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Abstract 

Characterizing differences in sequences between two conditions, such as with and 
without drug exposure, using high-throughput sequencing data is a prevalent prob-
lem involving quantifying changes in sequence abundances, and predicting such dif-
ferences for unobserved sequences. A key shortcoming of current approaches is their 
extremely limited ability to share information across related but non-identical reads. 
Consequently, they cannot use sequencing data effectively, nor be directly applied 
in many settings of interest. We introduce model-based enrichment (MBE) to overcome 
this shortcoming. We evaluate MBE using both simulated and real data. Overall, MBE 
improves accuracy compared to current differential analysis methods.

Keywords:  Differential analysis, Machine learning, Selection experiments, Protein 
engineering, Sequencing

Background
Using next-generation sequencing, we can now assay up to billions of DNA or RNA 
sequences in parallel for an ever-expanding set of properties of interest  [1–3]. As a 
consequence, high-throughput sequencing has dramatically changed the landscape of 
biological discovery—both for basic scientific inquiry into cellular transcriptomes  [4] 
and protein behavior and evolution  [3, 5], and in application areas spanning human 
disease and variant detection [5, 6], engineering anti-viral immunogens and therapeu-
tics  [3, 7, 8], drug and antibiotic resistance  [3, 5], regulatory element engineering in 
synthetic biology [9] and beyond. Across many of these scientific areas, a key desired 
outcome from a high-throughput sequencing experiment is to quantify the change in 
relative abundance of a particular sequence between two conditions for a large number 
of distinct sequences. This type of quantification is often referred to as estimating the 
“log-enrichment” of a sequence between two conditions [2, 5, 7, 8, 10–12]. For exam-
ple, log-enrichment estimation is performed in differential analyses of RNA-seq and 
ATAC-seq experiments  [4, 13–15] to quantitatively compare gene- or transcript-level 
expression—based on sequencing counts—between, for instance, a “normal” control 
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condition and a gene knockdown condition that corresponds to the control condition 
except that a particular gene has been knocked out  [4]. In this case, the log-enrich-
ment is a real-valued number that is meant to characterize how much each gene or 
transcript abundance differs between the two conditions—the larger the log-enrich-
ment for a transcript, the more it is believed this transcript is relevant to explaining 
changes between the two conditions. Log-enrichment is also commonly used to analyze 
selection experiments, wherein one condition may be meant to select for more desir-
able genes or proteins. For instance, in protein engineering, log-enrichment is used to 
compare sequencing reads before and after one subjects a library of proteins to a selec-
tion for a desired property that one is trying to engineer [3, 7, 8, 16–20]. As one exam-
ple, one may be interested in what population of proteins emerges from the starting 
“pre-selection library” after being subjected to a selection for catalytic activity [21]. We 
refer to the resulting selected proteins as the “post-selection library.” Other examples of 
high-throughput selections include selection for binding affinity to a specific target of 
interest [12, 22], enzymatic activity [21, 23], or infection of a specific cell type [7, 8, 20]. 
Indeed, such high-throughput selection experiments are frequently used for directed 
evolution [22, 24], deep mutational scanning [2, 3, 5, 10, 12, 25], and functional enrich-
ment analysis [26], and have wide-ranging biologically significant applications, includ-
ing antibody design  [27, 28]; profiling pathogen proteomes for epitopes and major 
histocompatibility complex binding [17, 18]; improving thermostability [23]; assessing 
binding [12, 16, 22], catalytic activity [21, 23], and packaging efficiency or infectivity of 
viral vectors [7, 8, 19, 20].

By accurately estimating log-enrichment for large sequence libraries in these selection 
settings, one can identify sequences that are more (or less) likely to have desired prop-
erties, such as high affinity to the target in a high-throughput selection experiment for 
binding or a functional relationship to the knockdown gene in a differential RNA-seq 
experiment. Consequently, such estimates also have the potential to reveal insights into 
the sequence determinants of the property of interest. Increasingly, log-enrichment esti-
mates are also being used as supervised labels for training machine learning models so 
that one may predict enrichment for unobserved sequences, or probe the model to gain 
further insights [16, 19, 20, 22, 29–32]. These supervised models are often more accu-
rate than popular physics-based and unsupervised machine learning methods such as 
Rosetta and DeepSequence [32].

Limitations of log‑enrichment estimates

Although standard “count-based” log-enrichment (cLE) estimates calculated from 
observed read counts have proven incredibly useful, they suffer from one fundamen-
tal shortcoming that affects several practical settings. That shortcoming is the inability 
to share information across non-identical reads—reads that are non-identical either 
because they span different parts of a genomic sequence and/or they differ at one or 
more positions in a given span. Specifically, because cLE estimates require count-
ing the number of times a unique genomic region is observed, cLE is only straightfor-
wardly applicable when individual reads span the entire region of interest—i.e., the entire 
span of genomic sequence which we would like to quantify (Fig. 1). If instead, say, short 
reads only cover part of the region of interest, then to compute cLE, one must derive ad 
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hoc methods to combine the short reads and then deduce some notion of an effective 
count for the combined reads. Consequently, the inability to naturally and coherently 
share information across related, yet non-identical reads causes a loss of important avail-
able information in a number of practical settings (Fig. 1), including: 

1.	 Short reads: when short, possibly overlapping, reads are available that each only 
cover a portion of the region of interest. When each read is only a small span of this 
region, it is not clear how one should use such reads to obtain the counts necessary 
to compute cLE estimates for the region of interest without significant pre-process-
ing and/or assumptions regarding the mapping between short reads and full-length 
sequences.

2.	 Sparse reads: when reads are sufficiently long to cover the region of interest, but so 
few sequencing reads are available that read counts are extremely low. This scenario 
commonly occurs with long-read sequencing  [6, 33–35]. cLE estimates computed 
from such sparse (i.e., low read count) data are high variance [5, 11, 20]. However, 
many non-identical reads may contain shared information, for example, by contain-
ing identical motifs within reads that may otherwise differ in ways that are not rel-
evant to the problem at hand (e.g., distinguishing the sequence determinants of viral 
packaging).

3.	 Hybrid reads: when a combination of long and short reads are collected and com-
bined into a single sequencing dataset, as is sometimes done to combine the strengths 
of high-error nanopore-based sequencing and lower-error short-read sequenc-
ing [36]. In practice, estimation of cLE in the hybrid read setting is affected by both 
the short read and sparse read challenges just described, with the added heterogene-
ity of now having substantially different lengths in the same dataset. Although, in 
theory, the inclusion of long reads can help “sew” together the short reads, doing so 
requires careful modeling, the errors of which will cascade into the cLE estimates 
that rely on such a step to be able to count “reads” for the region of interest.

4.	 Negative selection: when the goal is to identify sequences enriched in a property that 
is opposite from the selection in the context of computing log-enrichment for a high-
throughput selection experiment. This may occur when it is easy to develop an assay 
only for the opposite positive selection, and not for the desired negative selection. 
For example, in studies of adeno-associated virus (AAV) tropism  [8, 37], one may 
wish to identify sequences that do not infect an off-target cell type when the only 
available high-throughput selection experiment selects for infecting the off-target cell 
type. A key desired outcome in the negative selection setting is to produce accurate 
log-enrichment estimates for sequences which do not tend to pass the selection (but 
occasionally do, so that we can count them), whereas typically one seeks to char-
acterize those enriched for passing the selection. By design, the post-selection read 
counts for sequences of interest in negative selection are low, making their corre-
sponding cLE estimates high variance.

For the case of sparse reads and negative selection (i.e.,  low sequencing counts), it is 
well-known that cLE estimates suffer from high variance  [5, 11, 20]. Previous efforts to 
reduce variance employ regression to “de-noise” cLE estimates by either using a model 
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to intelligently aggregate data across iterative selection rounds  [5] or by downweight-
ing examples with low counts [16, 20]. While these techniques can yield higher-quality 
results, they are extremely limited in their ability to share information across non-iden-
tical reads. As a simple, intuitive example, if only 10 out of 300 positions in a sequence 
of interest are predictive of the property of interest, better statistical power could be 
achieved by calculating cLE using counts defined only by the 10 relevant positions rather 
than all 300, since the latter will cause most reads to appear to be non-identical and 
hence treated separately. A method that could automatically deduce such shared infor-
mation, would be more powerful. This simple, intuitive scenario can be generalized well 
beyond this one example, as discussed next.

Ideally, to accurately estimate log-enrichment (LE), we would like sequencing data 
with high read coverage that is comprised of reads that each individually cover the full 
region of interest (Fig. 1). However, in practice, individual reads may not cover the entire 
region of interest—such as is likely to arise with short-read sequencing, but could also 
occur when using long-read technologies to analyze large sequences of interest [35]. In 
these settings, it is not obvious how to count reads for the region of interest, nor how 
to calculate the desired cLE estimates. Because the hybrid read setting contains short 
reads, it is also likely to be plagued by this issue. To tackle the LE estimation problem 
nonetheless, one might consider estimating cLE for shorter, sub-regions-of-interest (of 
length less than or equal to the typical read length) and then devising a heuristic to add 
these cLE estimates together to produce a LE estimate for the actual region of interest. 
However, it would be difficult for such an approach to correctly account for correlations 
between reads (e.g., owing to linkage disequilibrium), and to allow for data sharing by 
way of partial overlap between reads. Moreover, of all the possible heuristics one might 
consider to do such an analysis, is not clear which to use, and the answer likely depends 
on the specific application. If we could bypass such a modeling step, and instead directly 
estimate LE, we could stand to benefit substantially.

In applications where there is a known reference sequence—such as in many RNA-seq 
and ATAC-seq experiments—the reference can help provide information about how to 
combine reads [4]. However, this is typically performed by alignment and assembly, fol-
lowed by cLE estimation; thus such approaches also suffer from many of the same limi-
tations just described. Devising an alternative approach to LE estimation—one that is 
capable of both “sewing” together partially overlapping reads and, more generally, shar-
ing across non-identical reads—would enable more efficient sharing of information.

A new approach for log‑enrichment estimation

Ultimately, a method that can automatically learn to share information as appropriate 
across non-identical reads will improve our ability to extract important information 
from sequencing data in a range of settings. Herein, we propose and evaluate a novel, 
coherent framework that enables us to do just that. Our manuscript is organized as fol-
lows: next, we (i) detail how log-enrichment estimates are currently computed; (ii) pro-
vide a high-level overview of our approach, model-based enrichment (MBE); (iii) provide 
a detailed empirical characterization of MBE using data from simulated high-through-
put selection experiments; and (iv) do the same on real experimental data.
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Overall, we find empirically that MBE enables effective analysis across a broader range 
of common experimental setups in use today, including when short-read, long-read, or 
both types of sequencing reads are used. Our primary motivation is to improve predic-
tions of log-enrichment on new (unobserved) sequences, as this is most relevant to our 
own work in machine learning-guided library design. However, our results show that 
MBE also enables better estimation of log-enrichment, the more classical use case. We 
show that, compared to existing approaches based on cLE, over a broad range of set-
tings, MBE produces predictions that correlate better with true labels. We show that 
this is, in part, a downstream consequence of the fact that MBE is more robust to low 
sequencing counts. We also show that MBE enables better characterization of sequences 
of interest from a negative selection experiment. Additionally, we find MBE performs 
better at selectivity experiments, wherein two selection experiments are performed and 
one wants to identify sequences that are highly selected for in one (the positive selec-
tion), and highly selected against in the other (negative selection)—such as we might 
seek when designing gene therapy viral vectors to infect one cell type and not another. 
This setting thus requires modeling of three conditions, instead of the typical two we 
have in other experiments.

Results
Overview of current log‑enrichment estimation approaches

Given sequencing read counts from two libraries corresponding to two conditions, A 
and B, cLE estimates are typically calculated by: (i) assigning an index, i, to each unique 
sequence in the sequencing data from libraries A and B, denoting each by xi ; (ii) comput-
ing read counts, nAi  and nBi  , specifying the number of times xi appeared in the sequencing 
data from each library; (iii) normalizing the counts nAi  and nBi  by the total number of 
reads from each library, NA and NB ; (iv) and, finally, taking the log-ratio of the normal-
ized counts. Thus, the cLE estimate, log ei , is given by  log ei = log

nBi /N
B

nAi /N
A . The estimate 

log ei has higher variance when the counts nAi  and nBi  are lower. For example, for fixed NA 
and NB , a sequence with nAi = 1 and nBi = 2 has the same log ei as a sequence with 
nAi = 100 and nBi = 200 , yet the latter is supported by 100 times more evidence (and thus 
is a lower-variance estimate).

Supervised machine learning regression models have been used to reduce the variance 
of (i.e., “de-noise”) such cLE estimates [5, 16, 20], and to make predictions for sequences 
not present in the training library [19, 20, 22, 32]. The latter strategies, which we refer to 
as LE regression approaches, use cLE estimates as supervised labels to learn a predictive 
model mapping from sequence to predicted LE. Zhu et al. [20] additionally derive a vari-
ance estimate for log ei which enables them to weight each training sequence according 
to the amount of evidence that supports its cLE estimate, yielding improved predictive 
performance. Consequently, when comparing to a baseline for LE prediction, we use this 
same approach, which we refer to as weighted LE regression (wLER).

A new approach: model‑based enrichment

Existing approaches that use regression-based LE estimation (or prediction) are 
performed in two sequential steps: first, compute a cLE estimate for each unique 
sequence  [2, 5, 10, 11], and second, train a regression model to predict these cLE 
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estimates from the observed sequences, possibly weighting each sequence to account for 
its corresponding level of evidence [20, 32]. In contrast, our newly introduced method, 
MBE, performs both of these steps at once, resulting in a more powerful and more gen-
eral analysis framework. We do so by reframing the LE estimation problem: we show 
that a cLE estimate can be viewed as a sample-based estimate of the logarithm of what 
is known as a density ratio—the ratio of probability densities of the observed sequences 
under each condition. Therefore, we can estimate and predict LE by solving a density 
ratio estimation (DRE) problem. Furthermore, it has been shown that DRE can be effec-
tively and accurately performed by training a probabilistic classifier to predict which of 
the two densities a sample came from (e.g., condition A or B) [38–44]. Specifically, the 
ratio of such a classifier’s predicted class probabilities provably converges to the density 
ratio [39–41].

Through this series of theoretically justified steps, we are able to transform the prob-
lem of estimating LE into one of training a read-level classifier to distinguish which 
condition a read came from (Fig.  2). This transformation provides several distinct 

Fig. 2  Overview of MBE at train time and prediction time. a At train time, next-generation sequencing reads 
from each condition, A and B, are used to train a probabilistic classifier. Without loss of generality, we encode 
condition A using the class label −1 and condition B using the class label +1 to train the classifier. More 
specifically, when applying MBE to the simulated data, we generate N training reads for condition A, and N 
training reads for condition B (i.e., equal class sizes). Then, we train a classifier on the N + N = 2N data points, 
where each data point is a one-hot encoding of one read sequence with a corresponding label ( −1 for class A 
or +1 for class B). (For all neural network models, we used a one-hot encoding. For linear models, we used 
other feature sets—see the “Methods” section. One could add any other features as desired, such as a 
mapped genomic position). The same read can appear more than once and may appear with discordant 
labels (e.g., if it appears in both conditions). The only difference in the implementation on the real data as 
compared to the simulated, is that the total number of reads may be quite different between the different 
conditions; to account for this, we re-weight the classifier loss function by the total number of reads in each 
condition to equalize the impact of each condition on the classifier (see the “Methods” section). b At 
prediction time, a single sequence is given to the trained classifier, which produces a predicted probability for 
each condition (class). For a two-condition model (A vs. B), we then compute the logarithm of the ratio of the 
two class probabilities to obtain the LE. When more than two conditions (classes) are used, a LE can be 
computed for any pair of conditions using the same calculations. For example, for a three-condition 
(three-class) model, there are 3

2

= 3 possible LEs that can be computed, each between two of the 

conditions
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advantages over existing methods, which we outline here and, later demonstrate empiri-
cally. One advantage is that, unlike regression-based approaches like wLER, MBE does 
not rely on cLE estimates as labels, which as discussed earlier, are affected by a funda-
mental shortcoming. Instead, MBE bypasses this step altogether by training a classifier 
directly on the raw sequence data with accurate labels corresponding to the known con-
dition the read came from. Consequently, because MBE is classifier-based, it is easy to 
implement using standard software packages for training and tuning machine learning 
classifiers: one need simply train a classifier using any standard classification tools, and 
can perform model selection using standard cross-validation techniques. In particular, 
MBE can readily make use of modern-day neural network models in a plug-and-play 
manner, which also enables us to easily handle (possibly overlapping) reads of different 
lengths. For example, fully convolutional neural network classifiers naturally handle var-
iable-length sequences because the convolutional kernels and pooling operations in each 
layer are applied in the same manner across the input sequence, regardless of its length. 
Similarly, the same can be said for transformer architectures. A further advantage is that 
our approach naturally accounts for differing levels of evidence per sequence of inter-
est, which in previous LE regression methods was either ignored or addressed post 
hoc  under specific distributional assumptions  [16, 20]. Finally, our approach trivially 
generalizes to settings with more than two conditions of interest by replacing the binary 
classifier with a multi-class classifier. The multi-class classification model is trained to 
predict the condition from which each read arose; then, the density ratio for any pair of 
conditions can be estimated using the ratio of its corresponding predicted class prob-
abilities (see the “Methods” section). This generalization enables us to naturally handle 
experiments with multiple properties of interest, such as our simulated sequence selec-
tivity experiments.

We highlight that our classifier-based DRE approach differs substantially from sev-
eral recent approaches that also make use of classification. In one, cLE estimates are 
thresholded and a classifier built to predict the resulting binarized labels (e.g., [19]). In 
another, a classifier is built to predict whether a sequence appeared at all in post-selec-
tion sequencing data (e.g., [30]). Neither of these approaches address the shortcomings 
that we seek to resolve with MBE.

Technical overview of MBE

Here, we provide more detail about our MBE approach (see the “Methods” section for 
full detail). Recall that the cLE estimate is the log-ratio of the two normalized counts, 
nAi
NA and

nBi
NB . These normalized counts are also the empirical frequencies of the ith 

unique read, xi , in the sequencing data for conditions A and B, respectively. In par-
ticular, these two ratios are the sample-based estimates of the population frequencies 
of xi in each library. We denote the population frequencies by the probabilities pA(xi) 
and pB(xi) . Consequently, log ei can be viewed as a sample-based estimate of the pop-
ulation-level LE, which we denote log d(xi) . Specifically, log ei ≈ log d(xi) = log

pB(xi)

pA(xi)
 , 

where d is the density ratio between the library distributions. By training a binary 
classifier with parameters, θ , to predict the probability that a read with sequence xi 
came from library B, pθ (l = B | xi) , we can estimate log d(xi) , and hence the LE, as 
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log d(xi) ≈ log
pθ (l=B|xi)

1−pθ (l=B|xi)
 [39, 41] (Fig. 2). It has been proven theoretically that under 

a correctly specified model, this density ratio estimation method is optimal among a 
broad class of semi-parametric estimators—that includes the wLER method—in 
terms of asymptotic variance [39] (Additional file 1: Supplementary Note 1).

Contrasting wLER and MBE

At first glance, it may appear that the main difference between wLER and MBE is that 
the former uses regression, while the latter uses classification. However, conceptually, 
the more important difference is that wLER (and any regression-based LE method) 
uses cLE estimates as regression labels. Hence, wLER is dependent on cLE estimation 
and consequently is affected by all the limitations of cLE described earlier—namely 
those arising from the inability to share information across similar, but distinct reads. 
In contrast, MBE is trained using the raw reads directly, labeling each as coming from 
one of two conditions, thereby bypassing the issues arising from cLE estimates. That 
is, MBE’s classification labels need not be estimated, but are given to us for free, with 
100% accuracy. It is this distinction that lies at the core of why MBE tends to outper-
form wLER. That one method uses classification instead of regression is a byproduct 
of the technical underpinnings used to achieve this desideratum.

Generalization of wLER and MBE to more than two conditions

Both wLER and MBE are straightforward to generalize to the setting of having more 
than two conditions, where one might be interested in estimating or predicting LE 
between any or all pairs of conditions among several conditions (such as arises when 
identifying selective sequences—see Selection for sequence selectivity). For wLER, one 
simply uses cLE to estimate regression labels for any pair of interest, and then trains a 
multi-output regression model—with one output for each such pair—using wLER 
with these labels and sequences (see the “Methods” section). For MBE, one simply 
augments the classification labels to have as many unique class labels are there are 
conditions—such as {−1, 0, 1} for three conditions—and trains a multi-class classifier. 
Multi-class classification is a standard machine learning problem that typically 
employs a generalized logistic loss called a softmax loss. Concretely, the multi-class 
classifier yields a model of the probability pθ (l = j | xi) , where the condition is 
indexed by j. The trained multi-class classifier can be used to estimate the density 
ratios between two conditions j and j′ using log d(xi) ≈ log

pθ (l=j|xi)
pθ (l=j′|xi)

 . Note that this is 
particularly convenient because it scales linearly in the number of conditions. One 
potential, but unexplored, benefit of this is that one could easily compute LEs between 
two conditions where one is an aggregate of the original conditions. For example, 
suppose we used MBE to analyze three conditions, A, B, and C. Then MBE could be 
used to compute LEs between all three pairs of conditions (A vs. B, B vs. C, and A vs. 
C), but it could also be used to compare, for example, condition A to conditions B and 
C jointly using the same underlying classification model. To do so, one would simply 
compute log pθ (l=A|xi)

pθ (l=B|xi)+pθ (l=C|xi)
 . In contrast, the multi-condition generalization of 
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wLER requires deciding which pairs of conditions are of interest before training the 
model and then computing labels for all such pairs separately.

Overview of simulation experiments

Next, we describe the simulation experiments used to empirically compare and contrast 
our MBE approach with cLE and wLER across a broad range of settings (Fig. 3). We pro-
vide an overview of the simulated datasets, model architectures, and evaluation metrics, 
before presenting the results.

Simulated data

We sought to understand the strengths and weaknesses of the MBE and wLER 
approaches as we changed the following simulation settings: 

1.	 The length of the sequence of interest, L, ranging from 21 to 2253 nucleotides.
2.	 Whether short or long reads were used (300 vs. 10,000 nucleotides).
3.	 The number of unique sequences in the theoretical pre- and post-selection libraries, 

M′ , ranging from 8.5× 106 to 2.6× 107.
4.	 The number of pre- and post-selection reads, Npre and Npost—always set equal to 

each other, ranging from 4.6× 103 to 4.6× 107.
5.	 The complexity of the functional mapping between sequence and property of inter-

est; this complexity was characterized in terms of a summary parameter controlling 
the amount of epistasis, T.

We simulated libraries that correspond to three types of experimental library 
constructions: 

(a)	 Insertion of a sequence into a fixed background. In a given library, the insertion 
has fixed-length and a fixed position within the background sequence. The inser-

Fig. 3  Overview of experiments on simulated datasets. We simulated three types of protein libraries: 
(i) peptide insertion, (ii) AAV recombination, and (iii) avGFP random mutagenesis libraries (Table 1). We 
simulated three types of sequencing datasets: (i) short reads (for all libraries), (ii) long reads (for all libraries 
except the peptide insertion libraries, where short reads cover the entire region of interest), and (iii) 
hybrid reads (for the AAV recombination library). We employed three types of architectures: (i) linear, (ii) 
fully-connected neural network, and (iii) convolutional neural network—using a classification head for MBE 
and a regression head for wLER. For short-read and hybrid-read datasets, we only used convolutional neural 
networks because only they can operate on variable-length sequences
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tion library construction is motivated by our work in adeno-associated virus (AAV) 
capsid engineering which aims to understand sequence determinants of AAV prop-
erties such as packaging  [20]. In this study, the sequence of interest  is a 21-mer 
nucleotide insertion sequence into the capsid with fixed background. Herein, we 
simulate this insertion library with varying lengths (21, 150, and 300 nucleotides). 
The pre-selection library is generated to be roughly uniform in nucleotide space 
(technically, an “NNK” degenerate codon distribution).

(b)	 Random mutagenesis—motivated by a study to understand the fitness landscape of 
a green fluorescent protein of length 714 nucleotides [31]. Herein, we mutagenize 
the green fluorescent protein across all positions using a 10% mutation rate to gen-
erate the pre-selection library.

(c)	 Recombination—motivated by an AAV directed evolution study  [8], wherein sev-
eral AAV serotypes are recombined using seven crossovers separating eight recom-
bination blocks. Herein, we generate library sequences by recombining nine AAV 
serotypes using eight equally sized blocks. The total length of all eight blocks is 
2253 nucleotides.

A summary of the simulated sequencing datasets is provided in Table 1.
Underlying each of the motivating selection experiments is a property on which the 

sequences get selected, such as protein fluorescence. To simulate selection, we must 
simulate the ground truth fitness function that maps sequence to property. We did so 
as a linear function of a number of features, including all independent amino acid sites, 
and T higher-order epistatic features drawn randomly from all possible such effects, in a 
manner that re-capitulates the distribution of these effects in a real protein fitness land-
scape. In particular, combining insights from several papers [45–47], we assumed that T 

Table 1  Summary of simulated datasets. For each dataset, we list the library name (Library), 
sequence length in nucleotides (L), number of unique library sequences ( M′ ), epistasis 
hyperparameter used for fitness simulation (T), read type (short, long, or hybrid), % of the sequence 
of interest covered by individual reads (Cover), and number of pre-selection and post-selection 
reads ( Npre and Npost ), which were always equal. We simulate 4.6× 107 short reads to match the 
experimental data from Zhu et  al.  [20], and up to 4.6× 105 long reads to be within the current 
throughput of PacBio’s technologies [34, 35]. Each dataset is described in more detail in the Methods

Library L M′ T Read type Cover N
pre = N

post

21-mer insertion 21 8.5× 106 140 Short 100 4.6× 107

150-mer insertion 150 8.5× 106 1000 Short 100 4.6× 107

300-mer insertion 300 8.5× 106 2000 Short 100 4.6× 107

avGFP mutagenesis 714 2.5× 107 4760 Long 100 4.6× 105

avGFP mutagenesis 714 2.5× 107 4760 Short 42 4.6× 107

AAV recombination 2253 2.6× 107 15,020 Long 100 4.6× 105

AAV recombination 2253 2.6× 107 15,020 Long 100 4.6× 104

AAV recombination 2253 2.6× 107 15,020 Long 100 4.6× 103

AAV recombination 2253 2.6× 107 15,020 Short 13 4.6× 107

AAV recombination 2253 2.6× 107 15,020 Hybrid 100 long + 13 
short

4.6× 103 long + 
4.5× 107 short
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scaled linearly with the length of the sequence of interest, with a fixed coefficient based 
on Poelwijk et al. [29].

Finally, the process to simulate reads from the pre- and post-selection libraries can be 
summarized as follows: first, we generate library sequences using one of the three previ-
ously described library construction simulations. Then, we randomly perturb the empir-
ical distribution of the simulated library sequences (which simulates slight distributional 
perturbations that may occur with PCR amplification) to generate a pre-selection prob-
ability distribution. Next, the corresponding post-selection probability distribution is 
determined by scaling the pre-selection distribution according to the simulated fitness 
of the library sequences. Then, we sample reads that cover the full sequence of interest 
from the pre- and post-selection distributions. When simulating short reads, we trun-
cate each of these reads to 300 nucleotides, at a position chosen uniformly at random. To 
be able to compare to the negative binomial modeling approach DEseq2 [14, 15, 48] used 
in the RNA-seq community, which requires multiple biological replicates, we repeated 
this read simulation process three times to generate three replicates (Additional file 1: 
Fig. S4). In all other results presented, no replicates were used, as this most closely mim-
ics our typical use cases, including the real experimental datasets.

We also perform negative selection simulations, which were motivated by experiments 
wherein one seeks to identify sequences with a property, such as low-binding affinity, 
for which the only available assay enriches for the opposite, such as high-binding. Recall 
that this situation arises, for example, in studies of AAV tropism [8, 37] where the ideal 
viral vector selectively infects one cell type, but not others. We, therefore, aimed to esti-
mate the accuracy of wLER and MBE to negatively select against an undesirable fitness. 
Moreover, we aimed to compare the methods’ abilities to accurately identify sequences 
of interest that are selective—meaning that they are simultaneously high in one fitness 
(the positive fitness) and low in a second (the negative fitness). To do so, we simulated 
two independent fitness functions and used each, separately, on the same pre-selection 
library to simulate two post-selection libraries and corresponding reads. Thus, these 
sequence selectivity experiments depend on being able to handle three conditions: the 
pre-selection, the post-selection for the positive fitness, and the post-selection for the 
negative fitness.

Although most of our simulations did not include sequencing errors, we constructed 
versions of two of the aforementioned datasets that did. For one of the insertion data-
sets, we used a uniform random substitution error rate of 0.1%, consistent with observed 
error rates of Illumina’s next-generation sequencers [49]. For one of the recombination 
datasets, we used SimLoRD [50] to simulate PacBio SMRT sequencing errors. As shall 
be seen, the noise had little effect on our results.

Model architectures

We implemented wLER and MBE using several model architectures. To enable direct 
comparison of the two methods, we kept the set of allowed architectures and hyper-
parameters the same for both approaches, excluding the final layer and loss which dic-
tate whether the model is for regression (wLER) or classification (MBE). Specifically, 
we used the seven model architectures in Zhu et al. [20]—three linear models and four 
fully-connected neural networks (NNs)—as well as four additional convolutional neural 
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network (CNN) architectures. As the linear and NN architectures and hyper-parameters 
are from a paper that used wLER, to the extent the selected architectures may favor one 
of the approaches compared herein, they would favor wLER. The CNNs can operate on 
variable-length sequences, allowing us to train on short reads and make predictions on 
full-length sequences of interest. To provide a general comparison of the methods’ per-
formance and robustness, we restrict our attention to this fixed set of model architec-
tures and hyper-parameters, but in practice, for both MBE and wLER one can perform 
model and hyper-parameter selection on one’s specific dataset of interest using standard 
cross-validation.

Our selectivity experiments simulate selection for sequences that are simultaneously 
high in a desirable positive fitness and low in an undesirable negative fitness. For sim-
plicity, in these experiments we allowed only one model architecture—the smallest NN 
architecture—to model the multiple conditions involved in these simulations. For MBE, 
this corresponds to using the NN as a three-class classification model—with one class 
corresponding to each of pre-selection, post-selection for the positive fitness, and post-
selection for the negative fitness. For wLER, we used a two-output NN regression model 
with one output for the positive fitness and one for the negative. We used this architec-
ture because it was the simplest non-linear model architecture we explored—meaning it 
is capable of capturing higher-order epistasis while being relatively parsimonious. Based 
on the results of our initial simulation experiments, this choice of architecture does not 
systematically benefit either of the wLER or MBE approaches (Additional file 1: Fig. S1).

Evaluation methods

We focused our comparisons on three competing approaches: standard cLE, wLER 
(recall this is a weighted regression on cLE), and our MBE approach which bypasses 
computation of cLE. wLER and MBE can both (i) make predictions on sequences not 
seen in the training data, and (ii) make model predictions on the training data itself to 
yield LE estimates—a sort of “de-noising” of the cLE estimates. We refer to these two 
tasks, respectively, as prediction and estimation. The cLE approach can only be used 
for estimation, hence it does not appear in prediction experiments. In the Supplemen-
tary Information, we also compared to the negative binomial-based estimation method, 
DEseq2  [48], which cannot be used for prediction and, unlike the other methods, 
requires multiple replicates.

To compare wLER to MBE on any given dataset, we used all model architectures and 
hyper-parameters for both methods, and then selected the best setting separately for 
each of wLER and MBE. No model or hyper-parameter selection is required for cLE 
since it does not use any model or have any parameters.

An important point to appreciate throughout our work is that although can use stand-
ard cross-validation on the sequencing data to pick hyper-parameters, we cannot do so 
to assess accuracy because this requires access to a true biophysical assay not plagued 
by the requirement to estimate LE. Hence, in simulated settings, we perform modified 
cross-validation wherein we evaluate performance on each fold by comparing predic-
tions to the sequences’ ground truth fitness values.

We used threefold cross-validation to compute the Spearman correlation between 
ground truth fitness and predicted LE to compare and contrast the performance of each 
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method. In our simulations, we can compare directly against ground truth LE values, 
and thus we also evaluate using Pearson correlation (which assumes a linear relation-
ship between predicted and ground truth values), and mean squared error (MSE) which 
assumes shared units between predictions and ground truth metrics. However, we pri-
marily focus on Spearman correlation because the other metrics are not appropriate 
when working with experimental data where, in general, one can expect LE and experi-
mental property measurements (which are typically direct biophysical measures) only 
to have the same rank order but not necessarily a linear relationship. Additionally, we 
make use of a generalized Spearman correlation that focuses on sequences that have the 
highest ground truth LE—the focusing is controlled by a threshold on true LE which we 
sweep through a range of values, such that at one extreme, we compute the Spearman of 
all sequences in the test set, and on the other, of only the most truly enriched sequences 
(similarly to Zhu et al. [20]). The test set is always comprised of full sequences of interest, 
even when the training data contained reads that were shorter. For all cross-validation 
experiments, we averaged the Spearman correlations computed on each fold to produce 
one cross-validated correlation value. We use William’s t-test to assess statistical signifi-
cance of the difference between the cross-validated Spearman correlations.

Each selectivity simulation is defined by two different simulated fitnesses, a positive 
fitness and negative fitness. We learn two-output models (one output per fitness) on 
these data. We define the selectivity of a sequence as the difference between its posi-
tive and negative fitness values. We apply the generalized Spearman correlation evalu-
ation method described above for the positive fitness. For the negative fitness, we use 
a similar generalized Spearman correlation that focuses on sequences with lowest—
instead of highest—ground truth LE. In the selectivity experiments, we also seek to com-
pare how well wLER and MBE identify test sequences with high selectivity. To do so, 
for each method, we rank the sequences in each test fold according to predicted selec-
tivity—the difference between predictions for each fitness—and take the top ten test 
sequences. Then, we compare the two ground truth fitness values of each of the chosen 
sequences to the fitness values of a theoretical optimally selective sequence that has the 
maximum true positive fitness and minimum true negative fitness observed in the given 
dataset. We also use McNemar’s test to assess the statistical significance of the differ-
ence between the methods’ accuracy at identifying the 1% of test sequences with highest 
selectivity.

Results on simulated data

Across all simulated datasets, our MBE approach made significantly more accurate LE 
predictions than wLER (Fig. 4a) according to standard Spearman correlation ( p < 10−10 ). 
The improvements of MBE over wLER in terms of Spearman correlation values were as 
much as 0.561 and as little as 0.005, with an average of 0.177. In no cases did MBE do 
worse than wLER. We also found that our MBE method performed better when faced 
with both Illumina- and PacBio-like sequencing error (Fig. 4, Additional file 1: Fig. S8). 
These performance benefits of MBE over wLER were not sensitive to the specific evalu-
ation metric, and remained consistent using both Pearson correlation (Additional file 1: 
Fig. S2a) and MSE (Additional file 1: Fig. S3a). Moreover, MBE was much less sensitive to 
the choice of model architecture, to such an extent that even the worst-performing MBE 
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model performed better than the best-performing wLER model on several datasets (Addi-
tional file 1: Fig. S1a). Similarly, for the estimation task, MBE outperformed wLER across 
all simulated datasets and evaluation metrics (Fig.  4b, Additional file  1: Figs.  S2b, S3b, 
and S1b). We also found that MBE consistently improved estimation accuracy compared 
to the LE estimates produced using cLE and DEseq2 (Fig. 4b, Additional file 1: Fig. S4), 
although this result may depend on the specific type of replicates generated.

Collectively, our results demonstrate a clear win for MBE across a broad range of set-
tings. In the subsequent sections, we examine the following specific settings to get a 
broader view of the strengths and weaknesses of each method: sparse reads, overlapping 
short-reads, hybrid long- and short-reads, negative selection, and selection for sequence 
selectivity.

Fig. 4  Simulated library results. Spearman correlation between ground truth fitness and cLE, wLER, and 
MBE estimates on full-length sequences of interest for the tasks of a prediction and b estimation. The cLE 
approach can only be used for estimation (not prediction), and additionally, only for experiments where the 
sequencing reads were long enough to cover the sequences of interest (“Cover" = 100). Thus, cLE is absent 
from some experiments. All differences are statistically significant ( p < 10

−10 ). For wLER and MBE, the results 
shown are for the cross-validation-selected architecture for each approach, as described in the main text, and 
are presented in the order of Table 1. For comprehensive results across all model architectures see Additional 
file 1: Fig. S1. For comparisons using Pearson correlation and MSE see Additional file 1: Figs. S2–S3, and see 
Additional file 1: Fig. S4 for comparisons to DEseq2
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Sparse read setting  We define the sparse read setting as occurring when the aver-
age number of sequencing reads per library sequence was lower than 0.02. In our 
experiments, this includes simulated long-read datasets for the avGFP mutagenesis 
and AAV recombination libraries. We hypothesized that the MBE approach would 
have a particular advantage in this setting because of its improved ability to combine 
information across similar but non-identical reads compared to cLE and wLER, the 
latter of which is trained using regression labels obtained from cLE estimates. On the 
prediction task, MBE maintains comparable accuracy to wLER on test sequences with 
high ground truth fitness, while improving accuracy in the other regimes (Additional 
file 1: Figs. S5a–b and S6). Additionally, MBE had lower variance than wLER across 
the different test folds (Additional file  1: Fig.  S6). We also note that the longer the 
sequence of interest, the more MBE outperforms wLER—this nicely matches our 
intuition as the longer the read, the more sparse the setting (Fig. 4a, Additional file 1: 
Figs.  S6d–e and S7). We observed similar trends for the estimation task (Fig.  4b, 
Additional file  1: Figs.  S1b and S9). When we increase the total number of long 
reads for the AAV recombination library (from 4.6× 103 to 4.6× 105 ), more unique 
sequences with low counts occur in the data (Additional file 1: Fig. S7). Consequently, 
wLER is particularly challenged because it is trained using cLE estimates that cannot 
share data across non-identical reads to mitigate the effects of low counts. In fact, 
wLER is so challenged that, for many model architectures, its performance degrades 
when provided with more long-read sequencing data (Additional file 1: Fig. S5a–c). 
In contrast, MBE  follows a more intuitive pattern: more training data always either 
maintained or improved performance, but never hurt the overall performance met-
rics (Fig. 4, Additional file 1: Fig. S5).

Short‑ and hybrid‑read settings  In practice, experimenters often offset the sparsity of 
long-read sequencing by augmenting with higher-throughput short-read sequencing. 
We refer to this as the hybrid-read setting. Again, our results follow our intuition: for 
short-read and hybrid datasets, MBE  outperformed wLER  (Fig.  4a, Additional file  1: 
Fig. S5d–f). In fact, because wLER is trained using cLE estimates as its regression labels, 
it cannot leverage partial overlap between reads; consequently, its accuracy actually 
decreased when long-read data was supplemented with additional short reads, despite 
the fact that this creates a larger overall training set. Recall our hypothesis that, by avoid-
ing the need to pre-compute and train on cLE estimates, the MBE approach is capa-
ble of learning to combine information across partially overlapping reads to make more 
efficient use of sequencing data. Indeed, our results support this hypothesis: MBE had 
higher accuracy when given a larger hybrid dataset, in contrast to wLER, which was less 
accurate with more training data.

Negative selection  In negative selection experiments, the property being selected for 
is opposite from the property of interest. Thus, a key goal is to produce accurate pre-
dictions for sequences with low ground truth fitness, for which the post-selection read 
counts are, by definition, low, making these estimates extremely challenging, particu-
larly for approaches based on cLE estimates—including wLER—that are high vari-
ance when sequencing counts are low, and cannot share information across similar but 
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non-identical reads to mitigate this noise. We compared wLER and MBE predictive 
accuracy using generalized Spearman correlation focused on sequences with low ground 
truth fitness. MBE achieved higher predictive accuracy, not only overall, but also specifi-
cally on the subset of the test sequences with lowest true fitness (Fig. 5).

Selection for sequence selectivity  A key reason to seek high predictive accuracy for 
the negative selection task is so that we can leverage this task to perform a selectivity 
experiment, wherein we seek to identify sequences that simultaneously appear high in a 
positive fitness and low in the negative fitness. Indeed, we find that MBE is better than 
wLER at identifying those selective sequences, which required a three-condition model 
for MBE, and a two-output regression for wLER. First, we found that MBE yielded bet-
ter predictive accuracy than wLER on both the negative fitness (Fig.  5) and the posi-
tive fitness (Additional file  1: Fig.  S10a, d, and g). More importantly, MBE was also 

Fig. 5  Simulated negative selection prediction results. Comparison of wLER and MBE predictive accuracy 
for simulated negative selection using the 100-unit NNs on the a 21-mer insertion ( 4.6× 10

7 short reads), b 
avGFP mutagenesis ( 4.6× 10

5 long reads), and c AAV recombination ( 4.6× 10
5 long reads) datasets. Dot size 

represents the fraction of test sequences with the lowest ground truth fitness used to compute Spearman 
correlation. A 0.2-fraction of lowest test sequences corresponds to the sequences in the bottom 20% of 
all unique test set sequences after ranking by ground truth fitness. To produce each curve, we computed 
Spearman correlation for every fraction of lowest test sequences between 0.01 and 1.0, inclusive, in 0.01 
increments for each method, to obtain a sweeping continuum in the plot, although the legend shows dot 
sizes only in increments of 0.2 to reduce clutter. The dashed black line represents the equal performance of 
the two approaches
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better at identifying the selective sequences, which we assessed as follows. To measure a 
sequence’s selectivity, we computed the difference between its positive and negative fit-
ness values: the larger this difference, the more selective the sequence is for the positive 
selection relative to the negative selection. MBE was more accurate than wLER in identi-
fying selective sequences (Fig. 6). Moreover, the best sequences identified by MBE were, 
on average, closer to a theoretical optimally selective sequence, compared to wLER 
(Fig. 6, Additional file 1: Fig. S10c, f, and i). Overall, for each of the three datasets, MBE 
was significantly better than wLER at identifying the 1% of test sequences with the high-
est true selectivity ( p < 10−3).

Overview of experiments with real data

Having characterized the behavior of wLER  and MBE  in a broad range of simulated 
settings, we applied these methods on real experimental data. Next, we describe the 
datasets, model architectures, and evaluation metrics used to empirically compare the 
methods on experimental data, before presenting the results.

Real experimental data

We used five experimental datasets—each comprised of sequencing data from a pre-
selection library and after one or more selections on that library. For our evaluations, 
we also used low-throughput experimental property measurements corresponding to 
the selected property for each of the five sequencing datasets. Each experimental dataset 

Fig. 6  Simulated sequence selectivity prediction results. Comparison of wLER and MBE (using 100-unit NNs) 
for identifying selective test sequences over three simulated datasets: a 21-mer insertion ( 4.6× 10

7 short 
reads), b avGFP mutagenesis ( 4.6× 10

5 long reads), and c AAV recombination ( 4.6× 10
5 long reads). Colored 

points show the true positive and negative fitness of the top ten test sequences identified from each of the 
three test folds from threefold cross-validation according to each model’s predicted selectivity (i.e., difference 
in predicted positive and negative fitness values). To gauge overall performance, the average point from 
each method is also plotted in black-and-white, as is a theoretical optimally selective sequence (star) with 
the maximum positive fitness and minimum negative fitness among all sequences in the relevant dataset. 
Distance from optimal to average is conveyed by a circular contour line through the average point for each 
method; the size of the gap between the two circles is indicative of how much closer MBE is to the optimum 
than wLER. On all three datasets, MBE is significantly more accurate than wLER at identifying the 1% of test 
sequences with the highest true selectivity ( p < 10

−3)
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and its corresponding property measurements are summarized in Table 2 and described 
briefly in the same order here: 

1.	 A library of 21-mer nucleotide insertions into a fixed AAV background sequence 
subjected to a round of packaging selection, and packaging titer measurements for 
five sequences not present in the library [20].

2.	 A library containing every 15 amino acid peptide in the SARS-CoV-2 proteome 
(which has 14,439 amino acids) subjected to four rounds of selection for binding to 
human major histocompatibility complex (MHC). For ground truth, there are IC50 
measurements for 24 peptides [17].

3.	 A site saturation mutagenesis library containing all single and double amino acid 
mutations within the 168 nucleotide IgG-binding domain of protein G (GB1) sub-
jected to selection for binding to IgG-FC. For ground truth, there are �ln(KA) meas-
urements for 11 individual variants [12].

4.	 A library containing natural chorismate mutase homologs and designed sequences 
sampled from a direct coupling analysis (DCA) model. All sequences are of length 288 
nucleotides. For ground truth, there are biochemical measurements for 11 variants [21].

5.	 A β-glucosidase enzyme (Bgl3) error-prone PCR random mutagenesis library sub-
jected to a heat challenge and high-throughput droplet-based microfluidic screening. 
All sequences are of length 1506 nucleotides. For ground truth, there are T50 (tem-
perature where half of the protein is inactivated in ten minutes) measurements for 
six mutants [23].

Recall that our primary motivation was to improve prediction of LE for unobserved 
sequences. To assess prediction performance, we held out all sequences in the experi-
mentally measured validation sets from the corresponding sequencing datasets prior 
to modeling. However, we also assessed LE estimation performance by repeating our 
experiments without holding out these sequences from the sequencing data, but could 
only evaluate the estimation task on those sequences that appeared in both the high- 
and low-throughput experiments for a given protein.

Table 2  Summary of experimental datasets. For each dataset, we list the library description 
(Library); sequence length in nucleotides (L); number of unique library sequences after holding out 
experimentally validated variants, if needed ( M′ ); number of experimentally validated variants (n); % 
of the sequence of interest covered by individual reads (Cover); number of pre-selection reads ( Npre ); 
and number of post-selection reads ( Npost ). For the dataset from Huisman et al. [17], the number of 
reads for each round of selection is presented on a separate row

Library L M′ n Cover N
pre

N
post

AAV5 insertion [20] 21 8,552,729 5 100 46,049,235 45,306,265

SARS-CoV-2-derived peptide [17] 45 167,841 24 100 44,073 88,032

SARS-CoV-2-derived peptide [17] 45 167,841 24 100 88,032 169,730

SARS-CoV-2-derived peptide [17] 45 167,841 24 100 169,730 235,787

SARS-CoV-2-derived peptide [17] 45 167,841 24 100 235,787 160,863

GB1 double site saturation [12] 168 536,953 11 100 324,434,913 262,112,210

Chorismate mutase homolog [21] 288 3063 11 100 1,228,687 1,929,212

Bgl3 random mutagenesis [23] 1506 468,194 6 100 1,177,842 710,555
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Model architectures

For all real experimental datasets (except for Bgl3), we used the smallest NN architec-
ture because it tended to achieve better cross-validation performance than the linear 
architectures and comparable performance to the larger NN and CNN architectures, 
while being more parsimonious (Additional file  1: Fig.  S11a–l). For the Bgl3 data-
set, we used a simpler linear model because overfitting was observed with the NNs 
(Additional file  1: Fig.  S11m–o). For the one dataset that had multiple rounds (the 
SARS-CoV-2-derived peptide dataset [17]), we viewed the multiple rounds as multi-
ple conditions: we used a multi-output model with one output per round and took the 
final prediction to be the average of the predictions for each round.

Note that, in practice, when classes are highly imbalanced (i.e., Npre is much larger 
than Npost , or vice versa), a read-level classifier with an unmodified loss to implement 
MBE would learn to predict the more prevalent class, which may be undesirable. To 
counter this effect, we re-weighted each class in the loss function by the total number 
of reads in each class, to make the impact of the data in each class comparable (Meth-
ods). This correction was not necessary in our simulations because the classes there 
were exactly balanced by construction (i.e., Npre = Npost).

Evaluation methods

For the real experimental datasets where ground truth fitness values for the library 
sequences are unknown, we use available low-throughput (non-sequencing-based) 
experimental fitness measurements (which may still be corrupted by noise, but are 
more direct measurements of the property of interest than the sequencing-based 
assays) for validation. Specifically, we compare the approaches by computing Spear-
man correlation between predicted LE and low-throughput experimental property 
measurements. We use a paired t-test to assess the statistical significance of the per-
formance difference between wLER and MBE aggregated across all five experimental 
datasets.

Results on real experimental data

Across all the real datasets, MBE achieved better predictive accuracy than wLER (Fig. 7, 
Additional file 1: Fig. S12) while improving or maintaining estimation accuracy (Addi-
tional file 1: Fig. S13). In general, we found that performance differences were smaller 
for estimation than prediction across all real datasets, but that MBE achieved higher 
estimation accuracy than wLER whenever there were differences, a promising trend 
that should be confirmed using larger validation sets in future studies. Moreover, for 
the SARS-CoV-2 dataset from Huisman et al. [17], predictions of experimental IC50 by 
MBE were more accurate than the predictions by NetMHCIIpan4.0, a model specifically 
devised to predict peptide binding to MHC II molecules (Additional file  1: Table  S1). 
An important challenge when working with experimental data is that, to obtain the best 
ground truth values possible, we require access to detailed biophysical assays rather than 
sequencing-based proxies. Consequently, the validation data we have access to have 
extremely limited sample sizes (ranging from 5 to 24 test points), thereby limiting our 
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ability to detect statistical significance on each dataset individually. Nevertheless, the 
trends that we observed on the simulated data continue on each dataset, and when pre-
dictive performance over all of them is considered jointly, the improvement of MBE over 
wLER is statistically significant ( p < 0.03 ) (Fig. 7).

Discussion
Quantitatively characterizing the difference in sequence abundances between two 
conditions using high-throughput sequencing data—as occurs, for example, in high-
throughput selection experiments—is a key component in answering a large range of 
scientific questions. Not only do we wish to quantify the differences in observed data, 
but we also often want to predict the difference for sequences not yet observed—for 
example, in order to design further rounds of experimentation. Until now, quantifica-
tion was accomplished by counting the number of times a sequence occurred in each 
condition and taking the ratio of these counts (after normalization). Then, optionally, 
one may have constructed a regression model to predict these count-based log-enrich-
ment ratios. A key limitation permeating all of this processing is the inability of count-
based estimates to share any information across sequences that are not identical, even 
though such sharing of information can be extremely valuable. Herein, we introduce 
and evaluate a framework that overcomes this key limitation. Our framework is based 
on a reformulation of the problem that uses density ratio estimation, implemented 
using any standard machine learning classifier. Our new method, model-based enrich-
ment, improves performance over competing approaches across a broad range of sim-
ulated data, as well as on real experimental data. As more experimental data become 
available, it will be valuable to perform further characterization of MBE.

Fig. 7  Real experimental prediction results. Comparison of Spearman correlation between wLER or MBE 
predictions and n experimental property measurements from the SARS-CoV-2-derived peptide [17], GB1 
double site saturation [12], Chorismate mutase homolog [21], Bgl3 random mutagenesis [23], and AAV5 
insertion [20] libraries. Each method is trained on real pre- and post-selection sequencing data, then used 
to predict the fitness of the n unobserved test sequences. The 100-unit NN model architecture is used for 
all datasets except the Bgl3 dataset, for which the linear architecture with IS features is used. The average 
performance improvement of MBE over wLER over all five experimental datasets, jointly, is statistically 
significant ( p < 0.03 ). For comparisons of model predictions and property measurements for each 
experimentally measured sequence for each dataset, see Additional file 1: Fig. S12
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MBE enables estimation of log-enrichment in challenging experimental setups 
comprised of, for example, short reads spanning a sequence of interest; long reads 
with poor coverage; a mixture of both short and long reads; and settings with more 
than two conditions—such as when we seek to find selective sequences enriched 
for one selection and negatively selected by another, as occurs in engineering gene 
therapy viral vectors to selectively infect one cell type but not another. In general, 
our approach also helps to mitigate poor estimates arising from low statistical power 
emerging from, say, access to only a small amount of sequencing data.

Our newly developed method, MBE, can immediately leverage any advances in general 
machine learning classifiers, and naturally handles sequencing reads of variable lengths 
within a given experiment, so long as the classifier itself does so—as we demonstrated 
herein using convolutional neural networks. In principle, the predictive performance 
of such variable-length classifiers can potentially be further improved by incorporating 
other informative inputs—in addition to read sequence. For example, in settings where 
it is possible to align to a known reference sequence before modeling, one may supply 
the mapped position for each read as an additional input. Moreover, it is straightfor-
ward to incorporate additional machine learning advances for probabilistic classifiers 
into model-based enrichment, such as calibration methods that ensure predicted class 
probabilities are interpretable as a metric of confidence (Additional file 1: Supplemen-
tary Note 2).

Conclusions
Differential sequencing analysis is a prevalent and important component in addressing 
scientific questions across a large range of biological application areas, where the goal 
is often not only to quantify differences in sequence abundances for the observed data, 
but also for sequences not yet observed. Until now, quantification was accomplished by 
computing count-based log-enrichment—by counting the number of times a sequence 
occurred in each condition and taking the ratio of these counts—and, optionally, con-
structing a regression model to predict these count-based log-enrichment ratios. Herein, 
we introduce and evaluate a new framework, model-based enrichment, that overcomes 
a key limitation of count-based approaches. This framework is based on sound theoreti-
cal principles and can be implemented using any standard machine learning classifier. 
Our new method improves performance over competing approaches based on either 
raw counts or weighted regression on count-based log-enrichment, and enables estima-
tion of log-enrichment in challenging experimental setups. In particular, we show this 
improvement holds across a broad range of simulated data, as well as on real experimen-
tal data, and that our approach helps to mitigate poor estimates arising from relatively 
little sequencing data. We anticipate that, as high-throughput selection experiments and 
sequencing-based assays continue to become more varied in their applications, the full 
potential of MBE will be further revealed.

Methods
Log‑enrichment regression

Subjecting two sequence libraries—one for each of two conditions A and B—to high-
throughput sequencing yields a dataset
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where ri is the ith read’s sequence and yi is a binary −1/+ 1 label indicating whether read 
ri arose from condition A or B, respectively. In our analyses of high-throughput selec-
tion experiments, the conditions A and B correspond to pre- and post-selection, but the 
following methodology applies broadly to settings with sequencing data from two con-
ditions for which we seek to understand or predict sequence properties. In subsequent 
sections, we also further generalize to more than two conditions.

From these data, D , one often calculates a count-based log-enrichment (cLE) estimate 
for each unique sequence [2, 3, 5, 10, 11], which serves as an estimate of the extent to 
which the sequence has the property being investigated. In selection experiments, we 
refer to the selection process as acting according to a particular fitness, and the cLE esti-
mate thus serves as a proxy for this fitness. To compute cLE estimates, it is convenient to 
represent D in terms of unique sequences: D′ = {(xi, n

A
i , n

B
i )}

M′

i=1 where {xi}M
′

i=1 ⊆ {ri}
M
i=1 

is the set of unique observed sequences,

is the observed read count for sequence xi in the sequencing data for condition A, and

is the corresponding condition B read count. For each sequence, the cLE estimate is 
equal to the log-ratio of read frequencies for conditions A and B:

where NA =
∑M′

i=1 n
A
i  and NB =

∑M′

i=1 n
B
i  . In practice, it is common to add a small con-

stant to each count prior to calculating cLE estimates for mathematical convenience [2, 
5]. These “pseudo-counts” stabilize the cLE estimates, and allow one to avoid division 
by zero for sequences observed in only one condition. In our experiments, we added a 
pseudo-count of 1 to each raw count.

Log-enrichment (LE) regression approaches fit a model that maps from xi to log ei . 
In particular, Zhu et al.  [20] derive a weighted least squares procedure for fitting such 
a regression model; their procedure assigns a weight, wi = (2σ 2

i )
−1 , to each sequence, 

where

This choice of wi is motivated by a convergence argument: σ 2
i  is the asymptotic vari-

ance of log ei [11, 20]. Note that when the counts nAi  and nBi  are low, log ei is a noisier 
estimate of fitness and the corresponding weight, wi , is smaller. Thus, training a model 
fθ , with learnable parameters θ , using the weighted least squares loss

(1)D = {(ri, yi)}
M
i=1

(2)nAi =
∑

(r,y)∈D

1{r = xi}1{y = −1}

(3)nBi =
∑

(r,y)∈D

1{r = xi}1{y = +1}

(4)log ei = log





�

nBi
NB

��

nAi
NA

�−1


,

(5)σ 2
i =

1

nBi

(

1−
nBi
NB

)

+
1

nAi

(

1−
nAi
NA

)

.
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accounts for the heteroscedastic noise in the observed cLE estimates. We refer to this 
modeling approach as the weighted LE regression (wLER) approach.

Model‑based enrichment

Existing methods that use cLE estimates to train predictive models [20, 22, 29, 32] pro-
ceed in two steps: first, one computes a cLE estimate for each observed sequence, and, 
second, one uses supervised regression to train a model to predict these cLE estimates 
given the observed sequences. Here, we present a new method, model-based enrichment 
(MBE) that performs both of these steps at once by reframing LE estimation as a density 
ratio estimation (DRE) problem. First, we define the density ratio between libraries in 
each of two conditions and show that a cLE estimate can be viewed as an approximation 
of the density ratio. Then, we describe the technical details of the MBE approach, which 
uses a probabilistic classifier trained on sequencing reads to perform DRE.

As in the preceding section, suppose two libraries corresponding to conditions A 
and B have been subjected to high-throughput sequencing. Each library can be rep-
resented by a discrete probability distribution over sequences: each unique sequence 
xi is present in the libraries from conditions A and B in some ground truth propor-
tions pA(xi), pB(xi) ∈ [0, 1] . The density ratio between these two library distributions 
is d =

pB

pA
.

We can connect this density ratio to cLE estimates. The cLE estimate, log ei , is the log-
ratio of the two empirical read frequencies n

A
i

NA and n
B
i

NB (Eq. 4). These read frequencies are 
approximations of the true library proportions pA(xi) and pB(xi) based on the observed 
sample of sequencing reads. Thus, the cLE estimate, log ei , can be viewed as a sample-
based approximation of log d(xi) . LE regression methods can, therefore, be viewed as, 
first, approximating log d using observed counts, and then training a regression model to 
predict these approximate log-density ratios.

In contrast, DRE techniques [40, 41] can be used to model the density ratio directly 
from sequencing data. Our proposed MBE approach uses a classification-based DRE 
technique [38–41] which involves training a probabilistic classifier, gθ , on D (Eq. 1) to 
predict yi from ri for each individual read. We use the standard logistic loss,

By minimizing this loss with respect to θ to obtain the maximum likelihood estimate, 
θ̂ , we obtain our predictive model, g

θ̂
(x) = p(y | r = x) . By Bayes’ theorem, we can also 

derive an estimator of the density ratio [39, 41] as follows:

(6)ℓR =

M′
∑

i=1

wi(log ei − fθ (xi))
2

(7)ℓC =

M
∑

i=1

log(1+ exp(−yigθ (ri))).

(8)d(x) =
pB(x)

pA(x)
=

(

p(y = +1 | r = x)p(x)

p(y = +1)

)(

p(y = −1 | r = x)p(x)

p(y = −1)

)−1



Page 25 of 32Busia and Listgarten ﻿Genome Biology          (2023) 24:218 	

where NA and NB are the total read counts for each condition, as in Eq. 4. This ratio of 
predicted class probabilities, NAg

θ̂

NB(1−g
θ̂
)
 , provably converges to d [39–41] and is the opti-

mal density ratio estimator among a broad class of semi-parametric estimators (that 
includes the wLER method) in terms of asymptotic variance under a correctly specified 
model [39] (Additional file 1: Supplementary Note 1).

MBE naturally accounts for heteroscedastic noise in the observed sequencing data. 
To see this, we can rewrite ℓC in terms of unique sequences,

where nAi  and nBi  are read counts as defined in Eq. 2 and 3. This form of ℓC highlights the 
fact that sequences with higher counts make larger contributions to the loss than those 
with lower counts, simply by virtue of having been sequenced many times. Thus, gθ is 
biased towards modeling d more accurately for sequences with more sequencing data, as 
desired. In this way, the MBE approach accounts for heteroscedasticity in the observed 
sequencing data without the need to derive a bespoke weighted loss function, unlike the 
wLER approach.

Note that, in practice, when classes are highly imbalanced (i.e., NA is much larger 
than NB , or vice versa), a read-level classifier with an unmodified logistic loss will 
learn to predict the more prevalent class, which here may be undesirable. To counter 
this effect, one can use standard machine learning techniques for training classifica-
tion models under class imbalance, such as class weighting, wherein samples from the 
minority class are up-weighted in the loss—typically the negative log-likelihood—so 
that each class has equal overall contribution to the loss. Such techniques were not 
required in our simulations because classes were always exactly balanced by construc-
tion (i.e., NA = NB ). In our experiments on real sequencing data, however, we re-
weighted each class in the logistic loss (Eq. 10) by the total number of reads in each 
class to make the impact of the data in each class comparable, as follows:

Multi‑output modeling

In practice, one often aims to compare sequences across more than two conditions. 
For example, one may wish to perform multiple rounds of selection for a property of 
interest (e.g., [17]) or to select for multiple different properties (e.g., [8]). Here, we 
describe generalizations of the MBE and wLER approaches that can be used to model 
high-throughput sequencing data collected from more than two conditions. In this 
setting, one has sequencing data D′′ = {(ri, yi)}

M
i=1 where ri is the ith read’s sequence 

and yi is a categorical label indicating the condition from which the read ri arose. For 

(9)=
p(y = +1 | r = x)

p(y = −1 | r = x)

p(y = −1)

p(y = +1)
≈

NAg
θ̂
(x)

NB(1− g
θ̂
(x))

,

(10)ℓC =

M′
∑

i=1

nBi log(1+ exp(−gθ (xi)))+ nAi log(1+ exp(gθ (xi)),

(11)ℓC = max{NA,NB}

M′
∑

i=1

nBi
NB

log(1+ exp(−gθ (xi)))+
nAi
NA

log(1+ exp(gθ (xi)).
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example, if one runs an experiment selecting for k ∈ N different properties, one can 
define y ∈ {0, 1, . . . , k} where yi = 0 indicates a read from the pre-selection sequenc-
ing data, and yi = j for j ∈ {1, . . . , k} indicates a read from the post-selection sequenc-
ing data for the jth property.

It is straightforward to handle multiple conditions using the MBE approach: instead of 
using a binary classifier, one trains a multi-class classification model, gθ , to predict the 
categorical label yi from read sequence ri using a standard categorical cross-entropy loss. 
This produces a model of p(y | r) which can be used to estimate the density ratios 
dj =

pj

p0
≈

N 0g
j
θ

Njg0θ
 , where pj denotes the true probability distribution corresponding to the 

library in the jth condition and gjθ denotes the predicted class probability for y = j.
For the wLER approach, the data D′′ can be converted into cLE estimates for each 

unique sequence:

where nji is the number of times the sequence xi appeared in the sequencing data for the 
jth condition and Nj is the total number of reads from the jth condition. One can, then, 
fit a multi-output regression model that jointly predicts the cLE estimates for each con-
dition from sequence. The overall loss for training a such a multi-output model, fθ , using 
wLER is

where wj
i is the weight for the ith sequence and jth condition, and f jθ  denotes the jth 

model output.

Model architectures and training

In our experiments, we aim to compare and contrast the general performance of the 
wLER and MBE approaches across a broad range of settings. To enable direct compari-
son of the two methods, we implemented wLER and MBE using the same model archi-
tectures and hyperparameters for the underlying regression and classification models. 
We will, next, describe each model architecture and provide implementation details.

We used eleven different model architectures: seven architectures that are the same 
as in Zhu et  al.  [20]—three linear models and four fully-connected neural networks 
(NNs)—and four convolutional neural network (CNN) models that can operate on 
variable-length inputs. The linear models each use one of three input representations: 
(1) an “independent site” (IS) representation comprised of one-hot encodings of indi-
vidual amino acids, (2) a “neighbor” representation comprised of the Independent Sites 
features and one-hot encodings of the pairwise interactions between pairs of positions 
directly adjacent in sequence, and (3) a “pairwise” representation comprised of the IS 
features and one-hot encodings of all possible pairwise interactions. All NNs use IS 
input features and have two hidden layers, and differ by the number of hidden units: 100, 
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200, 500, or 1000 units per layer. The CNNs differ in the number of convolutional lay-
ers used (2, 4, 8, or 16), but all use IS input features, convolutions with a window of size 
5 and 100 filters, residual and skip connections, and a global max pooling layer as the 
penultimate layer.

All models were trained using the AMSGrad Adam optimizer [51] with default learn-
ing rate ( 10−3 ) for ten epochs. For the linear models and NNs, we used the default value 
for Adam’s ǫ parameter ( 10−7 ); for the CNNs, we set ǫ = 10−4 and applied gradient clip-
ping with a threshold of 1. We performed threefold cross-validation at the sequence 
level: for each fold, one third of the unique sequences in the library (and their corre-
sponding sequencing reads) were held-out as a test set.

Simulating ground truth fitness

We constructed several simulated datasets to help analyze the strengths and weaknesses 
of MBE, wLER, and cLE across different practical settings. These simulations were moti-
vated by high-throughput selection experiments [8, 20, 31] which perform a selection on 
large sequence libraries for a property of interest, such as fluorescence [31]. To simulate 
such selection experiments, we first simulate the ground truth fitness function that maps 
sequence to property, then use this fitness to simulate selection. In the remainder of this 
section, we describe the process used to simulated fitness as a linear function of inde-
pendent amino acid sites and randomly selected higher-order epistatic interactions. In 
the following section, we describe the procedure to simulate selection using simulated 
fitness.

First, we give a brief overview of the process used to simulate ground truth fitness 
before providing the technical details. For a given sequence of interest, we first con-
structed a set containing all independent amino acid sites and a user-specified number of 
combinations of sites—such as an epistatic combination of the second, third, and tenth 
positions—drawn randomly from among all possible higher-order epistatic interactions 
between positions. The degree of each epistatic effect (2 up to the sequence length) is 
drawn randomly based on an empirical estimate of this degree distribution. The fitness 
function is, then, taken to be a linear function of all the independent sites and epistatic 
terms in this constructed set with random coefficients.

In more detail, for a sequence x of length La amino acids, we simulated the fitness 
function, FT (x) as

where T is the hyper-parameter controlling the maximum number of epistatic terms 
included in FT ; ET ⊆ 2{1,...,La} , is a set of index sets—each of which represents an inde-
pendent site or a particular higher-order epistatic combination—whose construc-
tion is described below; x[J] is the subsequence of x at the positions in the index set 
J; φ denotes standard one-hot encoding; and the coefficients are sampled according to 
βJ ∼ N (0, 2−|J |

I).
We constructed ET (the specific set of first-order and higher-order epistatic 

terms to include in the simulated fitness function) to contain all singleton sets 

(12)FT (x) =
∑

J∈ET

βJ · φ(x[J ]),
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( {{i} | i ∈ {1, . . . , La}} ⊆ ET ), so that FT includes terms for all independent sites. In 
addition, ET contains T randomly chosen non-singleton index sets, each generated by: 

1.	 Randomly choosing the order of epistasis, R, by sampling R̃ ∼ N(3, 1/2) (based on 
visual inspection of the empirical bell-shaped distribution of the orders of statisti-
cally significant epistatic terms in Poelwijk et al.. [29]), and taking R = round(R̃) ; and

2.	 Choosing the specific positions included in the epistatic term by sampling R times 
without replacement from {1, . . . , La}.

To guide our choice of T, we combined the following insights: (i) for a fluorescent pro-
tein with 13 amino acids, 260 epistatic terms are sufficient for an accurate model of fit-
ness  [29]; (ii) the number of contacts in a protein scales linearly with sequence length 
[45, 46]; and (iii) recent work suggests that the sparsity of higher-order epistatic interac-
tions in fitness landscapes is closely related to structural contact information [47]. We, 
therefore, hypothesized that the linear scaling T = 260La

13  provides a reasonable starting 
point for analyses.

Simulating pre‑ and post‑selection sequencing data

The wLER and MBE approaches both aim to accurately quantify sequences of interest 
based on high-throughput sequencing data. We used simulated high-throughput selec-
tion datasets to compare each method’s ability to quantify sequences accurately using 
sequencing data, which requires simulating sequencing reads from pre- and post-selec-
tion libraries. Here, we detail the process of simulating sequencing reads given library 
sequences and a ground truth fitness function. Then, in the subsequent sections, we will 
describe how we combined this process with three specific approaches for simulating 
library sequences to construct our datasets.

Let {(xi, ci)}M
′

i=1 be pairs of, respectively, a unique library sequence and its true count—
as generated, for example, by one of the three library construction simulations described 
in the subsequent sections. In addition, let FT be a ground truth fitness function simu-
lated as in the previous section. Briefly, the process to simulate sequencing reads from 
pre- and post-selection libraries proceeds as follows: first, we generate a pre-selection 
library distribution by adding a small random perturbation to the empirical distribution 
{

ci/
∑M′

i=1 ci

}M′

i=1
 . This step simulates slight distributional perturbations that may occur 

with PCR amplification, and also has the nice side-effect of allowing one to generate 
multiple replicates with slightly different pre- and post-selection library distributions for 
the same set of unique sequences {xi}M

′

i=1 . Next, we simulate selection according to the 
fitness FT : the post-selection library distribution is determined by scaling the pre-selec-
tion distribution using {exp(FT (xi))}M

′

i=1 , which ensures that the ground truth log-density 
ratio is proportional to the specified fitness 

(

log d = log
ppost

ppre ∝ FT

)

 . Finally, we sample 

from the pre- and post-selection distributions to simulate sequencing reads, optionally 
truncating each read to 100 amino acids uniformly at random to generate short reads.

In more detail, we simulated pre- and post-selection sequencing data by: 

1.	 Sampling (ppre(xi))M
′

i=1 ∼ Dirichlet(c1, . . . , cM′);
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2.	 Setting 

 where Z =
∑M′

i=1 exp(FT (xi))p
pre(xi) is a normalization constant;

3.	 Sampling pre- and post-selection sequencing counts according to 

 for some desired number of sequencing reads, Npre and Npost ; and, if simulating 
short reads, additionally

4.	 Sampling nprei  and nposti  contiguous 100-mers from xi uniformly at random.

Simulated insertion libraries

To empirically compare and contrast our MBE approach to the wLER approach in prac-
tical settings, we sought to simulate realistic sequence libraries motivated by experimen-
tal constructions from recent studies.

We simulated diversified libraries of insertion sequences motivated by our work in 
adeno-associated virus (AAV) capsid engineering  [20]. In this study, we used a library 
of 21-mer nucleotide insertion sequences, where each codon was independently sam-
pled from the distribution defined by the NNK degenerate codon: “NN” denotes a uni-
form distribution over all four nucleotides in the first two positions of a codon and “K” 
denotes equal probability on nucleotides G and T in the third codon position. Here, 
we sampled sequences from this NNK distribution to simulate three insertion libraries 
containing length 21, 150, and 300 nucleotide sequences, respectively. Specifically, each 
sequence is generated by sampling either 7, 50, or 100 codons independently from the 
NNK distribution. To keep each of our simulated insertion datasets as similar as possible 
to the experimental data from Zhu et al. [20], we sampled sequences in this manner until 
we obtained a set of 8.5× 106 unique library sequences. We take the set {(xi, ci)}8.5×106

i=1  
to be the simulated library, where xi is the ith unique insertion sequence and ci is the 
number of times it was sampled from the NNK distribution before 8.5× 106 unique 
sequences were generated.We used T = 140, 1000,  and 2000 to simulate ground truth 
epistatic fitness for the 21-mer, 150-mer, and 300-mer insertion libraries, respectively, 
and simulated Npre = Npost = 4.6× 107 sequencing reads for each library using the 
process described in the previous section.

To gain insight into the effect of sequencing error on MBE and wLER, we also con-
structed a noisy version of the sequencing data for the 21-mer insertion library con-
taining simulated sequencing errors in both the pre- and post-selection sequencing 
reads. Because Illumina’s next-generation sequencers have an approximately 0.1% 
error rate and predominantly produce substitution errors  [49], we added substitu-
tion errors to each position of each simulated read uniformly at random with prob-
ability 0.001.

ppost(xi) = Z exp(FT (xi))p
pre(xi)

(n
pre
i )M

′

i=1 ∼ Multinomial(Npre, (ppre(xi))
M′

i=1) and

(n
post
i )M

′

i=1 ∼ Multinomial(Npost, (ppost(xi))
M′

i=1)
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Simulated avGFP mutagenesis library

Motivated by a recent study of the fitness landscape of the green fluorescent protein 
from Aequorea victoria [31], we generated an avGFP library by mutating positions of the 
avGFP reference sequence from Sarkisyan et al. [31] (238 amino acids long) uniformly at 
random. We used a mutation rate of 10% to generate 2.5× 107 unique library sequences. 
Specifically, we generated mutated avGFP sequences—by mutating each position inde-
pendently with probability 0.01—until we obtained a set {(xi, ci)}2.5×107

i=1  , where each xi a 
unique library sequence and ci is the number of times it was generated before 2.5× 107 
unique sequences were obtained.

To simulate selection and sequencing, we used T = 4, 760 to simulate ground truth 
fitness, and generated both long-read ( Npre = Npost = 4.6× 105 to be within PacBio’s 
throughput [34, 35]) and short-read ( Npre = Npost = 4.6× 107 to match the dataset 
from Zhu et al. [20]) sequencing data.

Simulated AAV recombination library

We simulated a recombination library of AAV capsid sequences motivated by an AAV-
directed evolution study [8], wherein several AAV serotypes are recombined using seven 
crossovers separating eight recombination blocks. We generated library sequences by 
recombining AAV serotypes 1-9 with seven uniformly spaced crossovers. This library 
contains 26,873,856 unique library sequences that are 2253 nucleotides long. We simu-
lated epistatic fitness with T = 15, 020.

To assess the effects of the type and amount of sequencing data, we generated mul-
tiple datasets: three long-read datasets with Npre = Npost = 4.6× 103 , 4.6× 104 , and 
4.6× 105 , respectively; one short-read dataset with Npre = Npost = 4.6× 107 ; and one 
hybrid dataset containing 4.6× 103 long reads and 4.5× 107 short reads for both pre- 
and post-selection. To help gain insights into the effects of sequencing error, we also 
constructed a noisy AAV recombination dataset that incorporated simulated sequencing 
errors into 4.6× 105 pre- and post-selection sequencing reads using SimLoRD [50] to 
simulate PacBio SMRT sequencing errors.
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