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Abstract 

DANCE is the first standard, generic, and extensible benchmark platform for accessing 
and evaluating computational methods across the spectrum of benchmark datasets 
for numerous single-cell analysis tasks. Currently, DANCE supports 3 modules and 8 
popular tasks with 32 state-of-art methods on 21 benchmark datasets. People can 
easily reproduce the results of supported algorithms across major benchmark datasets 
via minimal efforts, such as using only one command line. In addition, DANCE provides 
an ecosystem of deep learning architectures and tools for researchers to facilitate their 
own model development. DANCE is an open-source Python package that welcomes all 
kinds of contributions.
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Background
Single-cell profiling technology has undergone rapid development in recent years, span-
ning from single modality profiling (RNA, protein, and open chromatin) [1–9], multi-
modal profiling [10–14], to spatial transcriptomics [15–22]. The fast revolution in this 
field has encouraged an explosion in the number of computational methods, espe-
cially machine learning-based methods. However, the diversity and complexity of cur-
rent methods make it difficult for researchers to reproduce the results as shown in the 
original papers. The major challenges include no publicly available codebase, hyperpa-
rameter tuning, and differences between programming languages. Furthermore, a sys-
tematic benchmarking procedure is necessary to comprehensively evaluate methods 
since the majority of existing works have only reported their performance on limited 
datasets and comparison with insufficient methods. Therefore, a generic and extensible 
benchmark platform with comprehensive benchmark datasets and metric evaluation is 
highly desired to easily reproduce any algorithm other than state-of-art methods under 
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different tasks across popular benchmark datasets via minimal efforts (e.g., only one 
command line). Considering deep learning methods like graph neural networks (GNNs) 
[11, 23–28] have shown promising performance in single-cell analysis, the customized 
interfaces of such tools are largely missing in the existing packages. Those motivate the 
development of our DANCE system which not only acts as a benchmark platform but 
also provides customized deep learning infrastructure interfaces to help researchers 
conveniently develop their models.

In this work, we present DANCE as a deep learning library and benchmark platform to 
facilitate research and development for single-cell analysis. DANCE provides an end-to-
end toolkit to facilitate single-cell analysis algorithm development and fair performance 
comparison on different benchmark datasets. DANCE currently supports 3 modules, 8 
tasks, 32 models, and 21 datasets. One of the highlights of DANCE is the reproducibil-
ity of models. The diverse programming languages and backend frameworks of exist-
ing methods make systematic benchmark evaluation challenging for fair performance 
comparison. In such case, we implement all models in a unified development environ-
ment based on python language using Pytorch [29], Deep Graph Library (DGL) [30], 
and PyTorch Geometric (PyG) [31] as backbone frameworks. In addition, we formulate 
all baselines into a generic fit-predict-score paradigm. From the reproducibility perspec-
tive, for each task, every implemented algorithm is fine-tuned on all collected standard 
benchmarks via grid search to get the best model, and the corresponding hyperparam-
eters are saved into only one command line for user reproducibility. We also provide one 
example for each model as a reference.

Results and discussion
Pipeline overview

Briefly, the single-cell analysis pipeline with DANCE platform includes data collection, 
data downloading, data processing (preprocessing and graph construction), and model 
development on specific downstream tasks (Fig. 1a).

Benchmark dataset collection

We first collect standard and popular benchmark datasets for each supported down-
stream task in DANCE. Then, those datasets are organized and cached by dataset name 
on the cloud.

Data downloading

For each task, DANCE provides a generic interface to load datasets. Since all benchmark 
datasets supported by DANCE are cached on the cloud in advance, users do not have to 
download their interested datasets manually. They just need to specify a dataset name 
when calling the data loader interface. For example, we can run graph-sc model on 10X 
PBMC dataset for the clustering task using the following command line:
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Data processing

After data loading, a collection of data processing methods are provided before model 
training. They are divided into two parts: preprocessing and graph construction.

•	 Preprocessing: We provide rich preprocessing functions such as normalization, 
dimension reduction, and gene filtering. Take graph-sc model as an example, we 

Fig. 1  User perspective of DANCE platform. a Overview of single-cell omics analysis pipeline with DANCE 
platform. Benchmark datasets by the task are organized and cached on the cloud in advance for users’ usage. 
Those data cover scRNA-seq data, multimodal single-cell data like Chromium Single Cell Multiome ATAC 
+ Gene Expression and cellular indexing of transcriptomes and epitopes (CITE-seq), and spatially resolved 
transcriptomic data. After automatic data downloading from the cloud, the DANCE built-in preprocessing 
and graph construction (required for graph neural networks model development) are then executed. 
Subsequently, users can build up their own models via customized deep learning model module in DANCE 
or utilize our reimplemented state-of-the-art deep learning models in DANCE to accomplish downstream 
tasks. b Currently supported downstream tasks in DANCE
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filter out the rarely expressed genes and normalize the remaining to obtain the same 
total count for each cell. Then, only the highly expressed genes (top 3000 by default) 
are kept for clustering [25].

•	 Graph construction: This is required for GNN-based method. Before model train-
ing, we have to convert data to graphs in preparation for graph operations. DANCE 
provides a variety of ways of graph construction. In graph-sc implementation, we 
construct a weighted heterogeneous cell-to-gene graph, where the types of nodes 
can be cell and gene nodes. There are weighted edges between cell nodes and the 
expressed gene nodes. Let the raw data cell-gene matrix be X, then the weight of 
gene i to cell j is wij =

X[i,j]
m
k=0 X[k ,j]

 . There is no edge linked between any pairs of cell 

or gene nodes.

Model development

All types of deep learning models by task have been reimplemented in DANCE with 
a generic backend framework and unified interface for usage. Users can directly apply 
them to their interested downstream tasks or build up their own model via our provided 
customized deep learning module in DANCE.

As shown in Fig. 1b, DANCE presently supports tasks of data spanning through sin-
gle modality profiling, multimodal profiling, and spatial transcriptomics, which cor-
respond to three stages of single-cell technology development. For a single-modal 
module, only a single modality like gene expression in the cell can be obtained for 
analysis. Imputation, cell type annotation, and clustering tasks are supported under this 
module. For the multimodal module, multiple modalities for the cell can be accessed. 
For example, CITE-seq can provide both gene expression and protein data for analysis. 
Modality prediction, modality matching, and joint embedding are currently supported. 
For the spatial transcriptomics module, the spatial location of the cell in the tissue can 
be obtained additionally. Spatial domain identification and cell type deconvolution are 
presently placed under this module. For more details about each task, please refer to 
the “Methods” section.

Deep learning library

We have seen the rapid development of deep learning in single-cell analysis in recent 
years [32–39] due to its capability of handling huge, high-dimensional, and sparse data. 
Among them, GNN, as a branch of deep learning, is playing an increasingly important 
role in the filed of single-cell analysis  [25, 26, 40–44] because it is natural to represent 
cell-gene in a graph, include prior knowledge into graphs, and extract gene-gene patterns 
hidden from cell-gene relations via propagation. To facilitate the development of deep 
learning models in this field, we not only provide all kinds of basic deep learning model 
implementations like commonly used autoencoders (AEs)  [45], generative adversarial 
networks (GANs)  [46], and convolutional neural network (CNN) [47, 48] but also sup-
port all types of graph operations like graph convolutional network (GCN) [49] and graph 
attention network (GAT) [50]. What is more, due to the fact that the original single-cell 
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data is not a graph, we also design several interfaces for users to construct various graphs, 
like cell-cell, cell-gene, and gene-gene graphs after which one of the GNNs is applied.

Benchmark overview: modules, tasks, models and benchmark datasets

As shown in Fig. 2, DANCE is capable of supporting modules of single modality, multi-
modality, and spatial transcriptomics. Under each module, we benchmark several tasks 
with popular models across standard datasets.

Here, we take the task of clustering in the module of single modality as an example. 
Various types of methods are implemented including GNN-based methods including 
graph-sc [25], scTAG [51], and scDSC [35] and AE-based methods including scDeep-
Cluster [34] and scDCC [52]. To ensure a systematic evaluation and fair performance 
comparison of different models, several standard benchmark datasets such as 10X 
PBMC 4K [53], Mouse Bladder Cells [54], Worm Neuron Cells [55], and Mouse Embry-
onic Stem Cells [56] for the task are collected for evaluation. Currently, there are 
3 modules, 8 tasks, 32 models, and 21 datasets supported by DANCE. Please refer to 
the “Methods” section for more details about supported models and datasets.

Comparison with existing packages for single‑cell analysis

DANCE is not only acting as a deep learning library to facilitate users’ model develop-
ment but also as a benchmark platform for comprehensive evaluation. Table 1 summa-
rizes the key differences between DANCE and existing single-cell libraries and toolkits. 
The highlights of DANCE are summarized as follows:

•	 Comprehensive module coverage: Squidpy [57] proposes an efficient and scalable infra-
structure only for spatial omics analysis. DeepCell  [58] forms a deep learning library 
for single-cell analysis but only biological images are covered. The library specializes in 
models for cell segmentation and cell tracking. Even though the popular Scanpy  [59] 

Fig. 2  A summary of modules, tasks, models, and datasets supported by the DANCE package
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provides a powerful tool for single-cell analysis spanning all modules, it focuses on 
the field of data preprocessing instead of modeling. Similarly, even though Seurat [10] 
touches on all three modules, its R language-based interface restricts its applicability for 
the development of deep learning methods due to limited R interface support within 
the deep learning community. Instead, DANCE supports all types of data preprocessing 
and modeling across all modules including single modality, multimodality, and spatial 
transcriptomics.

•	 Deep learning infrastructure: With the great increase in the number of single cells, classical 
methods [60, 61] cannot effectively enjoy the benefit from big single-cell data, while deep 
learning has been proven to be effective. Furthermore, deep learning techniques are also 
good at handling high dimensional data, which is common for single-cell data. Unfortu-
nately, the backend framework of the well-known Seurat is R, which limits its potential in 
the deep learning community due to restricted R interface support in the deep learning 
community. Scanpy only contains classical methodologies for downstream tasks. Recently, 
scvi-tools [62] presents a Python library for deep probabilistic analysis of single-cell omics 
data. With 12 models, scvi-tools offers standardized access to 9 tasks. scvi-tools includes 
some deep learning methods but lacks the recent GNN-based methods. In terms of mod-
els, scvi-tools selects baselines with a concentration on statistical models according to 
their supporting data protocol. As a comparison, DANCE is a comprehensive deep learn-
ing library of single-cell analysis. Popular deep learning infrastructures like AEs [45] and 
GNNs are supported and applicable for all modules.

•	 Standardized benchmarks: To the best of our knowledge, DANCE is the first compre-
hensive benchmark platform covering all modules in single-cell analysis. A few unique 
features have been developed to achieve this goal. We first collect task-specific standard 
benchmark datasets and provide easy access to them by simply changing the param-
eter setting. Under each task, representative classical and deep learning algorithms are 
implemented as baselines. Those baselines are further fine-tuned on all collected bench-
mark datasets to reproduce similar or even better performance compared to original 
papers. To easily reproduce the results of our finetuned models, end users only need 
to run one command line where we wrap all super-parameters in advance to obtain 
reported performance.

Table 1  Comparison between DANCE and other popular single-cell libraries and toolkits

Scanpy Seurat scvi-tools DeepCell Squidpy DANCE

Comprehensive mod‑
ule coverage

Single modality ✓ ✓ ✓ ✓ ✗ ✓
Multimodality ✓ ✓ ✓ ✗ ✗ ✓
Spatial ✓ ✓ ✓ ✗ ✓ ✓

Deep learning infra‑
structure

Classical deep learning ✗ ✗ ✓ ✓ ✓ ✓
GNNs ✗ ✗ ✗ ✗ ✓ ✓

Standardized bench‑
marks

Benchmark datasets ✓ ✓ ✗ ✓ ✗ ✓
Task-specific algo-
rithms

✓ ✓ ✗ ✓ ✗ ✓

Reproducible com-
mand lines

✗ ✗ ✗ ✗ ✗ ✓
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Unified interface

All models in DANCE are reimplemented in a unified development environment based 
on python language using Pytorch [29], DGL [30], and PyG [31] as backbone frame-
works. What is more, all models in DANCE have generic interfaces for usage. As shown 
in Fig. 3, data loading is executed in a generic way via dataloader.load_data(), and model.
preprocessing_pipeline() works for all datasets and models to specify model specific pre-
processing functions. The interfaces of data.get_train_data() and data.get_test_data() are 
used to get training and test data respectively. For model training and evaluation, the 
unified interface for model training is model.fit(). Furthermore, model.score() acts as a 
generic interface to evaluate how well each model is. The metric of the score function 
depends on each task. Take scDeepSort [26] for an example, after fitting the model with 
chosen hyperparameters, we can access the performance of scDeepSort by calling the 
score function, which will return accuracy to indicate the quality of cell type annotation 
as a classification task.

Performance showup

To build up a benchmark platform with the capability of systematic evaluations and fair 
comparisons of available methods, we first collect standard benchmark datasets by task. 
Then, we reimplement popular existing works for each task in a unified development 
environment based on the Python programming language with the Pytorch, DGL, and 
PyG frameworks as the backbone. Finally, we conduct exhaustive experiments of each 
reimplemented model on collected datasets. The data type supported in DANCE for 

Fig. 3  Consistent user experience
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benchmarking comes from single modality profiling (RNA, protein, and open chroma-
tin) [1–9], multimodal profiling [10–14], to spatial transcriptomics [15–22]. Currently, 
DANCE supports three tasks in the single-modality module, three tasks in the multi-
modality module, and two tasks in the spatial transcriptomics module.

Single‑modality module―clustering

Clustering is a key component of single-cell analysis in the single-modality module. 
Researchers can distinguish between different cell types or cell type subgroups in the 
gene expression data using clustering. Adjusted Rand Index (ARI) is employed as an 
evaluation metric. Three GNN-based methods (graph-sc [25], scTAG [51], scDSC [35]) 
and two AE-based methods (scDeepCluster  [34], scDCC  [52]) have been reimple-
mented under this task. scDSC is deep structural clustering for single-cell RNA-seq 
data (scRNA-seq) using AEs and GNNs in conjunction. graph-sc and scTAG both con-
vert scRNA-seq data to the cell-to-gene graph as an input for the graph encoder, while 
scTAG takes topology adaptive graph convolutional network (TAGCN) [63] as the 
graph encoder. scDeepCluster is a ZINB-based AE method for clustering. Similar model 
structure to scDeepCluster, scDCC additionally adds pairwise constraints into the loss 
function. Those five reimplemented models are evaluated on our collected four stand-
ard benchmarking datasets, which are 10X PBMC 4K  [53], Mouse Bladder Cells  [54], 
Worm Neuron Cells  [55], and Mouse Embryonic Stem Cells  [56]. There are 4271 cells 
and 16,653 genes with protocol as 10x Genomics in 10X PBMC 4K dataset, 2746 cells 
and 20,670 genes with protocol as Microwell-seq in Mouse Bladder Cells dataset, 4186 
cells and 13,488 genes with protocol as sci-RNA-seq in Worm Neuron Cells dataset, 
and 2717 cells and 24,175 genes with protocol as Droplet Barcoding in Mouse Embry-
onic Stem Cells dataset. Figure 4a shows performance comparison between our imple-
mentation and the original implementation of five popular methods on 10X PBMC 4K 
and Mouse Embryonic Stem Cells datasets. We note that our graph-sc implementation 
increases slightly from 0.7 to 0.709 and from 0.78 to 0.82 on 10X PBMC 4K and Mouse 
Embryonic Stem Cells datasets respectively. scDCC performs similarly with the original 
implementation on the first dataset. On the other hand, we can also observe that our 
scDeepCluster achieves a similar performance to the original one on the first dataset 
but gets a worse performance on the second dataset since the variance among random 
seeds on the second dataset is large. What is more, scTAG in the original paper did not 
report its performance on both datasets. Instead, to have systematic evaluations, we fill 
the space of all missing reported performance. For the performance of five methods on 
more datasets, please refer to Additional file 5.

Single‑modality module―cell type annotation

In the single-modality module, cell type annotation is to annotate the cell type of an 
individual cell by comparing the query data to annotated reference data (e.g., a single-
cell atlas) or employing marker genes indicative of a particular cell type for annotation or 
modeling as supervised/semi-supervised learning task. Evaluation of model performance 
is based on prediction accuracy. Five existing works have been reimplemented under 
this task. scDeepsort [26] is a pre-trained cell type annotation method developed with 
a weighted GNN framework. Celltypist [64] is a multinomial logistic regression model 
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for classification. SingleCellnet [65] is a random forest-based method, and support vec-
tor machine (SVM) [66] is a traditional support vector machine based method to enable 
the classification of scRNA-seq data. ACTINN [33] is a neural network-based method 
via multilayer perceptron. Two benchmark datasets have been collected for this task. 
HCL [67] dataset consists of 562,977 cells, while MCA [68] dataset consists of 201,764 
cells. Figure  4b shows performance comparison between our implementation and the 
original implementation of such five popular methods on the MCA dataset (Mouse Brain 
2695 and Mouse Spleen 1759). We can see that most of our implementation models 

Fig. 4  Performance comparison between our implementation and original implementation for supported 
tasks in the single-modality module. DANCE result represents the mean performance across 20 randomly 
chosen seeds, while the original result refers to the performance directly extracted from the original paper. 
a Clustering task. b Cell type annotation task. c Imputation task. Note: N/A indicates no performance report 
from the original paper



Page 10 of 28Ding et al. Genome Biology           (2024) 25:72 

outperform or match the original implementation on both Mouse Brain 2695 and Mouse 
Spleen 1759 datasets. scDeepsort outperforms the original implementation by a large 
margin on Mouse Brain 2695 while ACTINN outperforms the original implementation 
greatly on Mouse Spleen 1759. We also observe that the performance of our scDeepsort 
and ACTINN is lower than the reported performance from the paper on Mouse Kidney 
203 in Additional file 5, which may be explained by the deviation from our implementa-
tion or the reported performance from the original paper. For performance comparison 
on more datasets, please refer to Additional file 5.

Single‑modality module―imputation

In the single-modality module, imputation is to correct erroneous zeros by calculat-
ing plausible values for gene-cell pairs. For scRNA-seq data, imputation generates 
false count values for non-expressed genes, but for DNA methylation, imputation 
provides just the binary one or zero. Mean squared error (MSE) is used as an evalu-
ation metric. Two GNN-based methods and one neural network-based method have 
been reimplemented under this task. scGNN [40] employs an integrative AE frame-
work that combines gene regulatory signals for scRNA-seq gene expression imputa-
tion. GraphSCI [41] employs a graph autoencoder on a cell graph and reconstructs 
the input using the graph as additional input. DeepImpute [32] constructs multiple 
neural networks in parallel to infer target genes from an input collection of genes. 
Four benchmark datasets have been collected for benchmarking under the impu-
tation task. 10X PBMC 5K  [69] dataset consists of 5247 cells and 33,570 genes for 
each cell. Human Embryonic Stem Cells (Human ESC)  [70] dataset consists of 758 
cells and 17,826 genes for each cell. Mouse Neuron Cells 10k  [69] dataset contains 
11,843 cells and 31,053 genes for each cell. Mouse ESC [56] dataset is composed of 
2717 cells and 24,175 genes for each cell. Figure 4c shows performance comparison 
on 10X PBMC 5K (Mouse Brain) and Mouse ESC (Mouse Embryo). It is obviously 
noticed that GNN-based methods like scGNN and GraphSCI outperform simple 
neural network methods like DeepImpute greatly on both datasets. The perfor-
mance reports of all three models are missing on both standard benchmark datasets, 
and we also fill the gap for systematic evaluation.

Multimodality module―modality prediction

In the multimodality module, modality prediction is to predict another modality 
like antibody-derived tags (ADT) given one modality like single-cell RNA-seq gene 
expression (GEX) for the same cell. Root mean square deviation (RMSE) is employed 
to evaluate how well the model performs on the task. Four deep learning-based meth-
ods have been reimplemented under this task. scMoGNN [11] for this task is an AE-
based method to minimize the loss between one modality and another one. The input 
to the graph encoder is a cell-feature bipartite graph converted from the original 
input feature matrix. BABEL [36] trains two neural network-based encoders and two 
decoders to translate data from one modality to the other and reconstruct itself as 
well. Cross-modal autoencoders  [37] uses AEs to map significantly distinct modali-
ties (including pictures) to a common latent space. scMM [38] is a generative model 
which makes use of a mixture-of-experts (MoE) multimodal variational autoencoder 
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(VAE) to investigate the latent dimensions associated with multimodal regulatory 
programs. Openproblems Neurips2021 competition datasets [71] have been collected 
for benchmarking under this task. Openproblems Neurips2021 CITE and Openprob-
lems Neurips2021 Multiome contain 81,241 cells and 62,501 cells, respectively. As we 
can see from Fig. 5a, the GNN-based method scMoGNN outperforms other methods 
on both sub-task datasets GEX2ADT and GEX2ATAC. GEX2ADT means given GEX 
to predict ADT while GEX2ATAC means given GEX to predict ATAC. Most of the 
models have not been tested on those two datasets. We report all performances for a 

Fig. 5  Performance comparison between our implementation and original implementation for supported 
tasks in the multi-modality module. DANCE result represents the mean performance across 20 randomly 
chosen seeds, while the original result refers to the performance directly extracted from the original paper. 
a Modality prediction task. b Modality matching task. c Joint embedding task. NOTE: N/A indicates no 
performance report from the original paper
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fair comparison. For more sub-task datasets like ADT2GEX and ATAC2GEX, please 
refer to Additional file 5.

Multimodality module―modality matching

In the multimodality module, modality matching is to match the profiles of each cell 
from different modalities. The task is evaluated by accuracy. Same with modality predic-
tion, scMoGNN, scMM, and cross-modal autoencoders have been reimplemented with 
modifications to be suitable for this task. Details of modifications about three models 
can be found in Additional file 1. The same benchmark datasets with modality predic-
tion have been benchmarked for this task. Similar finding on modality prediction, we 
can see that GNN-based method scMoGNN outperforms other methods by a huge mar-
gin on both sub-task datasets in Fig. 5b.

Multimodality module―joint embedding

In the multimodality module, joint embedding is to learn joint embedding from multiple 
modalities like GEX and ADT. ARI is employed as an evaluation metric. scMoGNN has 
been adjusted and implemented to solve this problem. In addition, JAE is a typical AE 
architecture with an encoder and a decoder, an adapted model from scDEC [72]. scM-
VAE [39] simultaneously employs three learning methodologies to discover the distribu-
tion of multi-omics: product of experts (PoE), neural networks, and concatenation of 
multi-omics features. DCCA [39] is a VAE-based method. Each VAE undergoes inde-
pendent training with each modality. Two VAEs are then trained in tandem to optimize 
the similarity between two latent spaces. Same benchmark datasets with the previous 
two tasks, as shown in Fig. 5c, GNN-based method scMoGNN resides in TOP 2 on both 
sub-task datasets. All methods have not been evaluated on both datasets, and we fill the 
gap for systematic evaluation.

To make the evaluation more systematic and comprehensive, we additional support 
biology conservation metrics and batch removal metrics under this task in addition to 
ARI metric. For biology conservation evaluation, normalized mutual information (NMI) 
metric is adopted to compare the overlap of two clusterings, and cell cycle conservation 
(Cc_cons) score metric is served as a proxy for the preservation of the signal associated 
with gene programs during data integration. For batch removal evaluation, ASW batch 
(ASW_batch) metric is used to quantify batch mixing by taking into account the incom-
patibility of batch labels per cell type cluster, and graph connectivity (Graph_conn) 
metric is employed to determine whether cells of the same kind from various batches 
are embedded close to one another. The benchmarking results for those metrics can be 
found in Additional file 5.

Spatial transcriptomics module―spatial domain identification

In the spatial transcriptomics module, spatial domain identification seeks to cluster 
spatial data into a series of meaningful groups. Each group discovered is regarded as a 
spatial domain. ARI is employed as an evaluation metric for this task. Two GNN-based 
methods and two traditional methods have been reimplemented. SpaGCN [42] is a 
GCN-based method for locating geographic domains and variable genes by integrating 
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gene expression and histology. STAGATE [43] is a graph attention method based on AE 
framework that learns low-dimensional latent embeddings using gene expression and 
geographical data. Louvain [73] is an iterative strategy for optimizing modularity that 
is used for network community detection. stLearn [74] does unsupervised clustering on 
the data that has been normalized by SMEs in order to aggregate similar regions into 
clusters and find sub-clustering based on the geographic separation of clusters within 
the tissue. The most popular benchmark dataset LIBD human dorsolateral prefrontal 
cortex [75] has been collected, and it contains 12 slices. As shown in Fig. 6a, it is obvi-
ous that two GNN-based methods SpaGCN and STAGATE outperform others on both 
slices. Our STAGATE achieves similar results to the original implementation. For aver-
age performance on all 12 slices, please refer to Additional file 5.

Spatial transcriptomics module―cell type deconvolution

In the spatial transcriptomics module, cell type deconvolution is to estimate cell 
type proportions in spatial transcriptomic data. MSE is used as an evaluation metric. 
One GNN-based method and four traditional methods have been reimplemented 
under this task. DSTG [44] deconvolutes spatial transcriptomic data using graph-
based convolutional networks in order to precisely deconvolve the observed gene 
expressions at each location and restore their cell constitutions. SPOTlight [76] is a 

Fig. 6  Performance comparison between our implementation and original implementation for supported 
tasks in the spatial transcriptomics module. DANCE result represents the mean performance across 20 
randomly chosen seeds, while the original result refers to the performance directly extracted from the 
original paper. a Spatial domain identification task. b Cell type deconvolution task. Note: N/A indicates no 
performance report from the original paper
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computational method that integrates ST and scRNA-seq data to infer the location 
of cell types and states within a complicated tissue. It is centered on a seeded non-
negative matrix factorization (NMF) regression, which is initialized with cell type 
marker genes and non-negative least squares (NNLS) to deconvolute ST capture 
locations (spots). SpatialDecon [77] harnesses log-normal regression and modeling 
background to quantify cell populations defined by single-cell sequencing within the 
regions of spatial gene expression. CARD [78] is a conditional autoregressive-based 
deconvolution that combines cell type-specific expression information from scRNA-
seq with correlation in cell type composition across tissue locations. Four standard 
benchmark datasets have been collected for this task. Mouse Posterior Brain  [79] 
contains 3353 spots, Mouse Olfactory Bulb  [80] consists of 1185 spots, HEK293T 
and CCRF-CEM  [81] contain 56 mixtures, and Human PDAC  [82] includes 3353 
spots. As shown in Fig.  6b, with our reimplementation, SPOTlight improves from 
0.16 to 0.011 on Mouse Posterior Brain (SPOTlight Synthetic) and from 0.118 to 
0.022 on Mouse Olfactory Bulb (CARD Synthetic). For performance comparison on 
more datasets, please refer to Additional file 5.

GPU acceleration

In addition to the mentioned similar or better performance of our implementation, we 
also demonstrate the computational improvement using the GPU implementations in 
DANCE that are not supported by the original sources. We take SpaGCN and STA-
GATE models in the task of spatial domain identification as examples. All experiments 
in this demonstration are carried out on the device with the same memory of 16GB. 
For GPU supported environment, we use a single node with amd20-v100 while we use 
a single node with amd20 for CPU running testing. The reported time consumption is 
from the average of five runs. Following the original papers, SpaGCN is trained with 500 
epochs while STAGATE is trained with 2000 epochs. As shown in Fig. 7a, as the num-
ber of training cells increases, the computational advantage of our SpaGCN with GPU 
support becomes more appreciable from the perspective of training time. This phenom-
enon is more obvious in the STAGATE model as shown in Fig.  7b. The training time 

Fig. 7  The comparison of time consumption in model training between implementations with CPU and 
GPU support. The original implementation comes with CPU but not GPU acceleration while ours is enhanced 
with GPU support. The SpaGCN and STAGATE with GPU is the implementation in our DANCE. a SpaGCN 
model in spatial domain identification task. b STAGATE model in spatial domain identification task



Page 15 of 28Ding et al. Genome Biology           (2024) 25:72 	

consumption for our STAGATE is 21 s, 26 s, 39 s, and 56 s corresponding to the training 
cells of 500, 1500, 3000, and 5000 cells, which are 16x, 36x, 45x, and 50x times speedup 
of the STAGATE implementation with CPU support, respectively. As the number of 
training cells continues to increase, our acceleration factor will expand greatly.

Easy reproduction

Due to the lack of a publicly available codebase and variances in programming lan-
guages, the diversity and complexity of deep learning methods make it difficult for 
researchers to reproduce the results from the original papers. Another reason spe-
cifically for deep learning approaches that cannot be overlooked is hyperparameter 
tuning. Hyperparameter tuning is to find a set of optimal hyperparameter values for a 
learning algorithm while applying this optimized algorithm to any data set. This com-
bination of hyperparameters maximizes the performance of the model on a specific 
dataset. The hyperparameters here are not only model-specific parameters but also 
the common neural network parameters that must be tuned, such as the number of 
neurons in the neural network layer, activation function selection, weight decay, and 
learning rate.

Note that hyperparameter tuning is an empirical task. Based on our many years 
of tuning experience for deep learning approaches, we execute exhaustive hyperpa-
rameter tunning experiments to get optimal model performance on a certain dataset 
offline and then wrap those optimal hyperparameters values into one command line 
for reproduction. In such case, users only need to run one command line to obtain 
reported performance. We have recorded all command lines at the end of model 
usage example files in DANCE package (https://​github.​com/​Omics​ML/​dance). The 
below introduces a few examples of DSTG [44] model on certain benchmark datasets 
in the task of cell type deconvolution.

DSTG model on CARD synthetic benchmark dataset:

DSTG model on GSE174746 benchmark dataset: 

DSTG model on SPOTLight synthetic benchmark dataset: 

https://github.com/OmicsML/dance
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In addition, if a newly model is added into DANCE, end users can easily execute the 
command line by specifying searching space of any interested parameter in the com-
mand line for hyperparameter tunning.

Extensible benchmarking

The DANCE platform is the standard, flexible, and extensible benchmark platform 
for accessing and assessing computational methods across a spectrum of benchmark 
datasets for a variety of single-cell analysis tasks. Note that even though the limited 
tasks, models, and benchmark datasets are supported in DANCE, DANCE is being 
implemented in a highly modular manner, allowing it to be readily expanded and 
maintained by a community.

We will also keep contributing to include more tasks, models, and benchmark data-
sets. Our goal is to build up a deep learning and benchmarking community. A HANDS-
ON LAB, LIVE TUTORIAL was hosted by the DANCE team in June this year via Zoom 
to guide users on how to use DANCE including DANCE environment setup, data load-
ing and processing, basic deep learning framework walk-through, example methods 
providing a detailed, step-by-step tutorial for each task. We have provided a detailed 
tutorial notebook that can be launched from Google Colab in a dedicated repository 
(https://​github.​com/​Omics​ML/​dance-​tutor​ials/​blob/​tutor​ial-​v1/​dance_​tutor​ial.​ipynb). 
We encourage the community to contribute to this extensible benchmark platform to 
facilitate the overall advancement of single-cell analysis research. For open-source con-
tributions, please refer to Additional file 4 for more details about contribution instruc-
tions in DANCE.

Conclusions
In the realm of single-cell analysis, computational approaches have brought an increas-
ing number of fantastic prospects for innovation and invention. Meanwhile, it also pre-
sents enormous hurdles to reproducing the results of these models due to their diversity 
and complexity. In addition, the lack of gold-standard benchmark datasets, metrics, 
and implementations prevents systematic evaluations and fair comparisons of avail-
able methods. Thus, we introduce the DANCE platform, the first standard, generic, and 
extensible benchmark platform for accessing and evaluating computational methods 
across the spectrum of benchmark datasets for numerous single-cell analysis tasks. Cur-
rently, DANCE supports 3 modules and 8 popular tasks with 32 state-of-art methods 
on 21 benchmark datasets. The performance of our reimplemented models is equivalent 
or even superior to that of the models in the original papers. We find that the major-
ity of existing works have only reported their performance on limited datasets and in 
comparison with insufficient methods. We also find that the majority of the existing 
works cannot consistently perform well through all our collected benchmark datasets. 
Those prove that comprehensive benchmark datasets and metric evaluation are highly 
desired in this community. Moreover, we implement all models in a unified development 
environment based on the python language with Pytorch, DGL, and PyG as backbone 
frameworks. The interfaces across tasks to download data, read training/test data and 

https://github.com/OmicsML/dance-tutorials/blob/tutorial-v1/dance_tutorial.ipynb
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train/test models are all unified. Both will greatly facilitate further DANCE development 
and easy maintenance, and provide a consistent user experience.

Another highlight of DANCE is the easy reproducibility of models. For each task, each 
implemented method in DANCE is tuned on all gathered standard benchmarks using 
a grid search to obtain the optimal model, and the corresponding hyperparameters are 
recorded in a single command line for easy user reproducibility. Last but not the least, 
due to the nature of extensible feature of our DANCE platform, more additional single-
cell analysis tasks, models, and benchmark datasets are easily added and supported into 
DANCE platform to further enhance the significance and practical utility of the DANCE.

Methods
DANCE implementation and design overview

Environment requirements and setup

DANCE works on python ≥ 3.8 and Pytorch ≥ 1.11.0 . All dependencies are listed in 
Additional file 2. After cloning this repository, run setup.py to install DANCE into the 
local python environment or install it directly from pip install as below:

The architecture design and implementation

Figure  8 provides an overall design of the architecture of the DANCE package. The 
DANCE package consists of two key components: lower-level infrastructure and upper-
level task development.

Fig. 8  The architecture of DANCE package
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Lower-level infrastructure
From the hardware perspective, CPU running is supported for all methods developed 

in DANCE. In addition, for deep learning-based methods, we also support GPU running 
to accelerate the training process, especially for large-scale datasets. In the future, clus-
ter running for deep learning methods would be also developed to support model train-
ing across multiple GPUs. The backbone framework in DANCE is Pytorch [29], which 
is used for high-performance deep learning model development. To support various 
methods for deep learning on graphs and other irregular structures, we take both DGL 
[30] and PyG [31] as graph engines in DANCE. Various types of preprocessing func-
tionalities are provided in the Transforms folder to process data before model training. 
For methods based on GNNs, we also support distinct ways of graph construction to 
convert cell-gene data like RNA sequencing (RNA-seq) to cell-cell, cell-gene, and gene-
gene graphs. What is more, spatial coordinates and image features of single cells can 
be also extracted to help construct graphs for spatial transcriptomics. Those lower-level 
interfaces are helpful for developers to build their models on downstream tasks without 
building “wheels” from scratch.

Upper-level task development
Based on the infrastructure described above, individual modules and tasks can be fur-

ther defined and developed. Currently, we support tasks under single modality profil-
ing, multimodal profiling, and spatial transcriptomics modules, which correspond to 
three stages of single-cell technology development. Under each module, classic tasks are 
covered, and representative methods are implemented through the evaluation of sev-
eral standard benchmarks. Note that upper-level task development is highly flexible and 
extensible. This indicates that users can readily extend their new modules, tasks, models, 
and datasets into the existing repository of DANCE.

Benchmark datasets supported in DANCE

All supported benchmark datasets across 8 tasks in DANCE are summarized in Table 2. 
For each supported dataset, we list what type of species and tissue it is about, dataset 
dimensions including the number of cells and genes, and also the protocol about how to 
generate the dataset for reference. In the column of “Availability,” the dataset link is pro-
vided once you click the reference.

Task definition and evaluation metrics

Single‑modality module―imputation

The goal of imputation for scRNA-seq data is to address artificial zeros in scRNA-
seq data generated during the sequencing process systematically or by chance due to 
technological limitations. Imputation aims at correcting these artificial zeros by fill-
ing in realistic values that reflect true biological gene expressions [83]. Thus, a good 
imputation method should be able to distinguish artificial zeros from biologically true 
zeros and recover true expressions for artificial zeros. As the corresponding biologi-
cally true expression values are unavailable for entries of artificial zeros in the gene-
cell matrix, dropouts are simulated for benchmarking such that metrics such as cosine 
similarity, correlations, or MSE-related metrics can then be used to evaluate imputation 
algorithms.
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Table 2  A summary of all supported benchmark datasets in DANCE

Module Task Dataset Species and 
tissue

Dataset 
dimensions

Protocol Availability

Single modality Imputation 10X PBMC 5K Human, PBMC 5247 cells 10x Genomics [69]

33,570 genes

Human Embryonic 
Stem Cells (ESC)

Human, ESC 758 cells Illumina HiSeq 
2500

[70]

17,826 genes

Mouse Neuron 
Cells 10k

Mouse, Neuron 11,843 cells 10x Genomics [69]

31,053 genes

Mouse ESC Mouse, Neuron 2717 cells Droplet Barcod-
ing

[56]

24,175 genes

Cell type 
annotation

HCL Human 562,977 cells Smart-seq2 [67]

56 tissues

MCA Mouse 201,764 cells Smart-seq2 [68]

32 tissues

Clustering 10X PBMC 4K Human, PBMC 4271 cells 10x Genomics [53]

16,653 genes

Mouse Bladder 
Cells

Mouse, Bladder 2746 cells Microwell-seq [54]

20,670 genes

Worm Neuron 
Cells

Worm, Nerve 4186 cells sci-RNA-seq [55]

13,488 genes

Mouse Embryonic 
Stem Cells

Mouse, Embryo 2717 cells Droplet Barcod-
ing

[56]

24,175 genes

Multimodality Modality 
prediction

Openproblems 
Neurips2021 CITE

Human, BMMC 81,241 cells 10X TotalSeq B [71]

13,953 genes

134 surface 
proteins

Openproblems 
Neurips2021 
Multiome

Human, BMMC 62,501 cells 10X Multiome [71]

13,431 genes

116,490 peaks

Modality 
matching

Openproblems 
Neurips2021 CITE

Human, BMMC 81,241 cells 10X TotalSeq B [71]

13,953 genes

134 surface 
proteins

Openproblems 
Neurips2021 
Multiome

Human, BMMC 62,501 cells 10X Multiome [71]

13,431 genes

116,490 peaks

Joint embed‑
ding

Openproblems 
Neurips2021 CITE

Human, BMMC 81,241 cells 10X TotalSeq B [71]

13,953 genes

134 surface 
proteins

Openproblems 
Neurips2021 
Multiome

Human, BMMC 62,501 cells 10X Multiome [71]

13,431 genes

116,490 peaks

Spatial Spatial 
domain

LIBD Human Dor-
solateral Prefrontal 
Cortex

Human, Dorso-
lateral prefrontal 
cortex

12 slices 10X Visium [75]

Slice 151673:

3639 spots

33,538 genes

Cell type 
deconvolution

Mouse Posterior 
Brain

Mouse, Posterior 
brain

3353 spots 10X Visium [79]

31,053 genes

Mouse Olfactory 
Bulb

Mouse, Olfactory 
bulb

1185 spots 10X Visium [80]

11,176 genes
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Single‑modality module―cell type annotation

Cell type annotation targets applying statistics of cellular properties to infer cell types. 
Given the gene expression of several cell types, for each cell with a certain single-cell 
expression matrix, the degree of similarity can be calculated. Based on the optimal 
similarity result, the cell type can then be inferred. In DANCE, we support 5 models 
that establish measurements of evaluating the similarity of gene expression profiles of 
unknown cells to gene expression matrices of known cell types. The model performance 
is evaluated by prediction accuracy.

Single‑modality module―clustering

Clustering is a crucial part of single-cell analysis. With clustering, researchers can iden-
tify cell types or cell type subgroups within the gene expression data. In the clustering 
task, we now support 5 models. The first 3 models are GNN based, and the later 2 mod-
els are non-GNN based with AE as the backbone. The clustering performance is evalu-
ated by ARI.

Multimodality module―modality prediction

Modality prediction is to predict features of a target modality from features of an input 
modality. The evaluation is based on RMSE between ground-truth features and predic-
tion. In this task, DANCE supports 4 models. All of them are deep learning models, one 
of which is based on graph neural networks.

Multimodality module―modality matching

The objective of the modality matching task is to identify cell correspondence across 
modalities. To be concrete, we separate each modality of the jointly profiled dataset into 
a subset, and the order of cells in each subset is disturbed. In the training dataset, the 
cell correspondence labels between subsets are given. While in the testing data, the cor-
respondence is not given. The model needs to learn to identify cell correspondence from 
the labeled training data and evaluate it on the testing data. To provide a more flexible 
protocol, the model output is adapted to a matching score matrix S ∈ R

n×n , where n is 
the number of cells, and Si,j is the probability that cell i from one modality corresponds 
to cell j from the other modality. Therefore, S is a non-negative matrix where each row 
sums to 1. As metrics, we compute the average probability assigned to the correct 
matching. In this module, DANCE now supports 3 models. All of them are deep learn-
ing models, one of which is based on GNNs.

Table 2  (continued)

Module Task Dataset Species and 
tissue

Dataset 
dimensions

Protocol Availability

HEK293T and 
CCRF-CEM

Human 56 mixtures NanoString 
GeoMx

[81]

1414 genes

Human PDAC Human, Pan-
creas

3353 spots Spatial Transcrip-
tomics

[82]

31,053 genes
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Multimodality module―joint embedding

Joint embedding aims to encode features from two modalities into a low-dimensional joint 
latent space. To be consistent with the NeurIPS competition [84], we set the latent dimen-
sion size less than or equal to 100. For the evaluation, currently, we only support normalized 
mutual information(NMI) and ARI with the k-means clustering as metrics in our DANCE 
package. These metrics evaluate the consistency between latent clusters and the ground-
truth cell type labels. More comprehensive metrics were introduced in the competition, and 
we are going to incorporate them into our package in the future. In this task, DANCE now 
supports 4 models. All of them are deep learning models, one of which is a GNN.

Spatial transcriptomics module―spatial domain

In spatial transcriptomics, the spatial data is referring to spots with x,y coordinates, and 
each spot captures several cells. The objective of the spatial domain is to partition the 
spatial data into meaningful clusters. Each cluster uncovered by this analysis is regarded 
as a spatial domain. Spots in the same spatial area are comparable and consistent in gene 
expression and histology, but spots in different spatial regions are distinct [85]. For eval-
uation, ARI [86] is utilized to compare the efficacy of various clustering techniques. It 
computes the similarity between the algorithm-predicted clustering labels and the actual 
labels. In the spatial domain task, DANCE supports 4 models including 2 GNN-based 
models and 2 traditional models.

Spatial transcriptomics module―cell type deconvolution

Cell type deconvolution is the task of estimating cell type composition in cell pools from 
their aggregate transcriptomic information. This is a type of inverse problem, as we are 
trying to determine the signal of individual cell types from aggregated readings across 
multiple cell types. Moreover, due to the nature of the spatial (or bulk) transcriptomics 
profiling technologies, the true cell type compositions are most often not given. For the 
task of cell type deconvolution, DANCE supports 4 models, one GNN-based model, and 
3 non-GNN-based models with classical regression models as their backbone. The per-
formance is evaluated by MSE.

Reimplemented models in DANCE

DANCE currently supports total 32 models, which are 3 models in imputation, 5 models 
in cell type annotation, 5 models in clustering, 4 models in modality prediction, 3 mod-
els in modality matching, 4 models in joint embedding, 4 models in the spatial domain, 
and 4 models in cell type deconvolution. The below will briefly introduce each method. 
For more details about each model, please refer to Additional file 1.

Single‑modality module―imputation

dance.modules.single_modality.imputation.deepimpute
DeepImpute [32] builds multiple neural networks in parallel to impute target genes 

using a set of input genes.
dance.modules.single_modality.imputation.scgnn
scGNN [40] uses an integrative autoencoder framework for scRNA-seq gene expres-

sion imputation that incorporates gene regulatory signals (TRS).
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dance.modules.single_modality.imputation.graphsci
GraphSCI [41] is a GNN-based method to impute scRNA-seq data expressions. It uses 

two autoencoders: one being a graph autoencoder on a cell graph, and the other recon-
structs the input using the graph as additional input.

Single‑modality module―cell type annotation

dance.modules.single_modality.cell_type_annotation.scdeepsort
 Scdeepsort [26] a pre-trained cell type annotation method. It is developed with a 

weighted GNN framework and then trained on two embedded high-quality scRNA-seq 
atlases containing 764,741 cells from 88 human and animal tissues.

dance.modules.single_modality.cell_type_annotation.celltypist
 Celltypist [64] is a multinomial logistic regression classifier with stochastic gradient 

descent learning.
dance.modules.single_modality.cell_type_annotation.singlecellnet
 SingleCellnet [65] revamped the random forest classifier method to enable the classi-

fication of scRNA-seq data cross platforms and cross-species. It sends the input features 
into a number of decision tree classifiers and uses majority voting to make predictions.

dance.modules.single_modality.cell_type_annotation.actinn
 ACTINN [33] proposes a neural network-based model for cell type annotation. It 

applies multilayer perceptron for the identification of cell types.
dance.modules.single_modality.cell_type_annotation.svm
 SVM is widely adopted as a benchmark in many studies [26, 66]. It works by mapping 

data to a high-dimensional feature space so that data points can be categorized even 
when the data are not linearly distinct.

Single‑modality module―clustering

dance.modules.single_modality.clustering.scdeepcluster
 scDeepCluster [34] is a ZINB-based AE method for clustering.
dance.modules.single_modality.clustering.scdcc
 scDCC [52] shares the same model structure as scDeepCluster. In the training pro-

cess, pairwise constraints are integrated into the loss function.
dance.modules.single_modality.clustering.graphsc
 graph-sc [25] is GNN-based method for clustering scRNA-seq data by constructing 

gene-to-cell graph as the input of graph autoencoder.
dance.modules.single_modality.clustering.sctag
 scTAG [51] first generates a K-nearest neighbor cell-to-cell graph. It then adopts a ZINB-

based graph autoencoder to process it, which takes TAGCN [63] as the graph encoder.
dance.modules.single_modality.clustering.scdsc
 scDSC [35] is deep structural clustering for single-cell RNA-seq data jointly through 

autoencoder and graph neural network.

Multimodality module―modality prediction

dance.modules.multi_modality.predict_modality.scmogcn
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 scMoGNN [11] is a GNN-based method where the input feature matrix is converted 
into a cell-feature bipartite graph, where each node represents a cell or feature.

dance.modules.multi_modality.predict_modality.babel
 BABEL  [36] trains two neural-network-based encoders and two decoders on the 

paired data to translate data from one modality to the other and to reconstruct itself, 
thus eventually obtaining shared embedding.

dance.modules.multi_modality.predict_modality.cmae
 Cross-modal autoencoders [37] use AEs to map vastly different modalities (including 

images) to a shared latent space.
dance.modules.multi_modality.predict_modality.scmm
 scMM [38] leverages a MoE multimodal VAE [87] to explore the latent dimensions 

that associate with multimodal regulatory programs.

Multimodality module―modality matching

dance.modules.multi_modality.match_modality.scmogcn
 The overall structure of scMoGNN in the modality matching task is the same as in 

the modality prediction task. However, in the modality prediction task, the input is only 
one modality, while in the modality matching task, features of two modalities are given 
altogether. Therefore, scMoGMM constructs two graphs for two modalities respectively.

dance.modules.multi_modality.match_modality.cmae
 The overall structure of cross-modal autoencoders is the same as in the modality pre-

diction task, where we implement encoders and decoders for all the modalities. Hereby, 
in the modality matching task, we directly utilize the latent space instead of using a 
decoder to generate target modality.

dance.modules.multi_modality.match_modality.scmm
 The overall structure of scMM is the same as in the modality prediction task, where 

we implemented a neural network encoder for each modality to estimate the variational 
posterior. In the modality matching task, we hereby take the latent vectors generated by 
encoders as the source for matching.

Multimodality module―joint embedding

dance.modules.multi_modality.joint_embedding.scmogcn
 The overall structure of scMoGNN in the joint embedding task is still similar to what 

is shown in the modality prediction task. However, different from previous tasks, here 
scMoGNN first reduces the input dimension. Next, the preprocessed features of two 
modalities are concatenated and jointly considered as feature nodes in the graph con-
struction. scMoGNN is further trained by minimizing a reconstruction loss, a cell type 
auxiliary loss, and a regularization loss.

dance.modules.multi_modality.joint_embedding.jae
 JAE is an adapted model from scDEC [72]. It is proposed by the authors of scDEC in 

the NeurIPS competition [84] to better leverage cell annotations. Formally, JAE follows 
the typical AE architecture with an encoder and a decoder.

dance.modules.multi_modality.joint_embedding.scmvae
 scMVAE  [39] learns the distribution of multi-omics via three learning strategies 

simultaneously: PoE, neural networks, and concatenation of multi-omics features.
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dance.modules.multi_modality.joint_embedding.dcca
 In DCCA [39], each modality is modeled by a VAE. Each VAE is first trained sepa-

rately with each modality. Then, two VAEs are trained together to maximize the similar-
ity between two latent spaces.

Spatial transcriptomics module―spatial domain

dance.modules.spatial.spatial_domain.spagcn
 SpaGCN [42] is a GCN-based method via integrating gene expression and histology 

to find spatial domains and variable genes.
dance.modules.spatial.spatial_domain.stagate
 STAGATE [43] is a graph attention-based autoencoder [45] to learn low-dimensional 

latent embeddings from gene expression and spatial information.
dance.modules.spatial.spatial_domain.louvain
 Louvain [73] is an iterative modularity optimization method for network community 

detection.
dance.modules.spatial.spatial_domain.stlearn
 stLearn [74] performs unsupervised clustering on SME-normalized data to group 

similar areas into clusters and discover sub-clustering alternatives based on the geo-
graphic separation of clusters inside the tissue.

Spatial transcriptomics module―cell type deconvolution

dance.modules.spatial.cell_type_deconvo.dstg
 DSTG [44] is a GCN-based method whose graph is constructed on mutual nearest 

neighbors of low-dimensional embeddings of simulated and real mixed-cell data.
dance.modules.spatial.cell_type_deconvo.spotlight
 SPOTlight [76] is an extension of NMFReg, with non-negative matrix factorization 

applied to both the scRNA reference matrix and the mixed-cell expression matrix.
dance.modules.spatial.cell_type_deconvo.spatialdecon
SpatialDecon [77] is a non-negative linear regression-based method that assumes a 

log-normal multiplicative error model between the mixed-cell data and a cell-profile 
(signature) matrix.

dance.modules.spatial.cell_type_deconvo.card
CARD [78] applies a conditional autoregressive (CAR) assumption on the coefficients 

of the classical non-negative linear model between the mixed-cell expression and a cell-
profile matrix, constructed from reference scRNA-seq.
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