations for the cells are influenced by the choice of the bulk 
data. Although different bulk data can yield varying estimations of the association for the 
same single cells, the estimated associations appear to be reasonably robust even when 
minor changes are made to the bulk data. See Additional file 1 for further discussions.

When using the Louvain algorithm in the Seurat package to cluster cells, SCIPAC’s 
default resolution is 2.0, larger than the default setting of Seurat. This allows for the 
identification of potential subtypes within the major cell type and enables the estimation 
of individual association strengths. Consequently, a more detailed and comprehensive 
description of the association between single cells and the phenotype can be obtained by 
SCIPAC.

When applying SCIPAC to real datasets, we made a deliberate choice to disregard the 
cell annotation provided by the original publications and instead relied on the inferred 
cell clusters produced by the Louvain algorithm. We made this decision for several 
reasons. Firstly, we aimed to ensure a fair comparison with Scissor, as it does not uti-
lize cell-type annotations. Secondly, the original annotation might not be sufficiently 
comprehensive or detailed. Presumed cell types could potentially encompass multiple 
subtypes, each of which may exhibit distinct associations with the phenotype under 
investigation. In such cases, employing the Louvain algorithm with a relatively high res-
olution, which is the default setting in SCIPAC, enables us to differentiate between these 
subtypes and allows SCIPAC to assign varying association strengths to each subtype.

SCIPAC fits the regression model using the elastic net, a machine-learning algorithm 
that maximizes a penalized version of the likelihood. The elastic net can be replaced by 
other penalized estimates of regression models, such as SCAD [78], without altering the 
rest of the SCIPAC algorithm. The combination of a regression model and a penalized 
estimation algorithm such as the elastic net has shown comparable or higher prediction 
power than other sophisticated methods such as random forests, boosting, or neural 
networks in numerous applications, especially for gene expression data [79]. However, 
there can still be datasets where other models have higher prediction power. It will be 
future work to incorporate these models into SCIPAC.

The use of metacells is becoming an efficient way to handle large single-cell datasets 
[80–83]. Conceptually, SCIPAC can incorporate metacells and their representatives as 
an alternative to its default setting of using cell clusters/types and their centroids. We 
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have explored this aspect using metacells provided by SEACells [81]. Details are given 
in Additional file 1. Our comparative analysis reveals that combining SCIPAC with SEA-
Cells results in significantly reduced performance compared to using SCIPAC directly 
on original single-cell data. The primary reason for this appears to be the subpar perfor-
mance of SEACells in cell grouping, especially when contrasted with the Louvain algo-
rithm. Given these findings, we do not suggest using metacells provided by SEACells for 
SCIPAC applications in the current stage.

Conclusions
SCIPAC is a novel algorithm for studying the associations between cells and phenotypes. 
Compared to the previous algorithm, SCIPAC gives a much more detailed and compre-
hensive description of the associations by enabling a quantitative estimation of the asso-
ciation strength and by providing a quality control—the p-value. Underlying SCIPAC are 
a general statistical model that accommodates virtually all types of phenotypes, includ-
ing ordinal (and potentially count) phenotypes that have never been considered before, 
and a concise and closed-form mathematical formula that quantifies the association, 
which minimizes the computational load. The mathematical conciseness also largely 
frees SCIPAC from parameter tuning. The only parameter (i.e., the resolution) barely 
changes the results given by SCIPAC. Overall, compared with its predecessor, SCIPAC 
represents a substantially more capable software by being much more informative, ver-
satile, robust, and user-friendly.

The improvement in accuracy is also remarkable. In simulated data, SCIPAC achieves 
high power and low false positives, which is evident from the UMAP plot, F1 score, and 
FSC score. In real data, SCIPAC gives results that are consistent with current biological 
knowledge for cell types whose functions are well understood. For cell types whose func-
tions are less studied or more multifaceted, SCIPAC gives support to certain biological 
hypotheses or helps identify/discover cell sub-types.

Methods
SCIPAC’s identification of cell-phenotype associations closely follows its definition of 
association: when increasing the fraction of a cell type increases (or decreases) the prob-
ability for a phenotype to be present, this cell type is positively (or negatively) associated 
with the phenotype.

The increase of the fraction of a cell type

For a bulk sample, let vector G ∈ R
p be its expression profile, that is, its expression on 

the p genes. Suppose there are K cell types in the tissue, and let gk be the representative 
expression of the k’th cell type. Usually, people assume that G can be decomposed by

where γk is the proportion of cell type k in the bulk tissue, with K
k=1 γk = 1 . This equa-

tion links the bulk and single-cell expression data.

(1)G =

K
∑

k=1

γkgk ,
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Now consider increasing cells from cell type k by �γ proportion of the original 
number of cells. Then, the new proportion of cell type k becomes γk+�γ

1+�γ
 , and the new 

proportion of cell type j  = k becomes γj
1+�γ

 (note that the new proportions of all cell 
types should still add up to 1). Thus, the bulk expression profile with the increase of 
cell type k becomes

Plugging Eq. 1, we get

Interestingly, this expression of G∗ does not include γ1, . . . , γK  . This means that 
there is no need actually to compute γ1, . . . , γK  in Eq.  1, which could otherwise be 
done using a cell-type-decomposition software, but an accurate and robust decompo-
sition is non-trivial [84–86]. See Additional file 1 for a more in-depth discussion on 
the connections of SCIPAC with decomposition/deconvolution.

The change in chance of a phenotype

In this section, we consider how the increase in the fraction of a cell type will change 
the chance for a binary phenotype such as cancer to occur. Other types of phenotypes 
will be considered in the next section.

Let π(G) be the chance of an individual with gene expression profile G for this phe-
notype to occur. We assume a logistic regression model to describe the relationship 
between π(G) and G:

here the left-hand side is the log odds of π(G) , β0 is the intercept, and β is a length-p vec-
tor of coefficients. In the section after the next, we will describe how we obtain β0 and β 
from the data.

When increasing cells from cell type k by �γ , G becomes G∗ in Eq. 3. Plugging Eq. 2, 
we get

We further take the difference between Eqs. 4 and 3 and get

The left-hand side of this equation is the log odds ratio (i.e., the change of log odds). 
On the right-hand side, �γ

1+�γ
 is an increasing function with respect to �γ , and 

G∗ =
γk +�γ

1+�γ
gk +

�

1≤j≤K ,j �=k

γj

1+�γ
g j =

1

1+�γ





K
�

j=1

γjg j +�γ gk



.

(2)G∗ =
1

1+�γ
(G +�γ gk).

(3)log

(

π(G)

1− π(G)

)

= β0 + βTG,

(4)log

(

π(G∗)

1− π(G∗)

)

= β0 + βT 1

1+�γ
(G +�γ gk).

(5)log

(

π(G∗)

1− π(G∗)

)

− log

(

π(G)

1− π(G)

)

=
�γ

1+�γ
βT (gk − G).
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βT (gk − G) is independent of �γ . This indicates that given any specific �γ , the log 
odds ratio under over-representation of cell type k is proportional to

�k describes the strength of the effect of increasing cell type k to a bulk sample with 
expression profile G . Given the presence of numerous bulk samples, employing multiple 
�k ’s could be cumbersome and obscure the overall effect of a particular cell type. To con-
cisely summarize the association of cell type k, we propose averaging their effects. The 
average effect on all bulk samples can be obtained by

where Ḡ is the average expression profile of all bulk samples.
�k gives an overall impression of how strong the effect is when cell type k over-repre-

sents to the probability for the phenotype to be present. Its sign represents the direction 
of the change: a positive value means an increase in probability, and a negative value 
means a decrease in probability. Its absolute value represents the strength of the effect. 
In SCIPAC, we call �k the association strength of cell type k and the phenotype.

Note that this derivation does not involve likelihood, although the computation of β 
does. Here, it serves more as a definitional approach.

Definition of the association strength for other types of phenotype

Our definition of �k relies on vector β . In the case of a binary phenotype, β are the coef-
ficients of a logistic regression that describes a linear relationship between the expres-
sion profile and the log odds of having the phenotype, as shown in Eq. 3. For other types 
of phenotype, β can be defined/computed similarly.

For a quantitative (i.e., continuous) phenotype, an ordinary linear regression can 
be used, and the left-hand side of Eq.  3 is changed to the quantitative value of the 
phenotype.

For a survival phenotype, a Cox proportional hazards model can be used, and the left-
hand side of Eq. 3 is changed to the log hazard ratio.

For an ordinal phenotype, we use a proportional odds model

where j ∈ {1, 2, ..., (J − 1)} and J is the number of ordinal levels. It should be noted that 
here we use the right-tail probability Pr(Yi ≥ j + 1|X) instead of the commonly used 
cumulative probability (left-tail probability) Pr(Yi ≤ j|X) . Such a change makes the inter-
pretation consistent with other types of phenotypes: in our model, a larger value on the 
right-hand side indicates a larger chance for Yi to have a higher level, which in turn guar-
antees that the sign of the association strength defined according to this β has the usual 
meaning: a positive �k value means a positive association with the phenotype-using the 
cancer stage as an example. A positive �k means the over-representation of cell type 
k increases the chance of a higher cancer stage. In contrast, using the commonly used 
cumulative probability leads to a counter-intuitive, reversed interpretation.

(6)�k = βT (gk − G).

(7)�k = βT (gk − Ḡ),

log
Pr(Yi ≥ j + 1|X)

1− Pr(Yi ≥ j + 1|X)
= β0,j + βTxi,
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Computation of the association strength in practice

In practice, β in Eq. 3 needs to be learned from the bulk data. By default, SCIPAC uses the 
elastic net, a popular and powerful penalized regression method:

In this model, l(β0,β) is a log-likelihood of the linear model (i.e., logistic regression for 
a binary phenotype, ordinary linear regression for a quantitative phenotype, Cox propor-
tional odds model for a survival phenotype, and proportional odds model for an ordinal 
phenotype). α is a number between 0 and 1, denoting a combination of ℓ1 and ℓ2 penalties, 
and � is the penalty strength. SCIPAC fixes α to be 0.4 (see Additional file 1 for discussions 
on this choice) and uses 10-fold cross-validation to decide � automatically. This way, they 
do not become hyperparameters.

In SCIPAC, the fitting and cross-validation of the elastic net are done by calling the ordi-
nalNet [87] R package for the ordinal phenotype and by calling the glmnet R package [88–
91] for other types of phenotypes.

The computation of the association strength, as defined by Eq. 7, does not only require 
β , but also gk and Ḡ . Ḡ is simply the average expression profile of all bulk samples. On the 
other hand, gk requires knowing the cell type of each cell. By default, SCIPAC does not 
assume this information to be given, and it uses the Louvain clustering implemented in the 
Seurat [24, 25] R package to infer it. This clustering algorithm has one tuning parameter 
called “resolution.” SCIPAC sets its default value as 2.0, and the user can use other values. 
With the inferred or given cell types, gk is computed as the centroid (i.e., the mean expres-
sion profile) of cells in cluster k.

Given β , Ḡ , and gk , the association strength can be computed using Eq. 7. Knowing the 
association strength for each cell type and the cell-type label for each cell, we also know 
the association strength for every single cell. In practice, we standardize the association 
strengths for all cells. That is, we compute the mean and standard deviation of the asso-
ciation strengths of all cells and use them to centralize and scale the association strength, 
respectively. We have found such standardization makes SCIPAC more robust to the pos-
sible unbalance in sample size of bulk data in different phenotype groups.

Computation of the p‑value

SCIPAC uses non-parametric bootstrap [92] to compute the standard deviation and hence 
the p-value of the association. Fifty bootstrap samples, which are believed to be enough to 
compute the standard error of most statistics [93], are generated for the bulk expression 
data, and each is used to compute (standardized) � values for all the cells. For cell i, let its 
original � values be �i , and the bootstrapped values be �(1)

i , . . . ,�
(50)
i  . A z-score is then 

computed using

min
β0,β

−
1

n
l(β0,β)+ �

{1− α

2
||β||22 + α||β||1

}

.

zi =
�i

standard deviation
(

�
(1)
i , . . . ,�

(50)
i

) ,
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and then the p-value is computed according to the cumulative distribution function of 
the standard Gaussian distribution. See Additional file 1 for more discussions on the cal-
culation of p-value.
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data are from the GEO under accession number GSE122873 [101]. The bulk RNA-seq data are obtained from the TCGA 
database via TCGAbiolinks (ver. 2.25.2) R package [102]. More details about the simulated and real scRNA-seq and bulk 
RNA-seq data can be found in the Additional file 1.
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