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Background
Recent innovations in single-cell sequencing technologies have enabled the interro-
gation of genomic, epigenomic, transcriptomic, and proteomic heterogeneity at the 
unprecedented resolution of cellular level [1]. Droplet microfluidics, which allows for 
capturing and processing large numbers of individual cells in a massively parallel strat-
egy with minimal reagent cost [2, 3], is one of the most widely used high-throughput 
single-cell sequencing technologies. Basically, only one cell/nucleus is supposed to be 
captured by one droplet when sequencing. Nevertheless, due to the technical restriction 
of droplet microfluidics, two or more cells/nuclei are frequently captured in one droplet 
and bound with the same oligonucleotide barcode sequence [4–6], creating a so-called 
doublet/multiplet that is disguised as one single cell. The presence of doublets can con-
found downstream analyses by, for example, constituting spurious cell clusters, inter-
fering with the analysis of differential patterns, and obscuring functional enrichment 
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analysis [7]. Therefore, detecting and removing doublets from single-cell sequencing 
data is an essential step to improve the accuracy of downstream analyses and thus reveal 
biological implications.

Single-cell RNA sequencing (scRNA-seq), which improves the understanding of the 
functional states of individual cells based on gene expression levels [8, 9], has chron-
ically suffered from the doublet issue [7]. In  vitro methods were initially proposed to 
detect doublets in scRNA-seq data. For example, Stoeckius et al. introduced Cell Hash-
ing, where oligo-tagged antibodies that can uniquely label the samples are sequenced 
together with the cells, and the cross-sample doublets can be identified by assigning the 
cell to its original sample based on the sequencing results of such oligo-derived hashtags 
[10]. However, in addition to the extra cost when sequencing, Cell Hashing can only 
identify the sample-crossed doublets, failing to identify those intra-sample doublets 
originating from diverse cell types when the samples are too small or fragile to be split 
and recombined.

In silico methods were then proposed to improve the efficacy to detect doublets in 
scRNA-seq data. Demuxlet harnesses known natural genetic variation to identify the 
doublets [4]. However, the high droplet heterogeneity often requires extra bulk-sequenc-
ing to provide accurate single-nucleotide polymorphism (SNP) information as the ref-
erence for doublet-detection, making Demuxlet time- and cost-consuming. Thereby, 
a number of computational methods that are free of extra-biological implements have 
been proposed. The majority of existing methods are simulation-based and tackle the 
doublet-detection task by training a binary classifier using the original droplets as “sin-
glets” and the simulated artificial doublets as “doublets” [7].

Similar to scRNA-seq data, single-cell chromatin accessibility sequencing (scCAS) 
data, which enables the investigation of epigenomic landscape in individual cells [11], is 
also confounded by doublets, especially for the prevalent application of droplet micro-
fluidics. However, doublet-detection in scCAS data is more challenging than in scRNA-
seq data since the assay-specific challenges of scCAS data, including their low capture 
rate, close-to-binary nature, extreme sparsity, and tens of times higher dimensions than 
scRNA-seq data [12–14]. Several doublet-detection methods have been developed spe-
cifically for scCAS data. These methods can be divided into two main categories: (1) 
simulation-based approaches, such as SnapATAC [15] and ArchR [6], which are simi-
lar to the major methods tailored for scRNA-seq data, and (2) read-based approaches, 
such as AMULET [16], which are based on the principle that the expected number of 
uniquely aligned reads covering any region in the genome will not exceed two for dip-
loid. We note that both SnapATAC and ArchR are widely used pipelines for scCAS data 
analysis, and SnapATAC directly integrates Scrublet (a method for scRNA-seq data) [5] 
to detect doublets, while ArchR constructs a cell-by-bin matrix at a resolution of 500 bp, 
performs latent semantic indexing, and trains a classic K-nearest neighbors (KNN) clas-
sifier to detect doublets.

In this study, we focus on the more challenging task of doublet-detection in scCAS 
data. Besides, we focus on the detection of heterotypic doublets formed by cells of dis-
tinct types, lineages, or states, but not homotypic doublets formed by transcriptionally 
similar cells, since the gene expression profiles of homotypic doublets are similar to 
those of singlets of the same cell type and the existence of homotypic doublets does not 
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much affect cell clustering [5, 7]. We also demonstrate that heterotypic doublets may 
confound the downstream analysis more seriously than homotypic doublets (Additional 
file 1: Fig. S1).

Although several methods have been proposed, there are still non-negligible limita-
tions to be addressed. First, Xi and Li systematically benchmarked the performance 
of doublet-detection methods for scRNA-seq data and concluded that the methods 
exhibited a large variation in their performance, indicating that there is still room for 
methodology improvement even for scRNA-seq data [7]. Second, the simulation-based 
approaches ignore that not all original droplets are singlets; otherwise, we would not 
need doublet detection. Therefore, existing methods neglect the differences between 
original droplets and singlets and do not supply their classification algorithms with qual-
ity training data, resulting in biased classifiers [7, 17]. Third, the read-based approach, 
i.e., AMULET, although showing its advantage in detecting homotypic doublets, ignores 
the impact of cell division cycle and tends to detect the cells that are at interphase as false 
homotypic doublets. In addition, it often fails to detect the heterotypic doublets whose 
overlapped regions are rarely derived from distinct accessible profiles [16]. Fourth, the 
heterotypic doublet-detection performance has not been systematically benchmarked 
using synthetic and real scCAS datasets of diverse protocols, sizes, dimensions, quali-
ties, and doublet rates.

To fill these gaps, we proposed scIBD, a scCAS-specific self-supervised iterative-opti-
mizing method to boost the detection of heterotypic doublets. As a simulation-based 
method, scIBD discards the routine random selection strategy that may yield excessive 
homotypic doublets in the simulation process. Instead, it uses an adaptive strategy to 
simulate high-confident heterotypic doublets and thus self-supervise for doublet-detec-
tion. Besides, scIBD adopts an iterative-optimizing strategy to detect the heterotypic 
doublets iteratively and finally outputs doublet scores based on an ensemble strategy.  
Extensive and comprehensive experimental results on 16 datasets, including fully-synthetic, 
semi-synthetic, and real scCAS data, demonstrate that scIBD can significantly outperform 
the current three state-of-the-art methods, including SnapATAC, ArchR, and AMULET, 
and provide the most robust performance. Furthermore, the downstream biological 
analyses, including cell clustering, differentially accessible region detecting, and functional 
enrichment analyses, show the realistic effectiveness of scIBD for scCAS data analysis. 
In addition, the extended application of scIBD on scRNA-seq data, demonstrate the 
robustness and versatility of scIBD.

Results
scIBD overview

The overview of scIBD is shown in Fig.  1. The intrinsic formation of doublets is 
described, and the resulting count matrices processed from the BAM/fragment files 
are used as the input of scIBD (Fig.  1a). The detailed scheme of scIBD is shown in 
Fig. 1b. Different from the existing simulation-based methods that simulate doublets 
by mixing droplets randomly selected from the scCAS data, scIBD first performs 
droplet clustering and then simulates high-confident heterotypic doublets based on 
the clustering results. For the droplets and the simulated doublets, scIBD then con-
structs an adaptive KNN graph and detects the potential doublets in an iterative 
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manner. In each iteration, the detected doublets no longer participate in clustering in 
the following iterations, and the subsequent clustering results can thus be improved 
without the noised doublets. Meanwhile, the better clustering results can then pro-
duce simulated heterotypic doublets with higher confidence, which in turn contrib-
ute to better doublet-detection performance in the following iterations. A reference 
doublet score list is used to record the doublet scores of the detected droplets and to 
participate in the KNN aggregation in the following iterations.

As shown in Fig. 1c, we extensively and comprehensively benchmarked scIBD with 
other three baseline methods, including SnapATAC [15], ArchR [6], and AMULET 
[16], on various datasets, including fully-synthetic, semi-synthetic, and real datasets 
derived from scCAS data (see the “Data collection and data processing” section). 
Details of the constructed 16 benchmark datasets are listed in Table 1, including the 
data size, doublet rate, median of sequencing depth, median of sparsity, number of 
annotated cell types, the valid read pair statistics of raw sequencing files, and the sil-
houette coefficient to measure the heterogeneity of the dataset. The fully-synthetic 
datasets were directly simulated based on the count matrices of the Forebrain data-
set; thus, the read statistics of raw sequencing files are not available. Following the 
standard pipeline introduced in EpiScanpy [18], the UMAP plots of all semi-synthetic 

Fig. 1 Overview of scIBD. a The formation of doublets in droplet-based scCAS. The input of scIBD is the cell 
by bin/peak matrix, which supports customized quality control and peak calling. b The scheme of scIBD. 
We present a pseudo-droplet simulation strategy where clustering is firstly performed, and then a bunch 
of artificial doublets are simulated, whose profiles are the union of the droplet profiles picked weighted 
by clusters. A reference vector of raw droplets is initialized with all values set to zero, indicating that all 
droplets have no contributions for detecting doublets primordially. In each iteration, scIBD computes 
doublet scores for all raw droplets based on their similarity to their nearest neighbors (KNN graph) and their 
previous scores (reference vector). The droplets with high doublet scores are detected as doublets, which 
no longer participate in the clustering in the following iterations. The artificial doublets are always re-created 
based on the newly clustering results in the current iteration. The reference vector is updated using the 
normalized doublet scores, which then influences the detection of doublets by participating in doublet 
score aggregating in the following iterations. c The performance evaluations of scIBD. We comprehensively 
benchmarked scIBD on three categories of datasets, including fully-synthetic, real, and semi-synthetic 
datasets derived from various scCAS data. Downstream biological analyses were conducted to further 
demonstrate the efficacy of scIBD
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datasets are illustrated (Additional file 1: Fig. S2). In addition, we performed multiple 
biological downstream analyses, including clustering, differential accessible region 
detection, and KEGG analysis to further demonstrate the efficacy of scIBD. The base-
line methods and the metrics used in benchmarking and downstream analyses are 
described in the “Methods” section.

Illustration of scIBD on fully‑synthetic datasets

We first used two fully-synthetic datasets as a proof of concept to demonstrate scIBD. 
The fully-synthetic datasets were constructed by simATAC [23] based on one of the 
two forebrain replicates of the MF dataset. For each one of the eight cell types in the 
forebrain replicates, we generated 500 singlets, and based on this, we then generated 
500 doublets by randomly picking two singlets of different cell types and mixing their 
profiles. The concatenated matrix of all singlets and doublets is used as the balanced 
fully-synthetic dataset. For the imbalanced fully-synthetic dataset, we down-sampled 
the singlets from different cell types with random rates of 0.2, 0.4, 0.6, and 0.8, and then 
doublets are regenerated with the doublet rate of 0.2 and based on the sampled singlets.

We implemented scIBD on the two datasets to illustrate the effect of doublets and 
the efficacy of doublet removal by scIBD (Fig. 2, Additional file 1: Fig. S3). Therefore, in 
Fig. 2, we first visualized the simulated singlets, which show great heterogeneity among 
different cell types. After adding the simulated doublets, we can clearly observe the dou-
blets scatter between the main cell types, indicating that the presence of doublets can 
complicate single-cell analysis by leading to the false appearance of distinct clusters or 
false connections between distinct cell types. We also present the heatmap of doublet 
scores provided by scIBD, where the droplets with high doublet scores are fairly con-
sistent with the ground-truth doublets. To further illustrate the efficacy of scIBD for 
clustering, we removed the doublets called by scIBD using the ground-truth doublet 

Fig. 2 The overall illustration of scIBD on the fully-synthetic dataset. We visualized the fully-synthetic dataset 
in UMAP to illustrate the impact of doublets and the efficacy of doublet-removal by scIBD
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rate. As clearly shown, the clusters reveal significant heterogeneity without the detected 
doublets, and the number of clusters obtained by default clustering resolution is exactly 
equal to that of ground-truth cell types. Besides, after doublet-removal, the performance 
of Louvain clustering with default resolution was significantly improved (ARI and AMI 
were improved by 22% and 17%, respectively). On the balanced dataset, the precision is 
0.99 and the recall is 0.99. Although some doublets failed to be detected, the remained 
doublets have negligible impact on the clustering results (compared with the clustering 
results on pure singlets, the performance after doublet-removal by scIBD only decreased 
1.5% and 2.7% for ARI and AMI, respectively). Similar results can be obtained on the 
imbalanced dataset where the precision and recall are both 0.97 when we call the dou-
blets using the ground-truth doublet rate (Additional file 1: Fig. S3). Since the simATAC-
simulated datasets are formed as count matrices, which do not apply to ArchR and 
AMULET, we provide more benchmark evaluations on the datasets with BAM files in 
the following sections.

Real scCAS HMC datasets to benchmark scIBD

We further used the real HMC datasets to perform a ground-truth performance com-
parison between scIBD and baseline methods. The HMC datasets were generated by 10x 
Genomics scATAC-seq on a mixture of ten human cell lines loaded at high and low con-
centrations (high-loading and low-loading), respectively. The doublet annotations were 
provided by Demuxlet, which uses natural genotype variation information from extra 
bulk sequencing to detect the doublets. Generally, Demuxlet can only detect the dou-
blets that were formed from different donors/samples with distinct genotype variations. 
Considering the generation of the HMC datasets that ten human cancer cell lines were 
mixed to be sequenced, the doublets annotated by Demuxlet are basically those dou-
blets originating from different cell lines (donors), which can be regarded as the hetero-
typic doublets. As shown in Fig. 3a, we exclusively visualized the datasets colored by the 
cell annotations that Demuxlet produced and the doublet scores achieved by scIBD. The 
datasets revealed distinct cell heterogeneity according to the high relevance between 
clusters and cell type annotations. Although Demuxlet was supposed to detect the inter-
cell-line doublets, it still regarded some droplets within the unique cell line as doublets 
(Fig. 3a upper panels). Unlike Demuxlet, scIBD tends to detect more heterotypic dou-
blets that are located at the edge of the clusters or between them (Fig. 3a bottom panels).

HMC datasets produce fragment files, allowing us to benchmark scIBD with the 
baseline methods. As shown in Fig. 3b, scIBD outperforms the baseline methods both 
in AUROC and AUPRC when only considering the Demuxlet annotations. Specifi-
cally, even though the baseline method ArchR achieved good performance for detect-
ing doublets in these datasets profiled in the study of ArchR (both AUROC and 
AUPRC were close to 0.9 on the two datasets), scIBD still improved the AUROC and 
AUPRC by nearly 3% on the high-loading dataset and 2% on the low-loading dataset. 
We note that all the methods often had AUPRC scores much lower than their AUROC 
scores on each dataset, an expected phenomenon given the imbalance between 
the number of singlets and doublets. Since AUROC is usually an overly optimistic 
measure of accuracy under such imbalanced scenarios [24], we will mainly focus on 
AUPRC in the following discussion. As expected, we also observed that AMULET 
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performed poorly on the HMC datasets, since it fails to detect the doublets originat-
ing from distinct accessible profiles. In contrast, the simulation-based methods that 
study accessible patterns based on profile matrices showed their superiority on these 
real datasets.

Fig. 3 Performance evaluation on real HMC datasets. a The UMAP visualization of the two datasets where the 
droplets are colored by Demuxlet-annotated labels, and the doublet scores produced by scIBD, respectively. 
b The AUROC and AUPRC comparison with baseline methods. c The performance comparison on the 
datasets sub-sampled from the original sets
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To evaluate the performance on datasets of different sizes, based on these two HMC 
datasets, we further randomly down-sampled the droplets and obtained subsets with the 
droplet numbers of 2000, 4000, 6000, 8000, and 10000, respectively. As shown in Fig. 3c, 
scIBD consistently outperformed the baseline methods in all down-sampled subsets 
evaluated by both AUROC and AUPRC. The results indicate that scIBD is robust to the 
sample size of scCAS data. Specifically, scIBD can adaptively apply the PCA strategy in 
KNN graphing on the datasets where the cell type heterogeneity is significant.

Semi‑synthetic scCAS datasets to benchmark scIBD

The real HMC datasets originating from different human cell lines have distinct cell het-
erogeneity, making the epigenomic profiles of most heterotypic doublets disparate from 
those of singlets and making the doublets much easier to be detected. To further bench-
mark scIBD, we further conducted a comprehensive performance evaluation on semi-
synthetic scCAS datasets. The datasets were built upon the Forebrain and MCA datasets, 
which were generated from different tissues of mice. The cell types in these datasets are 
more complex and indistinguishable; the bone marrow dataset has the differentiating 
blood cells that are on a continuous trajectory. To benchmark the performance of scIBD 
on the datasets with different doublet rates, we constructed the semi-synthetic datasets 
by simulating the doublets using different doublet rates ranging from 0.05 to 0.25 with 
an interval of 0.05, based on the number of droplets. Particularly noteworthy is that the 
PCoA strategy was automatically applied to the semi-synthetic datasets.

As depicted in Fig. 4, scIBD provided superior performance than all the baseline meth-
ods across all scCAS datasets with different doublet rates. Following Fawaz et al. [25], 
the critical difference diagrams are further depicted to illustrate the overall performance 
of the methods. In the critical different diagram, the horizontal axis indicates the mean 
ranking of each method across all datasets, and the insignificant difference between a 
group of methods in terms of performance is marked by a red horizontal line based on 
a Wilcoxon signed-rank test with Holm’s alpha (5% two-sided) correction. The critical 
difference diagrams under different doublet rates further demonstrated the significant 
advantages of scIBD over baseline methods. We note that the average depth across all 
loci in the Forebrain dataset is 7.4 and is nearly triple that of the MCA datasets (2.45), 
and AMULET can thus find enough overlapped regions in the Forebrain dataset to iden-
tify doublets based on the reads, yielding better performance on this dataset, while the 
simulation-based ArchR and SnapATAC, as expected, surpassed AMULET on the MCA 
datasets. Importantly, scIBD outperforms all the baseline methods on datasets with dif-
ferent depths and different doublet rates, again suggesting the advantages of scIBD.

To further understand the performance of scIBD and the baseline methods, apart from 
AUROC and AUPRC, we present more metrics, including precision, recall, and F1, to 
evaluate the results on the semi-synthetic datasets that were simulated with the 20% 
doublet rate based on the number of singlets (Table 1). The doublet-detection perfor-
mance is usually evaluated by selecting a reasonable cutoff, i.e., the expected doublet 
rate, while this parameter is unknown in realistic scenes. Therefore, we enumerated the 
cutoff, from 0.05 to 0.25 at an interval of 0.05, to calculate the performance metrics of 
the methods. Specifically, we ranked the droplets by their scores from the methods. 
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Then, we set a cutoff based on the specific calling rate. Any droplet with a score above 
the cutoff was considered a doublet.

scIBD outperforms the baseline methods in terms of precision, recall, and F1 at most 
doublet calling rates across different datasets (Additional file 2: Table S1). In particular, 
compared with the baseline methods, scIBD can achieve higher recall with the increase 
of calling rate, showcasing its superiority in removing more doublets when the real 
doublet rate is unknown. SnapATAC (Scrublet) shows fluctuant performance across 
different datasets for it was initially proposed for scRNA-seq data, while the rest three 
methods show relatively robust performance, among which scIBD achieves the over-
all best performance. In addition, the corresponding AUROC and AUPRC plots of the 
semi-synthetic datasets are illustrated (Additional file 1: Fig. S4).

scIBD has robust performance on detecting doublets with different numbers of captured 

reads

Under the assumption that doublets can obtain a significantly greater number of 
sequenced reads than singlets, the doublets in the above semi-synthetic datasets are 

Fig. 4 Performance evaluation on the semi-synthetic datasets with different doublet ratios. Different 
simulation ratios of doublets ranging from 0.05 to 0.25 with an interval of 0.05, are implemented on 
nine datasets. The histograms and the critical difference diagram over the datasets demonstrate the 
outperformance of scIBD



Page 11 of 28Zhang et al. Genome Biology          (2023) 24:225  

simulated by directly mixing reads of two singlets. The statistical results based on the 
HMC datasets whose doublets are labeled by Demuxlet also support such presuppo-
sition. However, the specific extent of the read number fold-change between doublets 
and singlets in real scCAS data is uncertain. To demonstrate the robustness of scIBD to 
detect doublets with different numbers of captured reads, we down-sampled the reads 
of doublets using the rate ranging from 0.1 to 0.4 with an interval of 0.05 based on the 
semi-synthetic datasets with the doublet rate of 20%.

scIBD overall outperformed the baseline methods when the down-sampling rate was 
below 0.3 (Fig. 5, Additional file 1: Fig. S5). When the down-sampling ratio increased 
over 0.3, the ranking test results according to the critical difference diagrams still showed 
that scIBD achieved the best performance in most cases. However, the insignificant dif-
ference between the performance of scIBD and the baseline methods (marked by thick 
horizontal lines) shown in the critical difference diagrams which are depicted based on 
a Wilcoxon signed-rank test with Holm’s alpha (5% two-sided) correction also indicates 
that the dissimilarity between doublets and singlets is negligible when the reads enrich-
ment in doublets is low, making the doublets hard to detect. Additionally, the dramatic 
decline in the performance of AMULET demonstrates the sensitivity of read-based 
methods, while the simulation-based methods leveraging profile patterns show better 
robustness to the number of captured reads.

Benchmarking on the rigorously quality‑controlled semi‑synthetic datasets

Considering that the benchmarking experiments on the previous semi-synthetic datasets 
(MF and MCA) still lack the evaluation of the singlets, i.e., the droplets annotated with 
singlets may still contain doublets, which yields biased evaluation results. Therefore, we 
further benchmarked scIBD on three additional datasets, Islet1, Iselt2, and peripheral 

Fig. 5 Performance evaluation on the semi-synthetic datasets where doublets have different numbers 
of captured reads. Based on the semi-synthetic datasets, the reads used to form artificial doublets are 
down-sampled with a ratio ranging from 0.1 to 0.4 with an interval of 0.05. The AUROC (solid lines) and the 
AUPRC (dotted lines) show the trend of performance with the reads decrease of doublets
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blood mononuclear cells (PBMC), where the singlets were more strictly selected. Spe-
cifically, apart from conserving the droplets with clear cell type annotations, we also 
filtered out the possible doublets annotated by AMULET and ArchR. On the Islets data-
sets, the doublet annotations by ArchR and AMULET have been reported by Thibodeau 
et al. [16], and we directly removed the reported doublets. On the PBMC dataset, AMU-
LET was performed with the default parameters, and AcrhR was performed with the 
expected doublet of 10% (default is 5%) in advance to remove more possible doublets. 
The remaining droplets were used as high-confidence singlets to establish such rigor-
ously quality-controlled benchmark datasets, and the ground-truth doublets were con-
structed following the pipeline in the “Construction of benchmark datasets” section.

scIBD significantly outperforms the baseline methods on the rigorously quality-con-
trolled benchmark datasets (Fig. 6a, Additional file 2: Table S2). On the Islet1 dataset, 
scIBD achieves the AUROC 0.978, which is 10% higher than that (0.891) of the second-
best method (SnapATAC), and achieves the AUPRC 0.913, which is 34% higher than that 
(0.680) of the second-best method (ArchR). On the Islet2 dataset, scIBD achieves the 
AUROC 0.973, which is 13% higher than that (0.862) of the second-best method (Sna-
pATAC), and achieves the AUPRC 0.882, which is 41% higher than that (0.624) of the 
second-best method (AMULET). On the PBMC dataset, which has deeper sequenc-
ing depth (about 30k median valid read pairs per droplet, 15k of Islets), AMULET 

Fig. 6 Performance evaluation on the rigorously quality-controlled semi-synthetic datasets of Islets 
and PBMC. a The AUROC and AUPRC comparison of scIBD and the baseline methods on the rigorously 
quality-controlled datasets of Islet1, Islet2, and PBMC, where the ground-truth singlets were strictly selected. 
b The performance evaluation on the read-down-sampled Islet1 and PBMC datasets. The reads of Islet1 
dataset were down-sampled with a ratio ranging from 0.1 to 0.4 with an interval of 0.1; and the reads of PBMC 
dataset were down-sampled with a ratio ranging from 0.1 to 0.5 with an interval of 0.2. The AUROC (solid 
lines) and the AUPRC (dotted lines) show the trend of performance with the decrease in sequencing depth
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performs much better than on the Islets datasets and significantly outperforms SnapA-
TAC and ArchR, but scIBD still outperforms AMULET both on AUROC and AUPRC. 
The detailed metrics of precision, recall, and F1 are also presented (Additional file  2: 
Table S1).

We further conducted the down-sampling experiments on Islet1 dataset and PBMC 
dataset to investigate the effect of sequencing depth on the performance of scIBD and 
the baseline methods. On the Islet1 dataset that has lower sequencing depth (about 15k 
valid read pairs per droplet), we down-sampled the reads of all droplets using the rate 
ranging from 0.1 to 0.4 with an interval of 0.1; on the PBMC dataset that has deeper 
sequencing depth (about 30k valid read pairs per droplet), we down-sampled the reads 
more drastically from 0.1 to 0.5 with an interval of 0.2.

As shown in Fig.  6b, scIBD achieves the best performance no matter in terms of 
AUROC and AUPRC on the datasets with different sequencing depths. On the Islet1 
dataset, scIBD outperforms the secondary method by about 10% on the mean of 
AUROC and even about 35% on the mean of AUPRC. On the PBMC dataset, AMU-
LET achieves the secondary-best performance for the high sequencing depth. How-
ever, its performance decreases drastically when the down-sampling rate increases 
up to 0.5 (the sequencing depth has decreased to 15k median read pairs per droplet). 
After all, the down-sampling experiments demonstrate that AMULET can achieve bet-
ter performance (secondary to scIBD) on the deeper-sequenced data, especially when 
the sequencing depth is above 15k median valid read pairs per droplet. However, the 
simulation-based methods show the relatively high robustness when handling data with 
different sequencing depths, among which scIBD achieves the overall best performance.

Taken together, scIBD has robust performance on scCAS data no matter how signifi-
cant the heterogeneity is, how big the sample size is, how high the doublet rate is, or 
even how variable the sequencing depth is. Specifically, by applying the specific PCoA 
strategy in KNN graphing, scIBD shows its superiority over the baseline methods on 
the complex scCAS datasets in which the heterogeneity of cells is insignificant, making 
it more realistically applicable. We will demonstrate its practical applications in down-
stream analyses in the following section.

Biological downstream applications of scIBD

Heterotypic doublets mostly hinder clustering by creating spurious profiles, misleading 
the subsequent marker peak/region identification, and downstream functional enrich-
ment analyses. To further evaluate the impact on the downstream analyses by the dou-
blet-detection methods, we hereby conduct comprehensive downstream analyses based 
on the semi-synthetic Forebrain dataset that was simulated with the doublet rate of 20%.

Improvement of clustering

We performed cell clustering according to the widely used scCAS analysis pipeline 
[12–14, 20, 26]. Specifically, we performed TF-IDF for data normalization, PCA for cell 
embedding, and Louvain for clustering. We followed this pipeline to get the clustering 
results on the dataset only containing singlets, the dataset containing doublets, and the 
doublet-removed datasets implemented with ArchR, AMULET, SnapATAC, and scIBD, 
respectively. To obtain the desired number of clusters for benchmarking, we adopted a 
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widely used binary search strategy to tune the resolution parameter in Louvain cluster-
ing to make the number of clusters and the number of ground-truth cell types as close as 
possible [12, 13, 18, 27].

Most doublet-detection methods provide the pre-set parameter, i.e., the expected dou-
blet rate, to control the number of doublets to be detected, and so does scIBD. scIBD 
outperforms the baseline methods at all calling rates except for 0.05 on the Forebrain 
dataset (Additional file 2: Table S1). Specifically, when calling doublets at the rate of 5%, 
we ranked the doublet scores given by the methods and obtained the 5% quantile thresh-
old to select droplets with scores higher than the threshold as doublets. However, the 
doublet scores, obtained by AMULET, assigned over 8% droplets the score of one (defi-
nitely identified as doublets) for the Forebrain dataset was deeply sequenced (about 25k 
median read pairs per droplet). Therefore, more droplets (8%) are detected as doublets 
at the 5% calling rate using AMULET, yielding better performance at this specific call-
ing rate. The results also demonstrate the superiority of AMULET to detect a conserva-
tive rate of doublets when the real doublet rate remains unknown, while scIBD shows its 
superiority when aiming at detecting more doublets for its higher recall.

To further evaluate the doublet-removal efficacy by scIBD and the baseline meth-
ods, we calculated ARI and AMI based on the cell type labels and clustering results. 
As shown in Fig. 7a, the confounding effect of doublets can be shown by the significant 
decrease presented in metrics, and scIBD significantly outperformed the baseline meth-
ods on all metrics using different doublet calling ways. Specifically, in the default calling 
way, namely, detecting doublets by giving a pre-specified doublet rate for the methods, 
scIBD can improve the ARI and AMI scores by 15% and 11% compared to the second-
best method, respectively. By removing the doublets, scIBD nearly achieved the cluster-
ing results approximate to those obtained on the dataset only containing singlets. In the 
score-truncated way, namely, detecting doublets by a strictly post-specified number of 
doublets according to the doublet scores, scIBD also improved both metrics by about 5% 
compared to the second-best method. All these results demonstrate that doublets seri-
ously hinder cell clustering, and detecting and removing doublets by scIBD can effec-
tively benefit scCAS analysis.

Improvement of identifying differentially accessible regions

We further conducted a case study on the Forebrain dataset to show that scIBD can 
assist in identifying the differentially accessible regions. Microglia (MG), the resident 
macrophage of the central nervous system [28], plays critical roles in brain development, 
and physiology during life and aging [29], and was used in the case study. We identified 
the differentially accessible regions of the cluster, which is annotated as MG according 
to the ground-truth labels (Fig. 7b), versus the rest clusters, on the datasets of ground-
truth singlets (GT), doublets retaining (RE), and doublets removal (RM) by scIBD and 
the baseline methods, respectively. The ground-truth singlets dataset only contains the 
cells with definite cell type annotations, and the results performed based on which can 
act as a baseline. After removing the doublets, we compared the overlapped differen-
tial accessible regions detected between different RM datasets and GT (Additional file 2: 
Table S3). Notably, scIBD outperformed the baseline methods in recovering the differen-
tial accessible regions by achieving the most overlaps between GT.
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To further demonstrate scIBD, we analyzed the top twenty differential acces-
sible regions on the RM dataset by scIBD. RE and RM have ten overlapped differ-
ential regions with GT (marked in bold) among the top twenty differential regions 
(Additional file 2: Table S4). On the one hand, the overlaps with GT reveal that most 

Fig. 7 Downstream biological analyses. a The performance comparison on clustering picked by the removal 
of doublets. b Using ground-truth labels (upper) as the reference to annotate the microglia cluster (lower), 
and a series of downstream biological analyses were performed. c The KEGG enrichment results using the 
differential accessible regions detected on the doublet-retaining dataset and the doublet-removal dataset, 
respectively
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differential accessible regions are obtained when the doublets account for a small 
portion of this cluster and the characteristic of MG can be identified. On the other 
hand, the difference also demonstrates the confounding effect of doublets. Impor-
tantly, the overlapped differential regions with GT of RM mostly rank at the top of the 
list, indicating the high efficacy of scIBD to remove the doublets that interfere with 
the differential region detection. For the nine peaks (marked with *) that were iden-
tified after doublets removal compared to doublets retaining, using NCBI Genome 
Data Viewer [30], we mapped the peak regions to the relevant genes, among which 
three (Tmem135, Asb2, and Heatr1) are encoding genes. The mutation of Tmem135 
has been reported to be relevant to the function of microglia, inducing its transfor-
mation in morphology and migration in mouse retina [31, 32]. Asb2 has been identi-
fied as significantly differentially expressed in microglia in many assays [33, 34]. Song 
et al. also reported that Asb2 is the core gene involved in the upregulated modules by 
performing WGCNA on microglia, indicating the key role of microglia-neuron inter-
action in the process of Purkinje cell degeneration [35]. As a glioma-associated anti-
gen, Heatr1 can induce functional cytotoxic T lymphocytes [36], and as immune cells, 
the microglia-T cell interaction and their reciprocal signaling effect have been studied 
and reported in many researches [37, 38]. Taken together, scIBD can effectively elimi-
nate the impediment of doublets and provide more accurate candidates in identifying 
differentially accessible regions.

Improvement of KEGG analyses

To further evaluate the efficacy of scIBD, we performed the KEGG enrichment analyses 
subsequently. The number of differentially accessible regions to be used is expanded to 
200 so that the mapped relevant genes are enough to be enriched to find critical KEGG 
pathways terms. We performed KEGG pathway enrichment analysis using the web 
server tool g: Profiler [39]. To obtain the most-confident enriched pathways and illustrate 
the difference, we set a strict threshold of p-value as 0.001 (two-sided). Based on the dif-
ferentially accessible regions from RE, only one KEGG pathway term can be obtained 
when p-value < 0.001 , while three terms are enriched on the RM using the same criteria, 
as shown in Fig. 7c. We note that cytokines, a group of small proteins that are usually 
expressed by microglia under inflammatory conditions, are essential signaling modules 
for microglia [40]. Coincidently, among the newly found terms after removing doublets, 
“cytokine-cytokine receptor interaction” and “viral protein interaction with cytokine and 
cytokine receptor” are cytokines-related and have been reported to be associated with 
microglia [41–43]. For instance, Khayer et al. find that “cytokine-cytokine receptor inter-
action” is a significantly enriched pathway that participates in microglia activation in 
triggering neurodegenerative diseases [41]. “Chemokine signaling pathway” is a union of 
pathways including the fractalkine signaling pathway, and fractalkine is mostly expressed 
by neurons and its unique receptor CX3CR1 is exclusively expressed by microglia in the 
central nervous system [44, 45].

The above results demonstrate that scIBD can accurately detect the doublets that 
hamper the downstream biological analyses and thus improve the biological down-
stream analyses effectively.
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Extended application of scIBD on scRNA‑seq data

scIBD is a specially designed doublet detection tool for scCAS data. To discover the gen-
eralizability of scIBD, we also investigate the application of scIBD on scRNA-seq data. 
Following the review paper by Xi et al. [7], we selected two datasets, referred to as hm-
12k and nuc-MULTI, to further benchmark scIBD. Specifically, the hm-12k dataset is a 
mixture of human HEK293T and mouse NIH3T3 cells with 12,000 droplets, where the 
doublets were annotated if the barcodes were associated with both human and mouse, 
while the nuc-MULTI dataset is a mixture of purified nuclei from human HEK293Ts, 
Jurkats, and mouse embryonic fibroblasts, where the doublets were annotated by 
MULTI-seq [46].

To facilitate the benchmarking, we directly obtained the processed count matrices 
and binarized the transcript count, based on which scIBD was performed to detect 
doublets. scIBD can perform well on the binarized scRNA-seq data compared with the 
methods that were benchmarked by the review, including doubletCells [47], Scrublet [5], 
cxds [48], bcds [48], hybrid [48], Solo [49], DoubletDetection [50], and DoubletFinder 
[51] (Additional file 2: Table S5). On the hm-12k dataset with high cell heterogeneity, 
scRNA-seq doublet detection methods have fairly performed well, where cxds and Solo 
achieved the AUROC values with 1, cxds achieved the AUPRC value with 0.998, while 
scIBD also achieved a close performance (AUROC = 0.998 and AUORC = 0.995), sur-
passing the rest six methods. Importantly, on the nuc-MULTI dataset that is more com-
plex, analog to the semi-synthetic datasets, scIBD outperformed the scRNA-seq-specific 
baseline methods, improved the AUROC by 2% (0.790) and AUPRC by 10% (0.487) com-
pared with DoubletFinder that was the best-performed (AUROC = 0.775 and AUPRC 
= 0.441) among the baseline methods. These results suggest that scIBD is a robust and 
versatile tool for doublet detection across different single-cell sequencing platforms.

Discussions
Detecting and removing the doublets in scCAS data is an essential issue in genome biol-
ogy research, which facilitates and improves the downstream analyses. Challenged by 
the assay-specific characteristics of scCAS data, in this work, we proposed scIBD, a self-
supervised iterative-optimizing method to boost the detection of heterotypic doublets 
in scCAS data. scIBD is a simulation-based method, where heterotypic doublets with 
high confidence are simulated as the reference using the pseudo-droplet-based simula-
tion strategy. Meanwhile, by applying an iterative strategy, scIBD can iteratively and pro-
gressively detect the real heterotypic doublets based on the adaptive KNN graph. The 
ablation experiments that demonstrate the contributions of the iteration process and the 
specific doublet simulation strategy are illustrated (Additional file 3: Content S1, Addi-
tional file 1: Fig. S6). In addition, the efficacy comparisons of scIBD with the baseline 
methods are presented (Additional file 3: Content S2, Additional file 2: Table S6).

When benchmarking scIBD on the semi-synthetic datasets, we utilized a weighting 
criterion to simulate the ground-truth doublets (the “Construction of benchmark data-
sets” section). The main purpose is to reflect the true occurrence of heterotypic doublets 
in sequencing, where the probability of a cell type forming doublets depends on its pro-
portion in the tissue [16]. To evaluate the performance on the semi-synthetic datasets 
without the weighting criterion, we additionally constructed two Islets datasets where 
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the doublets are simulated by randomly picking two cell types. Except for the weighted 
simulation, all other simulation steps remain the same as the rigorously quality-con-
trolled Islets datasets with the weighting criterion in Table 1, where the same potential 
doublets in raw data were removed in advance using ArchR and AMULET to establish 
high-quality singlets. The performance of the simulation-based methods (scIBD, SnapA-
TAC, and AcrhR) all decrease on the datasets where the ground-truth doublets were 
simulated without the weighting criterion (Additional file  2: Table  S7). However, the 
performance of AMULET, which is read-based, achieves nearly identical results on the 
datasets for that it only performs statistical analyses on the overlapped reads, regardless 
of the different cell type origins, also suggesting the superiority in detecting homotypic 
doublets. The drastic decrease in performance of the simulation-based methods may be 
due to the bias between the simulated doublets and ground-truth doublets, demonstrat-
ing the rationale of the weighting criterion when simulating ground-truth doublets for 
that ArchR and SnapATAC utilize the totally random strategy in their simulation steps. 
Importantly, although scIBD also achieves decreased performance on the unweighted-
datasets, it still outperforms the baseline methods.

We also describe several avenues for improving and extending scIBD. First, we can 
use bulk and/or additional single-cell chromatin accessibility data as a reference to bet-
ter characterize biological variations [13, 52, 53]. Second, we can incorporate the batch 
information of scCAS data when modeling to facilitate the batch effect. Third, heuris-
tic strategies for estimating the doublet rate of a scCAS dataset are in pressing need. 
Finally, we can further consider the barcode multiplet problem, which is another issue 
in droplet-based single-cell sequencing [54]. Unlike the doublet issue discussed in this 
study, the barcode multiplet is referred to as one cell’s nucleic acids captured by more 
than one oligonucleotide barcode sequence, which also yields confusing single-cell pro-
files. This is also a challenging task since the barcode oligonucleotides are complex and 
heterogeneous.

Conclusions
Extensive and comprehensive evaluation results on multiple datasets, including fully-
synthetic, semi-synthetic, and real scCAS data, demonstrate that scIBD significantly out-
performs the baseline methods, including SnapATAC, ArchR, and AMULET. Besides, 
more comprehensive evaluations on different scenarios show that scIBD has superior 
robustness to cell heterogeneity, sample size, sequencing depth, and doublet rate. The 
specifically designed PCoA KNN graphing strategy shows better performance on the 
datasets with more complex cell heterogeneity. Moreover, the downstream biologi-
cal analyses, including cell clustering, differential accessible region finding, and KEGG 
enrichment analyses, further show the practical efficacy of doublet-removal by scIBD. 
At last, the extended application of scIBD on scRNA-seq data, demonstrates the robust-
ness and versatility of scIBD for doublet detection. We confirmedly believe that scIBD 
will enable better quality control on removing doublets and expand the applicability of 
scCAS by yielding better downstream analysis results that enable a deeper understand-
ing of cellular-level epigenomic heterogeneity and functions. scIBD is an easy-to-use 
open-source tool available at multiple sources and can be seamlessly integrated into 
existing scCAS analysis workflows.
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Methods
Data collection and data processing

Data source

The scCAS data used in this study were derived from three main sources. The dataset 
of human mixed cell lines (HMC) was generated from a mixture of ten human cell lines 
using single-nucleus ATAC-seq [6]. The dataset of mouse forebrain (MF) was gener-
ated from the forebrain tissue of an 8-week-old adult mouse by single-nucleus ATAC-
seq [19]. The dataset of mouse cell atlas (MCA) contains 17 samples generated from 13 
different tissues of 8-week-old mice using single-cell combinatorial indexing ATAC-seq 
[20]. We adopted the samples in which the predominant cell type accounts for no more 
than 80%. The selected 11 samples were derived from eight tissues, including bone mar-
row, lung, whole brain, cerebellum, heart, kidney, prefrontal cortex, and spleen, among 
which bone marrow has differentiating blood cells that are on a continuous trajectory, 
and the others have distinct cell types. The two Islets datasets were generated from the 
primary human tissue islets of two donors, which were independently captured and 
sequenced using the 10x Genomics Chromium platform [16, 55]. The peripheral blood 
mononuclear cell (PBMC) dataset was derived from cryopreserved human peripheral 
blood mononuclear cells of a healthy female donor aged 25 obtained by 10x Genomics, 
where the cell annotations are provided by Cao et al. [21].

Construction of benchmark datasets

Since doublet-detection in scCAS data is a challenging task, most scCAS datasets, 
including the datasets of MF and MCA, do not come with annotations of doublets, high-
lighting the importance of convincing construction of datasets with ground-truth singlet 
and doublet labels to benchmark the performance of different methods. We constructed 
three categories of benchmark datasets: (1) fully-synthetic datasets where both singlets 
and ground-truth doublets are artificial; (2) real datasets where the singlets and dou-
blets were annotated by Demuxlet [4]; (3) semi-synthetic datasets where singlets are real 
droplets while doublets are artificial.

For the first category, we generated singlets of different cell types by simATAC [23] 
based on the count matrices of corresponding cell types in the MF dataset. Then, dou-
blets were obtained by mixing the profiles of simulated singlets. The fully-synthetic data-
sets were used as a proof of concept to demonstrate scIBD.

For the second category, since the HMC dataset comes with labels of cell types and 
doublets annotated by Demuxlet, we directly used the original datasets for benchmark-
ing. The real datasets, though containing distinct and straightforward cell types, can 
be served as simple datasets with ground-truth doublet labels. However, the doublets 
annotated by Demuxlet are not exactly accurate, which demands more comprehensive 
benchmark works.

For the third category, we built datasets by manually constructing the artificial dou-
blets using BAM/fragment files of the MF, MCA, Islets, and PBMC datasets. Impor-
tantly, we aim to stress the heterotypic doublets which significantly disturb the 
downstream analyses. Meanwhile, according to Thibodeau et al., the likelihood of a cell 
type to form multiplets is associated with its frequency within the tissue [16]. Therefore, 
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we adopted the weighting criterion to generate ground-truth doublets for comprehen-
sive benchmarking on semi-synthetic datasets. We first selected two cell types with the 
probability proportional to the cell type proportions in the dataset. For each one of the 
selected cell types, we then randomly picked one droplet among the cell type. Accord-
ing to the read statistics based on the HMC real datasets (Additional file  1: Fig. S7), 
the sequencing depth of doublets is significantly higher than that of singlets. We thus 
directly mixed the total reads of the two picked droplets to form a doublet. Note that for 
the MF dataset and the three tissues (bone marrow, lung and whole brain) in the MCA 
dataset that have two replicates, we used the droplets in one replicate to construct dou-
blets and used the droplets in another replicate to form singlets. For the remaining five 
tissues in the MCA dataset that have only one replicate, we directly mixed the droplets 
to construct doublets. The detailed pipeline for constructing doublets in semi-synthetic 
datasets is illustrated in Additional file 1: Fig. S8. Hereafter, we use the tissue identities 
to indicate the semi-synthetic datasets.

Data preprocessing

The input of scIBD is a scCAS count matrix. Following the pipeline introduced by Preissl 
et  al. [19], we performed integral peak calling using MACS3 [56] with default param-
eters directly based on the BAM file of a dataset and subsequently constructed the count 
matrix with the called peaks for the droplets. To reduce the noise level, we selected peaks 
that are open in at least 1% of the droplets in the count matrix [13, 14] and obtained 
a droplet-by-peak count matrix X ∈ R

N×P . The term frequency-inverse document fre-
quency (TF-IDF) transformation was then performed to normalize the count matrix [13, 
14], as described as follows:

Self‑supervised iterative‑optimizing KNN in scIBD

Simulation of high‑confident artificial heterotypic doublets

Existing simulation-based methods take the routine that generally picks two random 
droplets from all droplets in the scCAS dataset to simulate a doublet, yielding a bunch 
of homotypic artificial doublets. Besides, existing methods only simulate artificial dou-
blets once, ignoring that not all original droplets are singlets. The above drawbacks 
result in low-quality training data for the binary classifier. Therefore, we aim to simu-
late more heterotypic doublets in a way that resembles their natural formation, which is 
called pseudo-droplet-based simulation. Current state-of-the-art clustering methods for 
single-cell data like Louvain and Leiden tend to split a predominant cell type into sev-
eral subtypes to find more communities (Additional file 1: Fig. S9). We hereby adopted 
a clustering strategy that reserves the predominant cell types in clustering results, based 
on which artificial heterotypic doublets of high confidence can be subsequently simu-
lated, avoiding too many homotypic ones that may obscure detecting heterotypic dou-
blets. The clustering process can be described as follows:

(1)X
′

i,j =
Xi,j

P
p=0Xi,p

× log
|1+ P|
N
n=0Xn,j

,
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where X′ ∈ R
N×P is the TF-IDF transformed matrix, principal component analysis 

(PCA) is canonically performed to reduce dimensionality, followed by uniform mani-
fold approximation and projection (UMAP) [57, 58], and the density-based DBSCAN 
clustering method [59] is finally applied to obtain the clustering results C ∈ R

N×1 with 
the empirically adjusted parameters. Specifically, under the assumption that clusters are 
dense regions in space separated by regions of lower density, DBSCAN assigns the drop-
lets that are “densely grouped” the same cluster label. Therefore, the hyper-parameters 
involved in this clustering pipeline to control the cluster results are “eps” and “min_sam-
ples,” representing the maximum distance between two droplets for one to be considered 
as in the neighborhood of the other, and the number of samples in a neighborhood for a 
droplet to be considered as a core droplet, respectively. In our specific clustering strat-
egy, the parameter “eps” is set as 0.1 and the parameter “min_samples” is self-adaptively 
set as 0.5% of the number of input droplets, which are consistently used in all bench-
marking experiments.

Weighted by the sizes of clusters, two clusters are randomly selected, namely, the 
larger size the cluster has, the more likely the cluster is selected. For each one of the 
selected clusters, scIBD randomly picks one droplet and then takes the union of their 
count profiles to form an artificial doublet. Artificial heterotypic doublets are generated 
independently via the above strategy. Apart from the specially designed doublets, scIBD 
also generates a portion of doublets by the canonical strategy that randomly picks two 
cells. For each iteration, the number of all generated artificial doublets equals the down-
ward integer of 30% of the number of droplets that have not been detected as doublets, 
among which 70% are the specially designed artificial heterotypic doublets, and 30% are 
the randomly picked ones. scIBD can thus update the artificial doublets in each iteration 
and self-supervise for doublet-detection.

Construction of KNN graph

Based on the droplets and the generated artificial doublets, KNN graph is constructed 
to detect potential doublets in each iteration. We provide two strategies to construct the 
KNN graph, referred to as PCA-based and principal coordinates analysis (PCoA)-based 
graphing, respectively. In PCA-based graphing, the KNN graph is constructed based on 
the embedding obtained by PCA and UMAP, while in PCoA-based graphing, we calcu-
late Jaccard distance based on the count matrix and then perform the PCoA analysis to 
obtain the embeddings. The KNN graph is then constructed using the ANNOY package 
(https:// github. com/ spoti fy/ annoy), which is almost as fast as the fastest libraries to do 
nearest-neighbor search and is dedicated to minimizing memory footprint.

scIBD can adaptively opt a KNN graphing strategy that suits the input. As shown in 
Fig. 8a left panel, if the cell types are distinguishable, i.e., the cell types have remarka-
ble patterns in accessible profiles, it is efficient to apply the PCA-based graphing since 
the principal components are obtained based on the variance difference. However, in 
such cases, PCoA, which is performed based on Jaccard distance matrix, may elimi-
nate the distinction in accessible patterns. On the contrary, if cell types cannot be 
separated readily through PCA analysis (Fig. 8a right panel), PCoA has superiority in 

(2)C = DBSCAN
(

UMAP
(

PCA
(

X
′
)))

,

https://github.com/spotify/annoy
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distinguishing doublets and singlets whose differences are not solid enough, since it 
tries to reserve the distance relationship between the droplets.

To automatically determine the choice of KNN graphing strategy, scIBD first per-
forms DBSCAN clustering and then uses Calinski-Harabasz index (CHI) [60] to 
assess the ratio of the sum of between-cluster dispersion and of within-cluster disper-
sion. The calculation of CHI is defined as follows:

Fig. 8 The specific strategies applied in scIBD. a Two cases that are suitable for different KNN-graphing 
strategies. Left panel illustrates the case where different cell types are distinguishable in UMAP based on PCA 
embeddings, and the doublets are also distinctly apart from the singlets, PCA-based graphing is applied. 
Right panel illustrates the case where the distinction of the cells is not clear by following PCA-based strategy, 
PCoA-based graphing is applied to further separate the doublets from singlets. b The distribution plot of 
the doublet scores during the iteration process. We separately show the doublet score distributions of three 
parts, the detected doublets in former iterations, the simulated doublets in each iteration, and the unlabeled 
droplets in raw sets. In each iteration, we aim at separating doublets from the unlabeled droplets. The 
doublet scores of the unlabeled droplets are modeled by the right side of a standard Gaussian. The scores of 
the simulated doublets (yellow) are used as the reference to obtain the threshold to determine the doublets 
in the unlabeled droplets. The scores of the doublets detected in former iterations (red) mostly locate at high 
intervals, showing their high confidence as the doublets
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where N  is the total number of droplets, K  is the number of clusters, B is the inter-
class covariance across all clusters, indicating the overall dispersion between clusters, 
and W is the summed-up intra-class covariance within clusters, indicating the overall 
compactness of clusters. The higher the CHI is, the better the clustering performs. Based 
on the CHI scores CHIPCA and CHIPCoA of PCA-based and PCoA-based graphing and 
the understanding that if the cell types are easy to distinguish, the ratio of CHIPCoA and 
CHIPCA is supposed to be little, and vice versa, we set a ratio threshold of 1.5 which 
is empirically adjusted and scIBD will adaptively choose the PCA-based graphing when 
the ratio is less than the threshold and choose the PCoA-based graphing otherwise.

Calculation of doublet score

After constructing the KNN graph, we can obtain a matrix containing the distance between 
each of the N  droplets and its K  nearest neighbors, denoted as:

where d(i,nnj) is the distance between droplet i and its j-th nearest neighbor. We then 
perform a reversed min-max normalization to scale the distance matrix as the similarity 
matrix:

Meanwhile, we can also obtain a reference doublet score matrix based on the neighbors 
and their referred doublets scores from the iteratively updated doublet score reference vec-
tor L , denoted as:

where l(i,nnj) is the doublet score of droplet i ’s j-th nearest neighbor referred from L . 
Specifically, in the first iteration, l(i,nnj) = 1 only if the j-th nearest neighbor cell of drop-
let i is the simulated doublet; otherwise, 0. l(i,nnj) in L will be updated in each iteration 
via aggregating the reference doublet scores of KNN of each droplet weighted by their 
distance, and thus R will also be altered even if the KNN graph structure remains the 
same. Based on the KNN graph in each iteration, the doublet scores for all droplets (all 
the raw droplets and the simulated and detected doublets, not limited to the nearest 
neighbors, i.e., S = (Sraw , Ssim) , can then be calculated as follows:

where ◦ indicates the element-wise multiplication.

(3)CHI =
B(N − K )

W(K − 1)
,

(4)D =





d(1,nn1) d(1,nn2) d(1,nnK )
d(2,nn1) . . . d(2,nnK )
d(N ,nn1) d(2,nn2) d(N ,nnK )



 ∈ R
N×K

,

(5)D
′ =

max(D)−D

max(D)−min(D)
∈ R

N×K
.

(6)R =





l(1,nn1) l(1,nn2) l(1,nnK )
l(2,nn1) . . . l(2,nnK )
l(N ,nn1) l(2,nn2) l(N ,nnK )



 ∈ R
N×K

,

(7)S =
∑K

k=1
[D

′

◦ R]
T
,
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Iterative‑optimizing detection of doublets

The iterative process for detecting doublets is illustrated in Fig. 1b. In each iteration, 
the doublets scores for all droplets, Sraw , are calculated based on the KNN structure 
and the L updated by the previous iteration. Note that Sraw is composed of scores of 
singlets and undetected doublets, while Ssim are the scores of newly simulated dou-
blets in each iteration. Among the raw droplets, most are singlets with a doublet score 
of zero, and doublets only account for a small portion of all the raw droplets (Fig. 8b). 
Therefore, the doublet scores of the droplets can be fitted as the “right side of a stand-
ard Gaussian distribution,” i.e., the number of droplets declines with the increase of 
doublet scores and no droplet has negative scores. We use the right side of a standard 
Gaussian to model Sraw to describe the doublet score distribution of raw droplets, and 
a Gaussian to model Ssim . A doublet-detection threshold sth based on the two distri-
butions is calculated as follows:

where o(p(Sraw), p(Ssim)) is the crossing point of the two density curves of Sraw and Ssim , 
std(Ssim) is the standard variance of Ssim , and 2std indicates about the 95% confidence 
interval. The distribution plot is illustrated in Fig. 8b.

The droplets whose doublet scores are higher than sth are detected as doublets, 
denoted as D = (d1, d2 . . . di) . These detected doublets no longer participate in the 
following clustering and simulating steps but participate in the KNN aggregation with 
their inferred doublet scores. Meanwhile, the unlabeled set, where the noisy doublets 
have been removed, is expected to obtain better clustering results, yielding higher-
quality simulated heterotypic doublets. In each iteration, the doublet scores of the 
detected doublets will be scaled between 0.1 and 0.9, to distinguish them from the 
undetected droplets whose doublet scores are 0 and the simulated doublets whose 
scores are 1, and then their scaled doublet scores will be used to update L , which is 
used as the reference in subsequent iterations.

The iteration process is supposed to stop when the detected doublets reach the 
number of the expected doublet rate or no more unlabeled droplet has a higher 
doublet score than sth . However, the iteration process sometimes stops early if the 
expected doublet rate is too low or the doublets are easy to detect. To slightly prolong 
the iterations, we also adopt an annealing strategy at the ending criterion of the itera-
tive process. Specifically, we set p (initially is 1) to indicate the probability that the 
iteration continues. Only when the algorithm reaches the supposed ending criterion, 
the current iteration continues by probability p and p starts to decay along with the 
model iteration. The more iterations scIBD has processed, the more rapidly p decays, 
i.e., the iteration process tends to continue when it stops early. Finally, upon the itera-
tion stops, the doublets scores of droplets across all iterations will be averaged and 
then scaled between 0 and 1 to obtain the final scores. Providing the final doublet 
scores will also enhance the usability of scIBD, since users can then have the flexibility 
to decide the exact number of doublets to be detected based on their preference. The 
pseudocode of the iterative doublet detection process in scIBD is described in Addi-
tional file 3: Content S3.

(8)sth = o(p(Sraw), p(Ssim))+ 2std(Ssim),
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Baseline methods

We benchmarked the performance of scIBD with SnapATAC [15], ArchR [6], and AMU-
LET [16]. SnapATAC integrates Scrublet [5], a model designed for scRNA-seq, to detect 
doublets in scCAS data. We performed SnapATAC for doublet-detection using the same 
count matrices input to scIBD. ArchR and AMULET can only be performed using BAM/
fragment files, thereby we only benchmarked the performance of scIBD on real datasets 
and semi-synthetic datasets which have BAM/fragment files. All baseline methods were 
performed using their default parameters. Specifically, the parameter of expected dou-
blet rate can influence the performance of the baseline methods, we thus set it as the 
ground-truth doublet rate in the benchmark dataset for all methods to pursue justified 
comparisons.

Metrics for evaluation

We first evaluated the accuracy of doublet-detection results based on the area under 
receiver operator characteristic curve (AUROC) and the area under precision-recall 
curve (AUPRC). Precision, recall, and F1 scores are also used to show more explicit com-
parisons. In addition, considering that doublets can confound the downstream analyses, 
especially the clustering, we further performed the widely used Louvain algorithm [61] 
on the doublet-removed datasets and evaluated the clustering results by adjusted Rand 
index (ARI) and adjusted mutual information (AMI). The detailed descriptions of the 
evaluation metrics are given in Additional file 3: Content S4.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 03072-y.

Additional file 1: Fig. S1. The impact of homotypic and heterotypic doublets. We used the simulated data to 
illustrate the impact of homotypic and heterotypic doublets. We first used one replicate of forebrain from MF that 
contains eight annotated cell types, to generate the count matrix. The count matrix of single cell type was then used 
to separately generate corresponding fully-synthetic data by simATAC. Here, we generated the data of different cell 
types with equal size. The homotypic doublets are generated by picking two simulated singlets from the same cell 
type and then mixing their profiles. The heterotypic doublets are generated by picking two simulated singlets from 
different cell types and then mixing their profiles. As is clearly shown, the heterotypic doublets may confound the 
downstream analysis more seriously than the homotypic doublets. Therefore, we stressed the heterotypic doublet 
detection in this work. Fig. S2. The UMAP of the semi-synthetic benchmark datasets to understand the complex-
ity. The TF-IDF transformation was firstly performed on the count matrices, PCA and UMAP were subsequently 
performed on the transferred matrices using the default parameters in EpiScanpy. Fig. S3. The illustration of the 
impact of doublets and the efficacy of doublet-removal by scIBD on the imbalanced fully-synthetic dataset where 
the sizes of different cell types are different. We first visualized the simulated singlets, which show great heteroge-
neity between different cell types as expected. After adding the simulated doublets, we can clearly observe that 
the doublets scatter between the cell types, resulting in spurious clustering results. The heatmap of doublet scores 
provided by scIBD is presented, where the droplets with high doublet scores are fairly consistent with the ground-
truth doublets. To further illustrate the efficacy of scIBD in clustering, we removed the doublets called by scIBD. 
As clearly shown, the clusters reveal significant heterogeneity without the detected doublets, and the number of 
clusters obtained by default parameters is exactly equal to that of true cell types in the ground truth, showing the 
improvement of clustering by scIBD. Although some doublets failed to be detected, the remained doublets mostly 
lay at the edge of main cell types, and have negligible impact on the clustering results. Fig. S4. The receiver operat-
ing characteristic (ROC) curves and precision-recall (PR) curves of scIBD and the baseline methods on the benchmark 
datasets. Fig. S5. The performance evaluation on the semi-synthetic datasets where the doublets have different 
numbers of captured reads. a The AUROC (solid lines) and the AUPRC (dotted lines) show the trend of performance 
with the reads decrease of doublets on the rest five semi-synthetic datasets. b The critical difference diagrams 
(Wilcoxon signed-rank test with Holm’s alpha (5% two-sided) correction) of AUROC and AUPRC under different 
reads down-sampling rates over all the nine semi-synthetic datasets. The results show that scIBD achieves the best 
overall performance across all the semi-synthetic datasets. Fig. S6. Ablation experiments. a The iterative-optimizing 
process. The AUROC and AUPRC of each iteration are illustrated in the plots, where the bottom bar represents the 
metrics calculated based on the doublet scores from the current iteration, while the top bar represents the metrics 
calculated based on the mean scores across all iterations former till the current one. b The performance boosted by 
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our specific simulation strategy. The performance comparison between our proposed strategy and the traditional 
random strategy for simulating doublets. Fig. S7. The sequencing depth statistics based on the HMC datasets. The 
sequencing depth of doublets is significantly higher than that of singlets. Fig. S8. The pipeline of constructing 
ground-truth doublets in the semi-synthetic datasets. We mixed all the reads of two selected cells to construct a 
ground-truth doublet based on the BAM files. The raw BAM file of singlets and the generated BAM file of ground-
truth doublets are concatenated as a complete BAM file for the subsequent process. The cells that are selected to 
construct benchmark doublets are weighted by the known cell annotations. Specifically, we obtained the propor-
tions of all cell types based on their known annotations; according to the cell type proportions we then probabilisti-
cally selected two types, from which one cell was respectively randomly selected to form a heterotypic doublet. 
This simulation pipeline was repeatedly performed to simulate all ground-truth heterotypic doublets. Fig. S9. The 
difference of clustering between Leiden and scIBD. Using ground-truth annotations as the reference, Leiden tends to 
split the predominant cell class into several subclasses, thus yielding low-quality simulated doublets. scIBD applies a 
specific clustering pipeline that can reserve the main cell type, especially in an extremely-imbalanced dataset.

Additional file 2: Table S1. The detailed performance metrics under the given doublet truncating rate of different 
methods based on their respective doublet scores.Table S2. Performance comparison on the Islets (Islet1 and Islet2) 
and PBMC datasets. Table S3. The number of overlapped differential accessible peaks (microglia vs. rest) between 
the doublets removed (RM) datasets by different methods and the ground truth (singlets). Table S4. Top 20 dif-
ferential accessible peaks of the microglia cluster on the ground truth (GT), doublets retaining (RE), and doublets 
removal (RM) datasets. Table S5. The performance comparison between scIBD and the baseline methods that are 
designed for doublet-detection in scRNA-seq data. Table S6. The computational efficacy comparison of scIBD and 
the baseline methods. Table S7. Performance comparison on Islets datasets where the doublets are simulated with 
and without weighting criteria respectively.(DOCX 2433 KB)

Additional file 3: Content S1. Ablation experiments. Content S2. Computational efficacy comparison.Content S3. 
Pseudocode. Content S4. Metrics for evaluation.
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