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Background
Single-cell RNA sequencing (scRNA–seq) technologies have unlocked unprecedented 
resolution to discover complex mechanisms of health and disease in human biology [1]. 
Droplet-based methods, which encapsulate aqueous cells into oil constituting a micro-
chamber for lysis and retrotranscription of the RNA of individual cells, have made sin-
gle-cell sequencing more accessible and dramatically increased the throughput of single 
cells from individual samples [2]. The cDNA produced in these reactions is uniquely 
barcoded for each droplet, such that the retrieval of these barcodes enables the asso-
ciation of sequencing readouts to individual cells. Despite considerable strides made 
in cellular profiling methods, the application of scRNA-seq to biomedical studies and 
clinical applications, which often require complex multi-sample and multi-condition 
experiments, has been limited by sample throughput, cost, and susceptibility to tech-
nical variability [2]. When samples cannot be acquired fresh or immediately processed 
after the acquisition, as may be the case for biobank specimens, fixation techniques that 
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Single‑cell multiplexing techniques (cell hashing and genetic multiplexing) combine 
multiple samples, optimizing sample processing and reducing costs. Cell hashing con‑
jugates antibody‑tags or chemical‑oligonucleotides to cell membranes, while genetic 
multiplexing allows to mix genetically diverse samples and relies on aggregation 
of RNA reads at known genomic coordinates. We develop hadge (hashing deconvo‑
lution combined with genotype information), a Nextflow pipeline that combines 12 
methods to perform both hashing‑ and genotype‑based deconvolution. We propose 
a joint deconvolution strategy combining best‑performing methods and demonstrate 
how this approach leads to the recovery of previously discarded cells in a nuclei hash‑
ing of fresh‑frozen brain tissue.
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allow to preserve the biological material and optimize single-cell and nuclei profiling via 
multiplexing are a viable option [3–6]. In recent years, methods have emerged that allow 
the pooling of single cells and nuclei from individual samples [7], often relying on mul-
tiplexing techniques [8]. These methods have found wide applicability [8] and are now 
routinely used to carry out population-scale studies with single-cell sequencing proto-
cols [9, 10].

To date, there are two major protocols to generate a mixture of cells from multi-sam-
ple studies: “cell hashing” and “genotype-based multiplexing.” Cell hashing is a sample 
processing technique that tags the membrane or nuclei of cells in individual cell-sus-
pension samples with unique oligonucleotide barcodes. One option is to stain the indi-
vidual samples with oligonucleotide-labeled antibodies that target proteins ubiquitously 
expressed on the cell or nucleus surface [11]. Another option is to chemically conjugate 
oligonucleotides directly to the membrane constituents, for example by hybridization of 
a lipid-modified oligonucleotide (LMO) to the hydrophobic cell membrane, a technique 
called “lipid tagging” [12], or by chemical ligation of the oligonucleotide to exposed 
N-Hydroxysuccinimide-reactive amines, a technique called “chemical barcoding” [11, 
13, 14]. After staining or tagging, cells undergo a washing or quenching process, allow-
ing for the safe combination of different samples into a single mixture in one tube. From 
this mixture, two separate sequencing libraries are created: one for single-cell RNA 
(scRNA) and one for hashing oligos (HTO). These libraries are independently sequenced 
to yield two distinct single-cell count matrices, corresponding respectively to scRNA 
and HTO data. To deconvolve the cell’s source sample, the HTO counts are processed 
to discover cell barcodes positive for at least one hashtag, using cell-hashing deconvo-
lution methods [11, 12, 15, 16]. Cell barcodes are classified into “Singlets,” if they are 
positive for one tag; “Doublets,” if positive for two or more; and “Negatives,” when only a 
low background-noise signal is detectable (Fig. 1A). Cell-tagging approaches suffer from 
constraints such as low starting cell numbers, as these methods require washing steps 
that may result in cell-number loss. Furthermore, different issues can impair the quality 
of a hashing experiment and therefore decrease the final number of uniquely identified 
cells. Antibodies or free oligonucleotides can persist in suspensions if an adequate num-
ber of washes is not performed, or can attach to debris from membrane lysis in fixed 
samples [15].

Genotype-based multiplexing allows the mixing of samples with unique genetic com-
position, where natural genetic variants serve as inherent cell barcodes [17]. Users can 
harness these genetic barcodes to determine the identity of each cell in the mixture. 

Fig. 1 Overview of donor deconvolution and the hadge pipeline. A Schematic example of the cellular 
components leveraged by single‑cell multiplexing experiments. Hashing cell counts and scRNAseq reads 
with SNP calling by cell are the input to the hadge deconvolution pipeline. B hadge implements 12 methods 
across two sub‑workflows of which seven are hashing‑based and five are genotype‑based deconvolution 
that can be run independently, in parallel or jointly, in rescue mode. In rescue mode, the pipeline offers 
the option to refine hashing results with genotype‑based deconvolution methods to rescue failed hashing 
experiments in the donor‑matching process. It compares the concordance in donor identification between 
hashing and genotype‑based methods and identifies the best pair of two strategies based on the calculated 
Phi score

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Provided a genotype reference, the scRNA reads are scanned for single nucleotide 
polymorphisms (SNPs) in the reference, and a table of SNP assignment to cells is pro-
duced to computationally infer the donors (Fig. 1A). Cell barcodes with a genetic com-
position matching one donor are called “Singlets,” cell-barcodes with a mixture of at 
least two donors genotypes are deemed “Doublets,” and cells where the read coverage 
is insufficient to identify their genetic composition are “Negatives.” One limitation of 
this approach is the need to rely on additional data to correctly assign the cell mixtures. 
Users can genotype the individual samples through SNP arrays or bulk RNA-seq fol-
lowed by variant calling and then aggregate the expression values at these genomic posi-
tions for deconvolution. The same process can be conducted without genotype of origin 
or “genotype-free,” by piling up the mixture of scRNA onto an unrelated genomic refer-
ence of genotypes such as that provided by the “1000 Genome Project.” However, this 
approach can only deconvolve the cell mixture in the form of anonymous donors and 
additional processing is needed to match them to the sample of origin.

The limitations of each of these protocols can be mitigated when combining demulti-
plexing approaches. Experiments, where the hashing libraries are of low quality, can be 
rescued and successfully demultiplexed using the natural genetic variation of their RNA 
libraries. The combination of hashing and genetic deconvolution methods represents 
a viable option for combinatorial experimental design and can result in increased cell 
recovery rate and calling accuracy [18]. Moreover, joint demultiplexing can be a cost-
effective deconvolution strategy as it further avoids having to produce sample-specific 
genotyping data in the form of SNP arrays or bulk sequencing methods for variant call-
ing [18]. To date, at least nine hashing and five genotype-based deconvolution methods 
have been developed, each with unique strengths and weaknesses [12, 15, 17, 19–22]. 
However, investigations on joint demultiplexing strategies have been limited to the com-
bination of two specific tools instead of computationally testing the best combination 
of demultiplexing methods, therefore neglecting the utility of other widely used tools 
[18]. Although single workflows for hashing-based deconvolution and genotype-based 
deconvolution exist [23, 24], no study has combined all the tools for both approaches 
in a single comprehensive and efficient pipeline, such that both hashing and genotype 
deconvolution pipelines can be run in parallel on multiple samples, providing a score to 
discover the best methods across the board, with the final goal of maximizing the num-
ber of rescued cells and increasing the confidence of deconvolution.

Therefore, there is a critical need for a unified pipeline that integrates the strengths 
of multiple donor deconvolution tools. Here we present the hadge (hashing deconvo-
lution combined with genetic information) pipeline. Our Nextflow-based pipeline [25] 
enables deconvolving samples of both hashing and genetic multiplexing experiments 
either independently or simultaneously. hadge allows for the automatic determination of 
the best combination of hashing and SNP-based donor deconvolution tools. Moreover, 
hadge provides a rescue mode to run both genetic and hashing approaches jointly to res-
cue problematic hashing experiments in cases where donors are genetically distinct. We 
demonstrate our pipeline using a single nuclei hashing experiment of fresh frozen mul-
tiple sclerosis (MS) brain tissue and show that joint deconvolution allows us to rescue 
high-quality cells that would have been otherwise discarded. Finally, we benchmark our 
pipeline with the state-of-the-art tools and a large-scale scRNA dataset [9].
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Results
The hadge pipeline

Hadge offers a user-friendly, zero-config solution for analyzing multiplexed single-cell 
data at scale (Fig.  1B). Our pipeline takes advantage of Nextflow’s cloud-computing 
capabilities, enabling efficient use of cloud resources to accelerate the analysis of large 
datasets. Furthermore, Nextflow’s built-in containerization functionality simplifies 
deployment, providing a more reliable and reproducible analysis environment. The 
hadge pipeline consists of 12 deconvolution tools, including five genetics-based tools 
(Demuxlet [17], Freemuxlet [26], Vireo [22], scSplit [20], and Souporcell [21]), seven 
hashing-based tools (HTODemux [27], Multiseq [12], HashedDrops [28], Demuxem 
[15], gmm-demux [29], BFF [24], and Hashsolo [30]), and one doublet-detection method 
(Solo [30]). All of these tools have been benchmarked in independent publications and 
are widely used by the scientific community [14, 23, 31, 32]. Furthermore, for methods 
that require additional preprocessing such as normalization of the HTO counts or vari-
ant calling, the hadge pipeline includes a preprocessing step before the genotype-based 
deconvolution algorithm is applied.

The hadge pipeline has three modes: “genetic,” “hashing,” and “rescue.” In the genetic 
or hashing mode, the pipeline runs either the genotype- or hashing-based deconvolu-
tion workflow allowing for choice of methods and customization of input parameters. 
Each of these pipelines can be run in parallel across multiple samples, reducing the time 
and effort required for deconvolution. Finally, in the rescue mode, hadge allows jointly 
deconvolving hashing experiments with genotype-based deconvolution tools, with 
the option to recover cells from failed hashing. Lacking prior individual genetic pro-
files that associate SNPs to explicit donors, genotype-based deconvolution tools assign 
cells to anonymous donors. Hadge de-anonymizes the donors by calculating the best 
match between a hashing and a genetic demultiplexing method. After the conversion 
of the cell deconvolution assignments into a binary matrix with rows representing cell 
barcodes and columns representing the assigned donors or hashtags, donor genotypes 
are matched with hashtags by measuring the concordance of two methods in assigning 
the droplets, computing pairwise Pearson correlation to determine the optimal match, 
hereby termed “Phi score” (see the “  Methods” section). hadge then generates a new 
assignment of the cells based on this optimal match between hashing and genotype-
based deconvolution to uncover the true donor identity of the cells effectively rescu-
ing cells from failed hashing with a valid genotyped-based deconvolution assignment. 
Finally, hadge outputs the results of the donor deconvolution for all combinations of 
methods and hyperparameters tested, both as a separate tabular format and as cell meta-
data in either Anndata [33] or MuData [34] objects, depending on the users’ choice.

Hashing‑based methods’ performance greatly varies with noisy HTO libraries

We applied the hadge pipeline to a hashing dataset of single nuclei sequencing col-
lected from post-mortem brain tissue from multiple sclerosis donors [35]. The hash-
ing count matrix of this dataset presented a high background noise from non-specific 
antibody binding, which originally resulted in a high number of doublets and negative 
cells (Fig. 2A, B). We ran both hashing and genetic deconvolution workflows to assess 
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the performance of the two types of approaches. We observed inconsistent hashtag 
counts (Fig. 2A, B and Additional file 1: Fig. S1). Specifically, hashtag 453 showed a 
high overall expression, while hashtags 454 and 455 were expressed in relatively low 
levels (Fig. 2A and Additional file 1: Fig. S1, S6). Due to the variable readout of the 
hashing oligos, the sample assignment of the hashing-based methods was not con-
sistent. The number of detected singlets varied greatly between different methods 
(Fig. 2C and Additional file 1: Fig. S1-2, S7). While Hashsolo classified almost every 
droplet as a singlet, HashedDrops detected only 32 singlets among 4048 non-empty 
droplets. Notably, DemuxEM and Multiseq exhibited nearly identical performance 
(Additional file 1: Fig. S1-2,S4), both assigning nearly 1800 singlets, (Additional file 2: 
Table  S1) with Multiseq identifying slightly more singlets and being considerably 
faster than DemuxEM. (Additional file 3: Table S1). Despite the noisy HTO readouts, 
the RNA profiles of these cells are still of good quality, allowing demultiplexing to be 
performed from the RNA library. Since the donor-specific reference genotypes are 
not available for this experiment, we run all genetic deconvolution tools in reference 
genotype-free mode. Compared to hashing, genotype-based deconvolution methods 

Fig. 2 Comparison of the performance of donor deconvolution methods. A The violin plot of raw HTO 
counts shows high count levels of Hashtag 453 in cells with noisy or undetectable expression of the other 
HTOs. B UMAP visualization of normalized HTO counts colored by HTODemux assignment shows poor 
separation of the cells based on hashtags, with most droplets assigned to Hashtag 453. C Hashing‑based 
deconvolution methods show the inconsistent assignment of cells, reported as the different proportions 
of cells identified as one of either singlet, negative, or doublet. D Genetic deconvolution tools show a more 
consistent assignment of the cell mixture to singlets, doublets, and negatives
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performed more consistently and identified significantly more singlets (Fig.  2D and 
Additional file 1: Fig. S3, S8-9). Each tool classified over 90% of the droplets as sin-
glets, and there was consistent agreement between all tools for 3914 singlets (Fig. 3D). 
However, scSplit identified 296 droplets as doublets, which were consistently identi-
fied as singlets by three other methods. Due to the high consistency among Vireo, 
Freemuxlet, and Souporcell, and available benchmarks showcasing its favorable per-
formance compared to the other tools [23], we decided to use Vireo as a baseline for 
genotype-based deconvolution methods.

Fig. 3 Joint deconvolution recovers high‑quality cells. A Overview of the steps to extract cell variants 
from common SNPs in the population based on the assignment of Multiseq and Vireo. B Heatmap 
summarizing the donor matching result shows that DemuxEM and Multiseq are in high concordance with 
all genotype‑based deconvolution methods, where all the donors are matched with a high matching score. 
C Correlation heatmap of donor identification between Vireo and Multiseq. D Sankey plot summarizing the 
percentages of cells deconvoluted by hashing (Multiseq) and after the joint deconvolution step (Vireo). E 
Number of donor‑specific variants used as input for the refinement step. F Sankey plot summarizing the 
percentages of cells deconvoluted by hashing (Multiseq) and after the refinement step
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Joint deconvolution recovers cells with low‑quality hashing data

Beyond determining the optimal combination of hashing- and genotype-based decon-
volution methods, hadge aims to rescue cells whose hashing quality was low or whose 
hashes were missing (Fig. 3A). Hadge performs joint deconvolution with both hashing 
and genetic deconvolution tools to rescue high-confidence singlets. Only cells that can 
be confidently genetically deconvoluted are eligible to be rescued. After having demul-
tiplexed the experiment in genotype-free mode [20, 22], the anonymous donors need to 
be matched to their original sample to be identified. Here, we rely on the hashing decon-
volution to provide the known correspondence between the antibody hashtags and the 
original sample. Cells that are jointly deconvolved provide the key to de-anonymize the 
genetically rescued cells.

We first define the hashing method that matches the genetic demultiplexing method 
by calculating the Phi score (see the “ Methods” section). For each pair of hashing and 
genetic deconvolution outputs, we compute the pairwise Pearson correlation on the 
binarized cell classification vectors, thereby matching donors where a high correlation 
is observed. We then compute the matching score by summing the non-negative cor-
relations and dividing by the number of expected donors, obtaining the degree of con-
sistency in donor identification between any two methods. Based on the observed high 
matching score and the successful matching of all anonymous donors (Additional file 1: 
Fig. S4-5, S10), two hashing demultiplexing methods performed best compared to Vireo, 
namely Multiseq and Demuxem, both recovering identical matches between genetic and 
hashing donors (Fig. 3B, Additional file 1: Fig S4-5 and Additional file 2: Table S1). When 
the optimal match is identified, the identities recovered using the cells in the intersec-
tion between genetic and hashing can be propagated to the cells that are identified by 
genetic deconvolution alone. Here, we decided to use the joint demultiplexing of Multi-
seq and Vireo to showcase the rescue mode because of Multiseq’s reduced runtime. For 
every anonymous donor recovered by Vireo, there was only one hashtag with a high cor-
relation, with scores ranging from 0.53 to 0.89 (Fig. 3C). Using the cells that are jointly 
deconvoluted into singlets by hashing and genetic demultiplexing, we extended the clas-
sification to those cells whose hashing was undetectable (negatives). We identify 90% of 
the cells as singlets, rescuing 89.7% of the original negatives (Fig. 3D), and double the 
number of recovered singlets for the hashes with the lowest detection rate (Hash454-
456, Fig.  2A). Vireo is implemented to rely on cellSNP, which outputs the recovered 
genetic variants in each cell. We implemented an optional process in hadge to refine and 
confirm the quality of the deconvolution, by extracting cell-variants to reconstruct mini-
mal donor genotypes from the common SNPs in the populations. Variants with low cov-
erage (allele depth < 10) or a low frequency of the overrepresented allele (frequency < 0.1) 
were excluded, revealing 7866 variants that were unique to each donor (Fig. 3E). Since 
only a small fraction of the hashing-recovered singlets is sufficient to de-anonymize the 
genetic-singlets, we can use these reconstructed genotypes to run an additional genetic 
demultiplexing. Therefore, this final refinement step allows to effectively demultiplex cell 
mixtures without having to generate new SNP references. Using this refining approach, 
we identify 75% of the cells as singlets, with the number of rescued negatives decreas-
ing to 69.7% (Fig.  3F). Nevertheless, we obtain 97.6% consistent donor assignment 
between the rescued and the refined assignments (Additional file 1: Table S1), suggesting 
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that these variants were crucial in distinguishing a donor cluster from others during 
deconvolution.

Recovered cells recapitulate known cell types

To investigate whether the cells that are rescued are of good quality and biologically rel-
evant, we reanalyzed the MS samples, including the recovered cells. We first merged the 
already existing annotation of the cells with the deconvolution information obtained 
from the hadge pipeline. We then applied quality filtering, removing cells based on gene 
content, mitochondrial percentage, and doublet rates (Additional file  1: Fig S12) (see 
the “Methods” section), reproducing the quality control performed in the original study 
but with a more stringent doublet detection threshold. With this approach, we retained 
3208 cells, rescuing 952 cells that were excluded in the original study. We then embed-
ded the cells using UMAP and calculated Leiden clustering. Most of the rescued cells 
were distributed across existing clusters, with comparable marker expression between 
the old and new cells (Fig. 4A, B, D, Additional file 1: Fig. S11). Intriguingly though, the 
percentage of rescued cells per cluster varied. While most of the clusters consisted pre-
dominantly of previously annotated cells mixing with a smaller part of rescued cells, two 

Fig. 4 Recovered cells recapitulate known cell types. A UMAP of the single‑cell gene expression data with 
old and rescued cells. B Leiden clustering of the dataset with old and rescued cells. C SYT1 expression 
defines rescued cells as a new cluster of neurons. D Dotplot of a selection of marker genes shows concordant 
expression of markers in old and rescued cells. E Barplot showing the cluster composition in old and rescued 
cells, with two neuronal clusters enriched for rescued cells. Colors on top of the barplot identify the cell 
annotation from A 
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clusters were composed of more than half or even 100% rescued cells (Fig. 4E). While 
the smaller one of these, consisting solely of rescued cells, had an almost exclusively high 
expression of the marker HTR2C, we found the gene marker expression of, e.g., SYT1, 
SLC17A7, and low GAD2 to be consistent with a neuronal profile with excitatory and 
non-inhibitory properties in both clusters. Reassuringly, the latter marker expression 
was in accordance with that of known neuronal clusters [36, 37] (Fig. 4C, D, Additional 
file 1: Fig. S11).

Benchmarking hadge’s runtime and robustness

To demonstrate the robustness and superior runtime of our proposed pipeline, we 
benchmarked its performance against two existing pipelines, demuxafy and cellHashR 
(Table 1). We submitted each pipeline on a Linux server with 32 CPU cores and 160 GB 
of RAM memory. In all benchmarks, hadge showed superior performance with respect 
to the optimization of computational resources and runtime (Fig.  5A). Both hadge-
genetic and demuxafy successfully executed all methods for the two mpxMS samples 
and an additional dataset. However, in the hashing deconvolution of the mpxMS data, 
some methods (bff_cluster, bff_raw) ran but failed to deconvolve the cells in both hadge-
hashing and cellhashR. Additionally, one method (demuxmix) failed to initialize in both 
pipelines and as a standalone method. Hence, we excluded demuxmix from hadge. 
Notably, despite successfully running gmm_demux within hadge-hashing or when called 
outside the pipeline, we were not able to run cellhashR’s gmm-demux module.

Table 1 Comparison of donor deconvolution pipelines

The “Pre‑processing tools” and “variant calling tools” columns specify the respectively used tools that are (optionally) run 
before the deconvolution tools. “Concatenating” refers to the functionality to concatenate hashing‑based and genotype‑
based deconvolution methods. “Combining Results” refers to the functionality that allows the merging of results from 
multiple methods into a single data frame during a single run, based on the users’ choice. ( +) The pipeline supports the 
mentioned functionality. ( −) The pipeline does not support the mentioned functionality. (*) The software is required as part 
of additional preprocessing outside of the pipeline

Demuxafy cellHashR HTOreader hadge

Framework Singularity R R Nextflow

Available genotype‑
based methods

5 ‑ Souporcell 5

Available hashing‑
based methods

‑ 7 HTOreader 7

Doublet detection 
methods

7 ‑ ‑ 1

Concatenating ‑ ‑ ‑(*)  + 

Parallelized ‑ ‑ ‑  + 

Pre‑processing tools Samtools (*) ProcessCountMatrix, 
PlotNormalizationQC

HTOClassification Samtools

Variant calling tools Freebayes(*), 
cellSNP‑lite 
(*)

(not relevant for 
hashing‑based)

(not relevant for 
hashing‑based)

Freebayes, cellSNP‑lite

Associating clusters 
and donors

Only through 
reference 
SNP geno‑
types

(not relevant for 
hashing‑based)

From hashtags to 
donors based on 
confusion matrix

From hashtags to 
donors based on 
matching Phi score

Combining results  +  + ‑  + 

scverse compatibility ‑ ‑ ‑  + 
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Next, we leveraged hadge’s fast multi-sample, multi-process handling to investigate 
how the input number of cells affects the performance of genetic and hashing demulti-
plexing. We ran hadge with default parameters on the onek1k dataset, which comprises 
75 pools of cell mixtures from 9 to 15 donors each [9] and has ground truth donor-gen-
otypes available. All tools detected a proportion of singlets per pool between 75 and 
98% (Fig. 5B). However, when looking at matched donors within the singlets, the per-
formance of the tools varied substantially, with scSplit having the lowest concordance 
with the original donor identities, while Demuxlet had the best performance in terms 
of recovered singlets and Vireo recovering the most matched singlets (Fig.  5C). We 
investigated if these two metrics were associated with the number of cells in each pool. 
Only Freemuxlet’s singlets percentage had a significant association with the number 
of cells per pool (R2 = 0.35, p.adj < 0.0001) (Fig. 5D), but all methods were significantly 
affected by the number of donors in the pools (Additional file 1: Fig. S13A, Additional 
file 3: Table S2), with the highest concordant calls reached on pools with 14 multiplexed 

Fig. 5 Benchmarking performance. A Hadge genetic and hashing demultiplexing pipelines were 
benchmarked against demuxafy and cellhashR. The benchmark was performed on three samples for each 
pairwise comparison, for a total of four samples (mpxMS:gx12, mpxMS:gx38, demuxafy dataset, CR‑438–21 
dataset). B Results of hadge genetic on the onek1k cohort; each boxplot represents the distribution of 
percentage singlets identified across 75 pools by each genetic deconvolution tool. C Percentage of correctly 
matched singlets for each tool; each boxplot represents the distribution across 75 pools. D Dotplot showing 
the effect of the number of cells per pool on the percentage of recovered and matched singlets. The 
regression line represents the fit of a linear model on the percentage of singlets identified by Freemuxlet (R.2 
0.35, p.adj < 0.0001)
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donors (Additional file 1: Fig. S13B). Across all the pools, Vireo, Demuxlet, Freemuxlet, 
and Souporcell were mostly consistent, confirming these tools’ superior performance, 
and as observed on the MS dataset (Figs. 2 and 3). Additionally, we ran downsampling 
on two hashing and one genetic multiplexing experiments and used hadge to obtain 
the percentages of correctly assigned singlets. The hashing methods showed an overall 
similar trend with the percentage of matched singlets decreasing with the number of 
cells, except for HTODemux and Demuxem (Additional file 1: Fig. S14). All the hashing 
demultiplexing tools were able to correctly assign at least 90% of the cells after down-
sampling. The performance of the genetic demultiplexing tools was in line with what 
we observed on the onek1k dataset, and consistent for each tool across the different 
subsamples, with Vireo having the best performance across the board (~ 99% recovered 
matching singlets) (Additional file  1: Fig. S14). Hadge allowed us to efficiently bench-
mark the demultiplexing performances of all the methods across the two workflows. 
Collectively, these results indicate that the number of donors and cells in the cell mix-
tures can significantly affect the number of recovered cells and the quality of the decon-
volution for both families of demultiplexing methods.

Discussion
Single-cell multiplexing techniques enhance sample throughput, reduce costs, minimize 
technical variation, and improve cell type identification in single-cell genomics studies 
by increasing the number of samples and therefore reducing the gene expression varia-
tion associated with single-cell RNA sequencing. Some of the techniques for generating 
multiplexed single-cell mixtures require additional processing steps, which can intro-
duce technical noise and result in a low yield of usable data. Furthermore, computational 
donor deconvolution errors can occur due to technical noise or experimental artifacts, 
leading to the misidentification of cells or barcodes.

We developed hadge, a comprehensive pipeline for donor deconvolution experi-
ments generated with both genetic and hashing multiplexing methods. hadge is the 
only pipeline capable of processing both types of data inputs allowing for fine tun-
ing of deconvolution experiments and performs favorably compared to the state-of-
the-art pipelines. We leveraged the optimized multi-sample handling implemented in 
hadge to investigate the demultiplexing performance of the 12 demultiplexing meth-
ods included with varying numbers of cells and donors in the input cell mixtures. We 
showed that the different numbers of input cells and donors can significantly affect 
the performance of the tools, and users may need to take this into account when 
designing their experiment and interpreting the deconvolution results. As different 
tools rely on varying hyperparameters, it is possible to tune them to investigate the 
effect on cell deconvolution. To ensure confident identification of cell mixtures, hadge 
enables complete customization of input hyperparameters and selection of meth-
ods and offers a host of diagnostic plots and statistics to compare results between 
methods. Additionally, hadge performs joint genotype- and hashing-based deconvo-
lution of cell mixtures generated from genetically diverse inputs to enable users to 
retrieve only confidently assigned singlets. This functionality is particularly relevant 
for experiments where hashing data quality may be compromised by technical noise, 
tissue-specific variability, or variability in reagent performance. In these experiments, 
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genotype-free deconvolution followed by donor matching can increase the number 
of good-quality singlets which can be further investigated for biological signatures. 
Another recent work [18] proposed joint deconvolution to increase the confidence in 
called singlets, but offers limited options to customize the selection of tools or param-
eters to run the joint deconvolution step (Table 1). Given the importance of retaining 
only correctly assigned cells for downstream tasks, such as cell annotation and differ-
ential expression between multiplexed conditions, joint deconvolution is a necessary 
step for experiments threatened by suboptimal hashing libraries. Existing strategies 
generally only retain the union of singlets called by two methods [35]. Instead, hadge 
allows both automated matching of the best hashing and genotype-based deconvolu-
tion tools based on the optimal concordance between methods, or the selection of 
individual methods for each workflow, ensuring an additional level of control over the 
joint deconvolution step. To guarantee that the joint deconvolution retains only con-
fidently donor-assigned singlets, we developed an additional refinement component 
that allows the generation of donor genotypes from recovered single-cell variants, 
which are then used as input for a new round of deconvolution. One limitation of 
this approach is that, by reducing the number of input variants to include only donor-
specific variants, the read coverage in the already shallow-depth single-cell data may 
decrease at individual genetic variants, resulting in a higher number of cells discarded 
as negatives. Nevertheless, in the data presented here, only 15 (0.03%) of the total cells 
are misclassified into a different donor at this step, suggesting the relevance of the 
selected genetic variants. Furthermore, applying the joint demultiplexing approach 
can reduce the cost of multi-sample, multi-condition experiments, when the same 
donors are challenged with multiple perturbations. In such cases, staining only one 
condition provides enough data to generate donor-specific genotypes, removing the 
need for additional genotyping and reducing the costs of the staining procedure.

Other pipelines have been proposed to benchmark either genotype-based [23] or 
hashing-based deconvolution [16, 24] individually (Table 1). However, some deconvolu-
tion tools do not integrate well with downstream analysis pipelines, making it difficult to 
perform integrated analyses across multiple samples or experiments. hadge seamlessly 
integrates within the scverse [38] ecosystem, and its outputs can be processed with exist-
ing pipelines for automated single-cell analysis [39], minimizing the friction between 
preprocessing and data analysis steps and ensuring quality and reproducibility of results.

Conclusions
In conclusion, hadge is a powerful and flexible pipeline that addresses the challenges 
associated with all commercially available single-cell multiplexing techniques in genom-
ics studies. By allowing customization of input parameters, selection of methods, and 
joint deconvolution, hadge ensures confident identification of cell mixtures and retrieval 
of high-quality singlets. Its integration with existing analysis pipelines and compatibility 
with the scverse ecosystem further streamlines the data processing and analysis work-
flow, promoting reproducibility and enabling integrated analyses across multiple sam-
ples and experiments. With its comprehensive features and robust performance, hadge 
is poised to greatly enhance the accuracy and efficiency of single-cell genomics research.
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Methods
Implementation of the hadge pipeline

The hadge pipeline, implemented in Nextflow, provides hashing- and genotype-based 
deconvolution workflows. Both workflows support the execution of multiple methods 
simultaneously.

Tools

The genotype-based deconvolution workflow includes five deconvolution methods: 
Demuxlet [17], Freemuxlet [26], Vireo [22], scSplit [20], and Souporcell [21].

The hashing-based deconvolution workflow includes seven hashing deconvolu-
tion algorithms: HTODemux [27], Multiseq [12], HashedDrops [28], Demuxem [15], 
gmm-demux [29], BFF [24], and Hashsolo [30], and one doublet-detection method 
(Solo [30]).

In addition to the two multiplexing workflows, the hadge pipeline includes a dou-
blet detection method, Solo, which is based on a semi-supervised deep learning 
approach. Since Solo only identifies singlets without revealing the true donor identity 
of the droplets, we only use it as a supplementary method.

As genotype-based deconvolution techniques rely on SNPs to distinguish samples 
in the pools, the workflow also includes a preprocessing component with samtools, 
Freebayes [40] and cellsnp-lite [41] as two separate processes for variant calling. The 
Freebayes process is designed as per the instruction of scSplit (https:// github. com/ 
jon- xu/ scSpl it) to find variants in pooled samples. To optimize runtime, the pro-
cess is carried out separately for each chromosome. With an additional filtering step, 
SNPs with a minimum allele count of 2, minimum base quality of 1 and quality scores 
greater than 30 from each chromosome are retained and merged. As suggested by 
Vireo, the Mode 1a of cellsnp-lite is called in the cellsnp-lite process to genotype sin-
gle cells against candidate SNPs. Two allele count matrices for each given SNP are 
generated, one for the reference and another one for the alternative allele, which can 
be then fed into Vireo.

The hashing-based deconvolution workflow also has a pre-processing step to pre-
pare the input data for both HTODemux and Multiseq based on the Seurat vignette 
(https:// satij alab. org/ seurat/ artic les/ hashi ng_ vigne tte. html). A Seurat object is ini-
tialized with the cell containing barcodes for the RNA matrix and HTO raw count 
matrix. Only the cell barcodes that are at the intersection between RNA and HTO 
counts are retained. The HTO data is added as an independent assay and normalized 
using centered log-ratio transformation (CLR).

Structure

The hadge pipeline features three distinct modes: genetic, hashing, and rescue mode. 
The hashing and genetic mode are two independent workflows, and the rescue mode 
allows joint demultiplexing by combining the outputs of the two workflows. Different 
inputs are required for the two workflows, specifically:

For the hashing workflow, raw and filtered HTO and RNA counts are the minimum 
required input. Each of these outputs is normally generated by the cellranger pipeline, 

https://github.com/jon-xu/scSplit
https://github.com/jon-xu/scSplit
https://satijalab.org/seurat/articles/hashing_vignette.html
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which outputs the required HTO and RNA counts in the unfiltered (raw) and filtered 
feature-barcode matrices in two file formats: the Market Exchange Format (MEX), 
and Hierarchical Data Format (HDF5). Hadge accepts the files in the MEX format.

For the genetic workflow, the minimal requirements are as follows: the indexed 
sequence alignment file in BAM format along with its index (.BAI format), the barcodes 
of the cell-containing droplets in a TSV file, the number of expected donors in a mix-
ture, and the reference genotypes and the variants present in the pooled sample, both 
in VCF format. The VCF of the reference genotype can be an unrelated genomic refer-
ence to run methods in “genotype-free” mode. Optionally, if the pooled sample’s VCF 
is not available, we include two processes for variant calling (cellsnp and freebayes). 
Users can provide the mixed FASTA file to be used as input to generate the VCF file with 
freebayes, which is the default preprocessing for the scSplit method. All of the inputs, 
except for the reference VCF files, are commonly generated by the cellranger pipeline. 
Following deconvolution in each workflow, the output files are passed to the summary 
process to generate summary files. Within this module, three CSV files are produced 
per tool as output, with each column representing a trial conducted during a single run 
of the pipeline. These output files provide a comprehensive summary of three aspects, 
including the specified parameters for each trial, the classification of individual droplets 
as singlets, doublets, or negative droplets, and the assignment of cell barcodes to their 
respective donors. As multiple tools are executed within a single run, additional CSV 
files are generated to merge the classification and assignment results from different tools 
into unified data frames.

In the rescue mode, hashing and genotype-based deconvolution workflows work 
jointly with the aim (i) to recover the droplets where the classification is discordant 
between the two approaches and (ii) optionally to extract donor-specific variants from 
the droplets with coherent classification and to reconstruct donor genotypes for mixed 
samples, which can then be used to rerun genotyped-based deconvolution as a sanity 
check to prove whether the result is reliable. The pipeline first runs the two workflows in 
parallel and saves the results of all methods in a single CSV file. Next, the file is passed to 
the “donor matching” process which computes a score (Phi score) to associate an iden-
tity to the anonymous donors using the droplets where the concordance between one 
genetic donor and one hashtag is maximized.

The process converts the assignment of two tools into a matrix of binary values, with 
rows representing cell barcodes and columns representing donors or hashtags. The value 
is set to 1 if the cell is assigned to the donor or hashtag, and 0 otherwise. The similar-
ity between two matrices is calculated column-by-column using Pearson correlation, 
and hashtags and donors are matched if they have the highest mutual Pearson correla-
tions. If every donor is paired with a hashtag, the pipeline generates a new assignment 
of the tools with mapped donors and a heat map to visualize the correlation between the 
donors and hashtags. If Vireo is the optimal genotype-based deconvolution method in 
donor matching, the process has the option to extract informative variants from donor 
genotypes estimated by Vireo. Using the input of cellsnp-lite, genotyped SNPs are first 
filtered based on the SNPs (read depth > 10) among cells with consistent assignment 
between Vireo and the hashing tool with which it is compared. Only variants with an 
overrepresented allele are retained, i.e., the frequency of the alternative or reference 
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allele in the group of cells must be greater than a specified threshold (frequency > 90%). 
The pipeline compares the genotypes of these variants in cells that have been inconsist-
ently deconvolved and keeps only the SNPs that have the same overrepresented allele in 
cells with and without consistent assignment. These are candidate variants used to dis-
tinguish cells from different donors. The process is performed separately on cells from 
different donors to retrieve donor-specific informative variants. Finally, BCFtools sorts 
and indexes the donor genotype from Vireo and filters the donor-specific variants. The 
samples are renamed by the matching hashtags.

Demuxlet/Freemuxlet

Dsc-pileup, Demuxlet, and Freemuxlet implemented in popscle (v0.1) were performed 
one after another. Using the BAM file and filtered barcode file produced by cellranger 
[42] as input, dsc-pileup aggregated reads around common SNPs in the human popu-
lation, which in the case of Freemuxlet are derived from the 1000 Genomes Project 
and filtered by cellsnp-lite with minor allele frequency (MAF) > 0.05 as reference vari-
ant sites (https:// sourc eforge. net/ proje cts/ cells np/ files/ SNPli st/). Demuxlet/Freemuxlet 
then uses the pileup files from dsc-pileup to deconvolve cells. We ran these methods in 
default mode.

Vireo

Cell genotypes were generated at common SNPs from the 1000 Genomes Project 
(https:// sourc eforge. net/ proje cts/ cells np/ files/ SNPli st/) using cellsnp-lite (v1.2.2) with 
default parameters before performing Vireo. Subsequently, the output of cellsnp-lite was 
processed by Vireosnp (v0.5.6) to perform the deconvolution with default parameters.

Souporcell

Souporcell (v2.0) was run on the BAM file and filtered barcode file produced by cell-
ranger and the human reference (http:// cf. 10xge nomics. com/ supp/ cell- exp/ refda ta- 
cellr anger- GRCh38- 3.0. 0. tar. gz). We also used common SNPs from the 1000 Genomes 
Project [43] with a minor allele frequency of 2% (provided by https:// github. com/ wheat 
on5/ soupo rcell) as input to skip repeated and memory-intensive steps, remapping, and 
variant-calling.

scSplit

scSplit was executed only after the pre-processing and variant calling modules were 
completed. The input BAM file was pre-processed by SAMtools (v1.15.1) and UMI-tools 
(v1.1.2). In the variant calling module, freebayes (v1.2) was performed on the pre-pro-
cessed BAM file to call variants from mixed samples. Taking the pre-processed BAM 
file and called variants, scSplit (v1.0.8.2) deconvolved the cell mixture in three steps. The 
count command of scSplit constructed two count matrices for the reference and alter-
native alleles. To increase the accuracy of donor identification, a list of common SNPs 
provided by scSplit (https:// melbo urne. figsh are. com/ artic les/ datas et/ Common_ SNVS_ 
hg38/ 17032 163) was used to filter the count matrices. The run command identified 
the cells in the pool to the clusters according to the allele matrices, with doublets being 

https://sourceforge.net/projects/cellsnp/files/SNPlist/
https://sourceforge.net/projects/cellsnp/files/SNPlist/
http://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-GRCh38-3.0.0.tar.gz
http://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-GRCh38-3.0.0.tar.gz
https://github.com/wheaton5/souporcell
https://github.com/wheaton5/souporcell
https://melbourne.figshare.com/articles/dataset/Common_SNVS_hg38/17032163
https://melbourne.figshare.com/articles/dataset/Common_SNVS_hg38/17032163
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assigned to a separate cluster. Finally, the genotype command predicted individual geno-
types for every cluster.

HTODemux

HTODemux begins with loading the Seurat object, which was created during the pre-
processing module using the Seurat R package (v4.3.0). HTODemux (also included in 
Seurat R package v4.3.0) was then called with default parameters to deconvolve cells 
based on clr-normalized HTO counts.

Multiseq

Similar to HTODemux, MULTIseqDemux (included in Seurat R package v4.3.0) func-
tion was performed on the pre-processed Seurat object, with default parameters allow-
ing for automatic determination of the optimal quantile to use in a range from 0.1 to 0.9 
by a step of 0.05.

Demuxem

We used Demuxem with default settings. The raw RNA and HTO count data were 
loaded as a MultimodalData object (pegasuspy Python package v1.7.1). Demuxem then 
deconvolved cells with at least 100 expressed genes and 100 UMIs in two main steps. The 
antibody background was first determined based on empty barcodes using the KMeans 
algorithm. The signal hashtag counts were then calculated using background informa-
tion, and cells with a minimum signal of 10 were assigned to their signal hashtag.

Hashsolo

The process expects to start from the raw HTO counts in hdf5 file format into an Ann-
data object (Scanpy v1.9.1) (solo-sc v1.3). We ran Hashsolo with default parameters, set-
ting the priors for the hypothesis of negative droplets, singlets, and doublets each to 1/3.

HashedDrops

This process requires as input both RNA and HTO raw counts. First, emptyDrops finds 
cell-containing droplets, this list of barcodes is then used as input to the HashedDrops 
call (both algorithms are included in DropletUtils R package v1.18.0). We used Hashed-
Drops with default settings.

BFF

BFF accepts raw or preprocessed HTO data, while offering a preprocessing step (Pro-
cessCountMatrix), included in the CellHashR pipeline (CellHashR v.1.14.0). Two differ-
ent alternatives of BFF are available, “BFF raw” and “BFF cluster,” which apply different 
processing on the HTO raw counts. Both methods can be run in parallel and the tool will 
generate a consensus call between the two. We ran both alternatives for the benchmark.

Gmm‑demux

GMM-demux (GMM-demux Python package v.0.2.1.3) expects the HTO raw counts as 
csv or tsv files and the names of the expected cell hashtags. We ran GMM-demux using 
tsv files under default parameters.
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Benchmarking

mpxMS‑dataset
We were granted early access to a dataset generated in a study of progressive multiple 
sclerosis (Calliope Dendrou, University of Oxford) [35]. In brief, this dataset includes 
a multiplexed 3′ single nuclear RNA sequencing dataset of brain tissue from 5 controls 
and 5 cases of progressive multiple sclerosis (mpxMSdataset). The mpxMS-dataset is 
divided into two sequencing batches (gx12 and gx38) of 6 donors each, with the individ-
ual donors hashed with one of six unique TotalSeq™-A anti-nuclear pore complex anti-
bodies. We obtained the count data generated with Cellranger v3.1.0: 6,794,833 barcodes 
and 6,794,880 barcodes were detected in the raw data of gx12 and gx38, respectively. The 
number of cells detected in each experiment before deconvolution was 4889 for gx12 
and 13,184 for gx38.

The pipeline was applied to the mpxMS-dataset in the rescue mode. In the genotyped-
based deconvolution workflow, Freemuxlet, Vireo, Souporcell, and scSplit were used in 
the absence of reference donor genotypes. To run the algorithm, the number of samples 
was set to six. All hashing-based deconvolution methods were called to deconvolute the 
data. All output files were gathered and passed to the corresponding summary compo-
nent (R v4.2.2). The results of Vireo and Multiseq were used to map donor identities to 
hashtags in the donor matching component. Donor genotypes estimated by Vireo were 
then processed by BCFtools (v1.8). The donor-specific variants were extracted from the 
donor genotypes, where the cell variants were filtered by a minimal cell count of 10 and 
the overrepresented allele at a given SNP was then determined by a 90% cut-off.

Data analysis was performed with scanpy (v1.9.3) and scrublet (v0.2.3). Plots were gen-
erated with scanpy (v1.9.3), seaborn (v0.12.2), and matplotlib (v3.7.1).

We generally followed the recommendations given by the developers of the package 
(https:// scanpy. readt hedocs. io/ en/ stable/ index. html) and have in part adjusted for this 
dataset and in accordance with analysis best practices [44].

For analysis, log-transformation and normalization were achieved with scanpy’s 
log1p() and normalize_total() function. After this, 50 PCs were generated by principal 
component analysis (PCA) and dimensionality reduction by UMAP was performed 
using scanpy’s pca() and umap() functions respectively. Cluster identification was per-
formed using the Leiden algorithm and differential expression of the different clusters 
was generated using scanpy’s rank_genes_groups() function.

OneK1k‑dataset
Raw oneK1K data for scRNA-seq and microarray-based genotype were retrieved from 
the GEO database (accession numbers GSE196735, GSE196829). Ground truth cell bar-
code assignment was extracted from the deposited single-cell data (https:// cellx gene. 
czisc ience. com/ colle ctions/ dde06 e0f- ab3b- 46be- 96a2- a8082 383c4 a1). The demultiplex-
ing was carried out by specifying the original number of donors in each pool (https:// 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE19 6830) and using the donor-geno-
types VCFs extracted from the pools bam files using cellsnp, matched against the whole 
population genotypes. Since the deposited single-cell data contains less cells and donors 
than the full demultiplexing results (981 as opposed to 1015 donors), the analysis on 

https://scanpy.readthedocs.io/en/stable/index.html
https://cellxgene.cziscience.com/collections/dde06e0f-ab3b-46be-96a2-a8082383c4a1
https://cellxgene.cziscience.com/collections/dde06e0f-ab3b-46be-96a2-a8082383c4a1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196830
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE196830
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the percent matched donors was carried out on the 981 donors present in the demulti-
plexing results. Genotype imputation was performed using the TOPMED-r2 Minimac4 
1.7.4 imputation tool. For scRNA-seq data, alignment was conducted using Cellranger 
version 6.1.1. Hadge genetic demultiplexing was applied under default settings in both 
genotype aware and genotype absent modes and to ensure tool comparability and data 
consistency; default cellsnp common variants were used. (https:// sourc eforge. net/ proje 
cts/ cells np/ files/ SNPli st/).

Cell number downsampling experiments
We performed consecutive downsampling of two publicly available hashing datasets, 
a PBMC multiplexed sample with 4 hashtags and a total of 15,843 cells (https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE15 2981) and the test data used in the cell-
HashR pipeline, hereby called CR-438–21, for a total of 11,090 cells (https:// www. github. 
com/ Bimbe rLab/ cellh ashR/ tree/ master/ tests/ testd ata/ 438- 21- GEX) which also provides 
raw rna data to enable running demuxem. The same dataset was also used for the run 
time benchmarks (see “Run time benchmarks”). For each sample, we applied random 
downsampling to 30–50-70% of the cell barcodes in the HTO matrix, using five differ-
ent seeds to control for performance variations. The downsampled counts were then fed 
to the hadge hashing workflow and each method was run under default conditions. For 
the PBMC dataset, the ground truth labels were obtained running gmm-demux on the 
full sample as described in the original publication [29]. For the CR-438–21, the ground 
truth labels were obtained using the instructions provided on the cellhashR repository. 
The scripts used for downsampling are available at https:// github. com/ theis lab/ hadge- 
repro ducib ility.

Downsampling of the genetic data was performed on the first batch (gx12) of mpxMS-
dataset, using as ground truth the joint deconvolution results between vireo and mul-
tiseq demonstrated in Figs. 3 and 4. We performed random downsampling to 30% and 
50% of the cell barcodes associated with each donor, using three different seeds, and 
evaluated the percentage matching singlets recovered after removing 30 or 50% of the 
cells for a particular donor across the different tested seeds. To reduce the run time, bam 
files were pre-processed to contain only reads that overlap with known common SNPs 
from the 1000 Genomes Project (https:// sourc eforge. net/ proje cts/ cells np/ files/ SNPli st/). 
The downsampled reads were then used as input for hadge genetic workflow and each 
method was run under default conditions.

Run time benchmarks
We benchmarked the performance of hadge against demuxafy and cellhashR using 
four samples with different cell numbers. Each pipeline is developed in different 
frameworks and requires different configurations. In the demuxafy pipeline, gen-
otype-based deconvolution methods were called sequentially within the singularity 
container. The benchmark was run on the mpxMS-dataset batch gx12 and gx38, the 
cellhashR dataset as well as a reduced test dataset provided by demuxafy, using the 
same parameters as hadge. Since demuxafy does not provide preprocessing func-
tions, we used hadge’s preprocessing module ( which includes freebayes, samtools, 
and cellsnp) to provide the same input data to hadge-genetic and demuxafy so the 

https://sourceforge.net/projects/cellsnp/files/SNPlist/
https://sourceforge.net/projects/cellsnp/files/SNPlist/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152981
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152981
https://www.github.com/BimberLab/cellhashR/tree/master/tests/testdata/438-21-GEX
https://www.github.com/BimberLab/cellhashR/tree/master/tests/testdata/438-21-GEX
https://github.com/theislab/hadge-reproducibility
https://github.com/theislab/hadge-reproducibility
https://sourceforge.net/projects/cellsnp/files/SNPlist/
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benchmarking starts from the same inputs. For the cellhashR pipeline, we created a 
conda environment with all the required dependencies as described in the cellhashr 
GitHub repository [45]. In the hadge-hashing pipeline, each deconvolution method 
was called in its own Conda environment separately. For each pipeline run, we 
allowed 160-GB RAM memory and 32 CPU cores.
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