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Abstract 

Multiplexed assays of variant effect (MAVEs) have emerged as a powerful approach 
for interrogating thousands of genetic variants in a single experiment. The flex-
ibility and widespread adoption of these techniques across diverse disciplines have 
led to a heterogeneous mix of data formats and descriptions, which complicates 
the downstream use of the resulting datasets. To address these issues and promote 
reproducibility and reuse of MAVE data, we define a set of minimum information 
standards for MAVE data and metadata and outline a controlled vocabulary aligned 
with established biomedical ontologies for describing these experimental designs.
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Background
The emergence of high-throughput genomic technologies has revolutionized our ability 
to study the impact of genetic variants at a grand scale. A prominent example of these 
innovative methods is multiplexed assays of variant effect (MAVEs). MAVEs are a fam-
ily of experimental methods combining saturation mutagenesis with a multiplexed assay 
to interrogate the effects of thousands of genetic variants in a given functional element 
in parallel [1, 2]. The output of a MAVE is a variant effect map quantifying the conse-
quences of all single nucleotide (or single amino acid) variants in a target functional ele-
ment, even variants not yet observed in the population. MAVEs have been applied to 
coding sequences as well as noncoding elements like splice sites and regulatory regions 
across various organisms. Variant effect maps have broad applications including clinical 
variant interpretation [2, 3], understanding sequence/structure/function relationships 
[4, 5], and investigating molecular mechanisms of evolution [6, 7]. The MAVE field is 
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growing rapidly, leading to the formation of organizations such as the Atlas of Variant 
Effects (AVE). AVE consists of over 500 researchers from over 30 countries who per-
form, interpret, and apply MAVE experiments.

The rapid growth and adoption of MAVE technologies across many fields have led 
to an excess of overlapping definitions, complicating discovery and interpretation. 
Minimum information standards in other research areas have increased the reporting, 
archiving, and reuse of biological data [8–11]. To promote reuse and FAIR data sharing 
[12], minimum information standards and a controlled vocabulary for describing MAVE 
experiments and variant effect maps are needed. Here, we—members of the AVE Exper-
imental Technology and Standards and AVE Data Coordination and Dissemination 
workstreams—provide a comprehensive structured vocabulary and recommendations 
for data release for MAVE datasets. Uptake of these recommendations by the MAVE 
community will greatly improve the usability and longevity of MAVE datasets, enabling 
novel insights and applications.

Results and discussion
All MAVEs share a core pipeline: generation of a variant library, delivery of the library 
into a model system, separation of variants based on function, quantification of variant 
frequency by high-throughput DNA sequencing, and performing of data analysis and 
score calculation [1, 2, 13]. Accurate and consistent metadata describing each of these 
steps is the basis for the interpretability of MAVE functional scores and is a require-
ment for any advanced quantitative analysis, such as comparing and combining scores. 
To systematize these metadata, we have defined and implemented a computable con-
trolled vocabulary that covers the majority of current and emerging MAVE techniques 
(Fig. 1) [14]. This vocabulary captures the major steps of the MAVE experimental pro-
cess including project scope, library generation, library integration/expression, assay 
type, and sequencing method. The vocabulary also contains terms to describe the bio-
logical and disease relevance of the assay. In addition to releasing scores and other data-
sets in published papers, we recommend sharing MAVE datasets through MaveDB, an 
open-source platform to distribute and interpret MAVE data [15, 16].

Researchers should communicate the target sequence, the method used to generate 
library diversity, and the method of variant delivery into the assay system using terms 
from the controlled vocabulary. Metadata about the variant generation method should 
include terms for either editing at the endogenous locus or in vitro variant library gen-
eration. It should also specify the model system as defined by NCBI Taxonomy ID [20] 
and Cell Line Ontology (CLO) [21] terms where available.

It is essential for the target sequence to be linked to a reference genome database or 
similar by including a versioned stable identifier from a widely used resource such as 
RefSeq [22], Ensembl [23], or UniProt [24]. We also recommend that researchers design-
ing a study choose a reference-identical allele when it does not otherwise affect the study 
design, particularly for clinically relevant targets. The entire target sequence used in the 
assay must be provided to allow MaveDB and other systems to generate globally unique 
identifiers (sha512t24u computed identifiers [25]) as used by the Global Alliance for 
Genomics and Health (GA4GH) [26] refget [27] and Variation Representation Specifica-
tion (VRS) [28] standards.
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We recommend that variant libraries are exchanged using VRS and stored using a 
VRS-compatible information model, including the aforementioned computed identi-
fiers, inter-residue sequence location data, and VOCA-normalized allele representa-
tion [28, 29]. This allows variants to be defined in terms of both the variant on the 
target sequence and the homologous variant on the linked reference sequences with 
an appropriate variant mapping relation, such as the homologous_to relation from 
the sequence ontology [30]. Descriptions of variants on target sequences should 
follow the MAVE-HGVS nomenclature conventions [16]. Homologous variants on 
linked reference sequences should describe variants following conventions typical 
for the target organism, e.g., using the Human Genome Variation Society (HGVS) 

Fig. 1  A structured vocabulary of terms relevant to the technical development, execution and recording of 
multiplexed assays of variant effect (MAVEs). Each category of controlled vocabulary terms is depicted (top, 
gray boxes) along with three examples from published MAVE datasets. From left to right, the figure includes 
(green boxes) [17], (blue boxes) [18], and (red boxes) [19]. Example files for each of these examples are 
available in the GitHub repository (see Availability of data and materials)
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variant nomenclature [31] for variants on human reference sequences. An example 
of these sequence variant recommendations in practice is described in Arbesfeld 
et al. [32], where they enable interoperability with downstream resources including 
the Ensembl Variant Effect Predictor (VEP) [33], UCSC Genome Browser [34], the 
Genomics to Proteins resource [35], the ClinGen Allele Registry [36], and ClinGen 
Linked Data Hub.

The phenotypic assay is the most unique aspect of a MAVE compared to other 
data types for which minimum information standards have been established. There 
is a tremendous diversity in functional assays in terms of both the assay readout and 
the biology the assay was designed to interrogate. For assay readout, we have identi-
fied a subset of phenotypic readouts in the Ontology for Biomedical Investigations 
(OBI) [37] that are commonly used in variant effect maps. Because OBI has over 
2500 terms, we hope that this “short list” will help researchers identify the most rel-
evant terms to describe their experiments. Nevertheless, we also welcome the use of 
other OBI terms if necessary to describe new assays. Assays that used variants with 
known effects to calibrate or validate the assay should include these variants, their 
effects, and the source of the information [38]. To promote interoperability, we sug-
gest using a structured format such as a table or JSON document and applying the 
VRS standard as described above. Researchers should also detail any environmental 
variables (such as temperature or the addition of small molecules) in their experi-
mental methods. We encourage experimenters to use publicly accessible resources 
like protocols.io to describe their assay protocols in detail and share them with the 
community.

Researchers should use the appropriate controlled vocabulary terms for describing 
the high-throughput sequencing method used for variant quantification. We strongly 
recommend that raw sequence reads be deposited in a suitable repository, such as the 
Sequence Read Archive (SRA) [39] or Gene Expression Omnibus (GEO) [40], along 
with a description of each file (e.g., time point and sample information).

We recommend that researchers investigating clinical phenotypes use terms from 
the Mondo Disease Ontology (Mondo) [41] or Online Mendelian Inheritance in Man 
(OMIM) [42] to help clinicians and other stakeholders retrieve relevant functional 
data. Particular care is needed for genes encoding proteins with multiple functional 
domains and where loss of function and gain of function variants are associated with 
different diseases. Ideally, each MAVE should be associated with a particular gene-
disease entity that describes the mechanism of disease such as those defined by G2P 
[43] and how the MAVE assay recapitulates or is relevant to the mechanism of dis-
ease. Some genes or functional domains may require multiple MAVE assays, each 
probing a different function or attribute of the gene product, to accurately model dif-
ferent disease entities.

Although it is not within the scope of this controlled vocabulary, it is still crucial 
to detail the data analysis performed to produce a variant effect map. This includes 
steps to generate variant counts, including sequence read processing, quality filter-
ing, alignment, and variant identification, as well as further statistical and bioin-
formatic processing to calculate scores and associated error estimates. Researchers 
should describe the analysis pipeline used for these calculations, including software 
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versions. Several well-documented tools are available for this purpose and the field 
continues to advance rapidly [44–47]. Custom code should be shared using GitHub 
or a similar platform and archived using Zenodo or a similar archival service that 
mints a DOI.

In addition to processed variant scores, we urge researchers to share raw counts 
for each dataset, as these have tremendous utility for downstream users who want to 
reanalyze datasets or develop new statistical methods. Similarly, we recommend that 
researchers also report scores prior to normalization or imputation, and MaveDB sup-
ports the deposition of counts, scores, normalized/imputed scores, and sequence meta-
data for the same dataset (Table 1).

Conclusions
Minimum data standards are important to guide researchers who want their datasets to 
be used and cited broadly. We anticipate that this document will enhance the readability 
and discoverability of current and future datasets by defining a vocabulary that can be 
adopted across the many fields where MAVEs are being performed and where the result-
ing datasets are being used. Ensuring a minimum set of available metadata that uses a 
shared set of terms enables new types of analysis, such as machine learning methods to 
combine large numbers of disparate, high-dimensional datasets like MAVEs. Large-scale 
meta-analyses of multiple MAVE datasets have already been implemented in several 
contexts, including computational prediction of variant effects [48, 49] and clinical vari-
ant reclassification [50]. In the near term, the controlled vocabulary will be implemented 
as part of MaveDB records, creating a large set of rich metadata annotations that can 
be searched and mined. We believe that the MAVE community should share datasets 
and resources responsibly and that accessibility is real only when it ensures usability and 
reproducibility.

Methods
The initial draft of the controlled vocabulary was developed collaboratively using 
Google Docs. The controlled vocabulary schema is defined using JSON Schema 
Draft 2020-12.

Table 1  Recommended locations for MAVE data deposition

Type of data Deposition location

Processed scores, unprocessed scores, raw counts MaveDB [15, 16]

Raw sequence reads Sequence Read Archive [39]/
Gene Expression Omnibus 
[40]

Target sequence MaveDB [15, 16]

Linked sequence references MaveDB [15, 16]

Sequence metadata/digests MaveDB [15, 16]/SeqRepo [25]

Variant library MaveDB [15, 16]

Analysis code GitHub/Zenodo

Structured vocabulary description This work/MaveDB [15, 16]
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