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Background
Spatially resolved transcriptomics (SRT) captures variations in gene expression across 
tissues [1–7]. Computational methods for analysis of SRT data are being established [8–
12]. Among the goals of SRT analysis pipelines is the robust and reliable identification 
of spatially variable genes (SVGs) within tissue sections [12–14]. SVGs are defined as 
having expression levels across a tissue that covary in a location specific manner [13, 15]. 
Published methods for SVG identification employ different mathematical models aiming 
to capture biological truth [13, 14, 16–27]. Benchmarking of analysis tools is needed to 
ensure the reliability of processed data matches or supersedes that of similar technolo-
gies such as single-cell (sc) RNA-Seq [28, 29].

Here, we compared the performance of six packages—SpatialDE [13], SPARK-X [16], 
Squidpy [30], Seurat [18], SpaGCN [17], scGCO [27] from healthy and cancerous fresh 
frozen (FF) and formalin-fixed paraffin embedded (FFPE) tissues generated with 10X 
Visium technology alongside simulated datasets (Additional file 1: Fig. S1) [31, 32]. Our 
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Identifying spatially variable genes (SVGs) is a key step in the analysis of spatially 
resolved transcriptomics data. SVGs provide biological insights by defining tran-
scriptomic differences within tissues, which was previously unachievable using 
RNA-sequencing technologies. However, the increasing number of published tools 
designed to define SVG sets currently lack benchmarking methods to accurately 
assess performance. This study compares results of 6 purpose-built packages for SVG 
identification across 9 public and 5 simulated datasets and highlights discrepancies 
between results. Additional tools for generation of simulated data and development 
of benchmarking methods are required to improve methods for identifying SVGs.
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analysis reveals discrepancies in SVGs identified by each package highlighting the urgent 
need for further benchmarking and development of tools to identify SVGs.

Results and discussion
Comparing SVGs predicted by six packages, we found that the numbers of SVGs identi-
fied differed by one to two orders of magnitude across the same tissue for all nine investi-
gated datasets (Fig. 1A and Additional file 1: Fig. S2). For example, in the FF endometrial 
adenocarcinoma ovarian tissue dataset, the number of predicted SVGs ranged from 87 
to 3707 (Fig.  1A). For 7/9 datasets, SpatialDE identifies the greatest number of SVGs, 
while SpaGCN identifies the fewest number of SVGs in 6/9 public datasets (Fig. 1A and 
Additional file 1: Fig. S2). Apart from the FF mouse brain coronal section dataset, pack-
ages tested tend to report more SVGs in cancerous datasets than in healthy tissues, most 
evident across SpatialDE and SPARK-X (Additional file  1: Fig. S3). There is no appar-
ent difference in reported SVGs driven by data generated from FF or FFPE tissue (Addi-
tional file 1: Fig. S3).

To understand the disparity in the number of SVGs reported, we hypothesised that 
methods used to correct for type I error might influence results. SpatialDE, Squidpy, 
scGCO and SPARK-X report a q-value/FDR for all genes. Methods that do not supply 
associated p-values report the lowest number of SVGs in half of the datasets (Fig. 1A 
and Additional file 1: Fig. S2). Across all datasets, a minimal number of common SVGs 
are identified between all 6 packages that each display an expression pattern that aligns 
with spatial correlation suggesting that they are bona fide SVGs (Fig. 1B).

Fig. 1  Discrepancies between SVGs in a dataset annotated by six different packages. A Upset plots 
displaying the distinct intersections of SVGs identified in FF endometrial adenocarcinoma ovarian tissue 
dataset when analysed with SpaGCN, Squidpy, scGCO, Seurat, SPARK-X and SpatialDE. Bar chart in box 
displays the total number of SVGs identified by each package. B Pattern of expression of JCHAIN, a SVG 
identified by all six packages in FF endometrial adenocarcinoma ovarian tissue. Spots representing the 
capture regions of the Visium slide are overlayed on accompanying histological image. C Sorted q-values 
from SpatialDE results across the FF left ventricle datasets plotted against SPARK-X q-values for the same 
gene. D Gene ontology enrichment results from FF endometrial adenocarcinoma ovarian tissue dataset using 
SVGs identified by each package as inputs
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Next, to assess the significance of small overlap between predicted SVGs, the ranked 
lists of SVGs provided by SpatialDE, Squidpy, scGCO and SPARK-X were compared 
across datasets using a Wilcoxon signed rank test. We observed differences in the SVG 
ranking across the tested packages, indicating that the lack of overlap is statistically sig-
nificant (Fig. 1C and Additional file 1: Fig. S4-9, Additional file 2: Table S1). q-values for 
a single gene differ between packages (Fig. 1C and Additional file 1: Fig. S4-9).

We investigated the downstream impact arising from discordant results by comparing 
gene ontology (GO) enrichment analysis using SVGs predicted by each package within 
the same tissue (Fig. 1D and Additional file 1: Fig. S10). We observed non-overlapping 
parent terms between datasets in the top 10 over-represented GO terms (Fig. 1D and 
Additional file 1: Fig. S10). These results suggest that gene sets predicted by each pack-
age do not overlap functionally. Further, restricting GO analysis to SVGs can bias down-
stream interpretation of results, especially if there is a risk of a large percentage of false 
positives (FP).

Despite the discrepancies, SVGs identified by all packages within the same dataset dis-
play an expression pattern aligned with a clear spatial correlation (Fig. 2). An example is 
JCHAIN, which is expressed in endometrial macrophages and associated with adeno-
carcinoma (Fig. 1B) [33–35]. Furthermore, in FF mouse brain coronal section, a data-
set with known spatial gene expression patterns, many of the 368 commonly identified 
SVGs display expression patterns corresponding to their known region of expression in 
the Allen Mouse Brain Atlas (Additional file 1: Fig. S11) [36]. These observations indi-
cate that patterns with a stronger signal-to-noise ratio are identified by all methods.

To gain insight into the inconsistent results between different packages we evalu-
ated their sensitivity and specificity. To determine true positives and FP rates, we first 
generated two simulated datasets with different known SVG patterns with SRTsim 
(Additional file  1: Fig. S12 A-B) (see Methods) [37]. Each dataset contained 1500 

Fig. 2  Expression patterns of SVGs identified by all tested packages in a single dataset. A Pattern of 
expression of ALB, a SVG identified by all six packages in FF invasive ductal carcinoma breast tissue. B Pattern 
of expression of ACTA1, a SVG identified by all six packages in FF left ventricle. C Pattern of expression of BTG2, 
a SVG identified by all six packages in FFPE prostate. D Pattern of expression of TACSTD2, a SVG identified by 
all six packages in FFPE invasive ductal carcinoma breast tissue
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known SVGs (see methods). Using each as the input to four packages (scGCO, Spa-
tialDE, Squidpy and SPARK-X), all packages identify all true positives across datasets, 
except for Squidpy when analysing the dataset with lower signal SVGs. This indicates 
a potential need for a more relaxed Moran’s I statistic threshold (Additional file  2: 
Table S2). Additionally, most packages introduce minimal levels of FPs with simulated 
datasets, except for scGCO (Additional file 2: Table S2). This is possibly due to of the 
type I error correction method or sequential search procedure employed by scGCO 
[27].

To further investigate the potential of each package to call FPs, we generated four 
negative control datasets from two publicly available datasets. For each, two versions of 
negative controls were generated—[1] where spatial coordinates are permutated and [2] 
where spatial coordinates and columns of gene expression matrix are permutated. For all 
negative control datasets generated from the FF left ventricle, Seurat, scGCO, Squidpy 
and SPARK-X identified no SVGs, indicating an ability to distinguish signal from noise. 
SpaGCN identified < 10 SVGs. SpatialDE identified 4 SVGs when both spatial coordi-
nates and columns of the gene expression matrix are permutated and 2953 in the other 
dataset. For negative control datasets generated from FFPE prostate randomising only 
spatial coordinates, SpatialDE identified 632 SVGs, SpaGCN identified 232 and Squidpy 
identified 1. Seurat, scGCO and SPARK-X did not run with these inputs. When spatial 
coordinates and gene expression values were randomised, SpatialDE was the only pack-
age to identify SVGs (713). Patterns of the top SVGs identified by SpatialDE lack a strong 
spatial pattern (Additional file 1: Fig. S13). This would indicate that SpatialDE is prone 
to introducing FPs into a dataset when genes are lowly expressed compared. However, 
the original SVGs identified by SpatialDE and the result in Fig. 1B suggest the top ranked 
SVGs labelled by SpatialDE in real data display a signal consistent with that of a SVG.

Inconsistencies in the results between different packages may therefore be explained 
by the differences in FP rates, rather than the rate of false negatives. To investigate 
this, expression of known housekeeping gene Eef2 [38] was visualised across the FF 
mouse brain coronal Section dataset to verify its ubiquitous expression (Additional 
file 1: Fig. S11 D). Eef2 was found to be annotated as an SVG by scGCO, SPARK-X, 
SpatialDE and Squidpy. This indicates genes with high levels of expression, but that 
do not display strong spatial expression patterns, may be a source of confounding.

In addition to differences in FP rates, results generated from different packages 
applied to the same dataset may arise due to the different assumptions regarding the 
underlying distributions of gene expression and effectiveness of normalisation meth-
ods (Additional file  2: Table  S3). Negative binomial distributions can successfully 
model sequencing-based methods that employ unique molecular identifiers (UMIs) 
and most gene expression patterns in Visium datasets [37, 39]. While certain packages 
implement their own normalisation method, there is no guarantee that data pre-pro-
cessed using a separate workflow will have been normalised to fit the assumptions of 
gene distributions held by a particular package [13, 18]. Once methods for generating 
simulated SRT datasets with different underlying distributions of gene expression are 
published, the effect this has on identifying SVGs needs to be investigated thoroughly. 
There are many caveats to generating simulated datasets with known patterns of gene 
expression with efforts focused on simulating data with defined cell types [40–47].
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Conclusions
While different mathematical models for detecting SVGs produce varied results when 
applied to the same tissue, and across tissues and biological conditions, SVGs with 
a strong spatial covariance are consistently identified. This indicates that differences 
between methods do not bias performance in a particular tissue or biological condi-
tion. However, more transcriptionally heterogenous tissues appear to affect the perfor-
mance of certain packages in calling SVGs and genes with unclear spatial patterns but 
high expression levels may be labelled as FP [14, 15]. Only four of the tested packages 
produced q-value ranked gene lists; thus, differences in FP rates could confound com-
parisons of results across packages. Furthermore, due to the resolution of the Visium 
technology platform, the presence of heterogenous cell types could complicate accurate 
identification of SVGs due to inherent transcriptional variation. Increased resolution 
may present challenges in terms of computational performance and the mathematical 
difficulties of dealing with highly sparse datasets. As SVG identification becomes an 
integral part of the computational analysis of SRT and datasets grow, a subset of SVGs 
could be used in preference over the entire dataset for downstream analysis (such as 
highly variable genes in scRNA-Seq analysis). Introducing noise may hamper key down-
stream steps in understanding spatially restricted disease states as well as novel targets 
for treatment [48, 49]. Methods that explore the entire dataset for SVG labelling paired 
with stricter q-value cut-offs (q-value < 0.01) can be employed when analysing tissues 
with known transcriptional complexity to decrease the possibility of FP being reported. 
Future work will include comparison of package performance across datasets generated 
from different SRT platforms. The development of workflows for simulating datasets and 
benchmarking current and novel methods for SVG identification will allow for accurate 
determination of the spatially restricted transcriptional differences that manifest as bio-
logical outcomes during development and disease.

Methods
The aim of this study is to compare publicly available tools that were developed to iden-
tify SVGs within spatially resolved transcriptomics (SRT) datasets. When individual 
tools are published their performance is reported across SRT datasets generated using 
various platforms, but a systematic comparison of package performance to identify 
SVGs in FF and FFPE preserved healthy and diseased tissues is lacking. Here, we elected 
to focus on comparing package performance on data generated using the 10X Visium 
platform, due to the early commercial availability of the Visium platform which enables 
the generation of multiple datasets from different tissues and fixation protocols. The 
scripts generated for this analysis are available on Github [50] and Zenodo [51], with 
simulated datasets available through Zenodo.

Six state-of-the-art packages built for the identification of SVGs (Seurat and Squidpy 
excepted) in SRT data were selected for benchmarking: SpatialDE [13], SPARK-X [16], 
Seurat [18], SpaGCN [17], Squidpy [30] and scGCO [27]. Each package uses a different 
algorithm to identify SVGs and holds varied assumptions on the distribution of gene 
expression data (Additional File 2: Table S3). Packages were purposefully chosen to com-
pass a variety of algorithms and associated mathematical models of gene distribution 



Page 6 of 12Charitakis et al. Genome Biology          (2023) 24:209 

expression that can be used to identify these spatial patterns. While two packages used 
algorithms based on graph theory, the others were selected to test different mathemati-
cal assumptions regarding SRT data. SpatialDE employs Gaussian process regression, 
a non-parametric probabilistic model (Additional File 2: Table  S3) [13]. SPARK-X is 
another non-parametric method, building on a covariance test framework, specifically 
the projection covariance function [16]. This function can measure similarity between 
two locations or gene expression, it can quantify if the product of the two inputs devi-
ates significantly from the mean value [16]. Seurat employs a mark point process, first 
used by the Trendsceek package [52, 53]. This is another non-parametric approach that 
can test if gene expression levels are significantly dependent on the spatial distribution 
of spots as a function of the distance between them [52]. This can then calculate the 
mark-variogram [52, 53]. SpaGCN’s method is built around a graph convolutional net-
work (GCN)-based approach and is unique in that it incorporates signal from histol-
ogy images and restricts identification of SVGs to within spatial domains [17]. Gene 
expression and image data are converted into a weighted undirected graph, which then 
calculates the distances between any two vertices in the graph [17]. The nodes repre-
sent spots, and the edge weight is calculated using the histology image and the Euclidian 
distance between two vertices [17]. The weight of each edge is calculated as a function 
between how related spots are in the graph [17]. Dimensionality reduction then graph 
convolution is computed to then identify spatial domains [17]. Finally, differential 
expression analysis is performed between spots in one spatial domain with neighbouring 
domains utilising a Wilcoxon rank-sum test and genes with an adjust p-value < 0.05 are 
reported as SVGs [17]. scGCO is another graph-based method, but this package utilises 
a probabilistic graph model by optimising hidden Markov random fields (HMRF) for the 
purpose of SVG identification [27]. Similar to Seurat, scGCO uses a marked point pro-
cess to model spatial gene expression [27, 53]. The dependency of gene expression states 
on spatial locations is analysed using the complete spatial randomness framework, and 
scGCO overcomes its limitations using HRMF [27]. Finally, Squidpy employs the spatial 
autocorrelation metrics of Moran’s I to label SVGs [30]. Given a continuous feature, in 
this case gene expression level and their spatial location, it can evaluate whether a pat-
tern is present or not using Moran’s I [30].

Each package was tested on nine publicly available, V1 Chemistry Visium datasets 
generated from healthy and cancerous human tissues, along with a single mouse data-
set (Additional File 2: Table S4). Additional testing was performed using simulated data 
(Additional File 1: Fig. S1). The filtered output files and imaging data from the Space 
Ranger v1.0.0 pipeline were downloaded for each dataset. Further filtering and pre-pro-
cessing of the data was performed using Scanpy v1.8.1, and the following were removed: 
genes expressed in fewer than 10 spots, spots with fewer than 2000 counts, and/or spots 
with fewer than 2000 genes expressed. As the percentage of mitochondrial gene expres-
sion and maximum number of counts per spot varied significantly between datasets, fil-
tering was performed on a per-dataset basis. Mitochondrial filtering in FF Cerebellum 
was limited to spots with less than 15% mitochondrial genes [54]. Counts were then nor-
malised per spot, log transformed and the top 2000 highly variable genes identified. This 
count matrix was used as the input files for each algorithm. A custom script was written 
for conversion between the Scanpy AnnData object and the Seurat S4 object input.



Page 7 of 12Charitakis et al. Genome Biology          (2023) 24:209 	

Analysis using SpatialDE was performed using default parameters using Python v 
3.9.7. Reported SVGs were filtered to include only those with an q-value <  = 0.05.

Analysis using SPARK-X v 1.1.1 was performed with default parameters using R v 3.6.1. 
Reported SVGs were filtered to include only those with an adjusted p-value <  = 0.05.

Analysis using Seurat v 4.1.0 was performed with default parameters using R v 3.6.1. 
A custom script was used to convert the Anndata to Seurat object. SVGs were identified 
using the function FindSpatiallyVariableFeatures with default parameters as specified in 
the vignette (top 1000 variable features selected and markvariogram selection method).

Analysis using SpaGCN v 1.2.0 using default parameters after calculating the appropri-
ate radius for each dataset using Python v 3.9.7. Number of target domains was informed 
by Scanpy clustering, and SVGs that were common between domains were removed.

Analysis using scGCO v 1.1.1 with default parameters using Python v 3.7.6. Reported 
SVGs were filtered to include only those with an FDR value <  = 0.05.

Comparisons of the number of SVGs identified by each package across all datasets 
visualised in Fig. S3 (Additional File 1) were modified from code generated by ChatGPT 
[55].

Upset plots were generated using package upsetplot v 0.6.0 and Python v 3.9.7. Pattern 
of SVG expression was generated using Scanpy v1.8.1. The upset plots display the unique 
intersection of different overlapping or independent results identified across packages 
within a single dataset and serve to highlight the differences in the scale of the number 
of SVGs identified within a dataset. Furthermore, visualisation of datasets with the most 
reported SVGs independent of the other packages may highlight the introduction of FP.

The SVGs identified by each package were used as the inputs for gene ontology enrich-
ment analysis. When less than 3000 SVGs were identified, Metascape was used for 
analysis, while in instances where there were over 3000 inputs, WebGestalt was used 
as Metascape has a limit on the number of genes accepted as inputs [56, 57]. Metas-
cape was run with express analysis and the input as species was set to H.sapiens or 
M.musculus. For WebGestalt analysis, the organism of interest was set as Homo sapiens 
or Mus musculus, method of interest as over-representation analysis, functional data-
base of ‘gene ontology’ focusing on biological process and the ‘reference set’ was set as 
‘genome’. All results were downloaded then filtered down to the top 10 significant GO 
terms. ggplot2 package was used to visualise GO terms.

Seurat ranks highly variable genes by how dependent their expression is on spatial 
location, then produces a list of SVGs [53]. SpaGCN reports unraked lists of SVGs with 
a p-value of < 0.05. For the four packages that generated p-values associated with the 
identified SVGs (SpatialDE, Squidpy, SPARK-X and scGCO), a Wilcoxon signed rank 
test was performed. For each of the nine publicly available datasets, each possible pair-
wise combination of the results from different packages was analysed using the scipy 
stats function to perform a Wilcoxon signed rank test. The concordance for each dataset 
was calculated using a pairwise comparison between the results of SpatialDE, Squidpy, 
SPARK-X and scGCO for all available combinations.

Simulated datasets with known patterns of SVGs were generated using SRTsim [37]. 
SRTsim allows the user to generate reference-free, simulated data that captures many of 
the features typical of Visium datasets through a Shiny app interface [37]. These features 
include the number of spots and genes in the dataset and the mean and dispersion values 
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of gene expression as well as the proportion of zero counts [37]. If regions are selected 
within the dataset, the log fold-change within this region can be set compared to the rest 
of simulated area. Expression counts were simulated using a negative binomial distribu-
tion for both datasets [37]. Two datasets were generated using SRTsim for this purpose. 
A square grid is selected (reproducible seed 2), with 4000 spots and 15,000 genes overall. 
A square ‘hotspot’ pattern of 675 spots was generated in the centre of the grid, which 
will serve the area of higher gene expression for the simulated SVGs (Additional File 1: 
Fig. S12 A). One thousand five hundred signal genes were then simulated with 13,500 
noise genes; no lower signal genes were selected. A reproducible seed of 2 was set, and 
baseline overdispersion was set to 0.5 with the baseline mean set to 3. A second simu-
lated dataset was generated with SRTsim with a slightly more complex gene expression 
pattern. The grid layout and number of spots was the same as the aforementioned data-
set, set with reproducible seed 3. Here, two separate regions were generated to contain 
simulated SVG expression, in opposite corners of the square layout (Additional File 1: 
Fig. S12 B). The two groups had a log fold-change of 5 compared to the rest of the area 
(group A) with a log fold-change of 1. Next, the expression of 15,000 genes were simu-
lated across the dataset: 13,500 noise genes, 750 high signal SVGs and 750 low signal 
SVGs. Dispersion and mean values were the same as the previous dataset. This second 
dataset was generated with the aim of showcasing which packages may be adept at iden-
tifying SVGs with a lower signal across the dataset or a pattern different to the typical 
‘hotspot’ which is often shown, such as in early simulations available with SPARK-X [16]. 
The overlap of the results from each package with the known SVGs and noise genes in 
the data was then calculated to determine the sensitivity and specificity of each package. 
R scripts to calculate the sensitivity and specificity of each package were modified from 
code generated by ChatGPT [55].

A total of four negative control datasets were generated, two by randomising the values 
of the FF left ventricle data and two by randomising the values of the FFPE prostate data 
in python. For each of the two datasets, one simulated dataset was created by randomis-
ing the x and y spot coordinates for this dataset independently to remove spatial correla-
tion. Subsequently, an additional simulated dataset was generated from each dataset by 
randomising the spatial coordinates and each column in the gene expression matrix to 
ensure any overall associations were removed. To generate a simulated dataset of known 
coordinates, the code available in the SPARK-X simulated data vignette was used. To test 
all simulated datasets, the same parameters for each algorithm were used as in the analy-
sis of the publicly available datasets. The true positives rates and false positive rates were 
then calculated for the results all packages that were compatible with the dataset.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​023-​03045-1.

Additional file 1: Fig. S1. Overview of the design of benchmarking workflow. First, publicly available datasets are 
obtained to be used as inputs for pre-processing in a Scanpy workflow. For each dataset the processed output is 
then transformed into a data object most suitable for each of the SVG analysis packages. Simulated data is directly 
used as inputs for SVG analysis. Finally, the results are compared across packages within each dataset. Fig S2. Distinct 
overlap of SVGs identified by different combinations of the six tested packages. A) FF cerebellum. B) FF lymph node. 
C) FFPE adenocarcinoma prostate. D) FF invasive ductal carcinoma breast tissue. E) FF left ventricle. F) FFPE prostate. 
G) FFPE invasive ductal carcinoma breast tissue. H) FF mouse brain coronal section. Fig S3. Comparison of the 
number of SVGs identified by six different packages across different datasets. FFPE tissues are visualised by a cross 
and FF tissues are visualised with a square. High numbers of SVGs are identified in both FF and FFPE tissues, however 

https://doi.org/10.1186/s13059-023-03045-1
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tissues that are more transcriptionally complex seem to have more SVGs called across the dataset. Seurat reports a 
consistent number of SVGs across datasets as it first identifies highly variable genes then ranks their expression by 
how dependent it is on spatial location [53]. Fig S4. Comparison of ranked SpatialDE q-values against gene-matched 
SPARK-X q-values of all genes generated from each dataset. Order of plots repeats across all datasets. A) FF cerebel-
lum. B) FF lymph node. C) FFPE adenocarcinoma prostate. D) FF invasive ductal carcinoma breast tissue. E) FFPE pros-
tate. F) FFPE invasive ductal carcinoma breast tissue. G) FF endometrial adenocarcinoma ovarian tissue. H) FF mouse 
brain coronal section. Fig S5. Comparison of ranked SpatialDE q-values against gene-matched scGCO q-values of all 
genes generated from each dataset. A) FF cerebellum. B) FF lymph node. C) FFPE adenocarcinoma prostate. D) FF 
invasive ductal carcinoma breast tissue. E) FFPE prostate. F) FFPE invasive ductal carcinoma breast tissue. G) FF endo-
metrial adenocarcinoma ovarian tissue. H) FF left ventricle. I) FF mouse brain coronal section. Fig S6. Comparison 
of ranked SPARK-X q-values against gene-matched scGCO q-values of all genes generated from each dataset. A) FF 
cerebellum. B) FF lymph node. C) FFPE adenocarcinoma prostate. D) FF invasive ductal carcinoma breast tissue. E) 
FFPE prostate. F) FFPE invasive ductal carcinoma breast tissue. G) FF endometrial adenocarcinoma ovarian tissue. H) 
FF left ventricle. I) FF mouse brain coronal section. Fig S7. Comparison of ranked SpatialDE q-values against gene-
matched Squidpy q-values of all genes generated from each dataset. A) FF cerebellum. B) FF lymph node. C) FFPE 
adenocarcinoma prostate. D) FF invasive ductal carcinoma breast tissue. E) FFPE prostate. F) FFPE invasive ductal car-
cinoma breast tissue. G) FF endometrial adenocarcinoma ovarian tissue. H) FF left ventricle. I) FF mouse brain coronal 
section. Fig S8. Comparison of ranked SPARK-X q-values against gene-matched Squidpy q-values of all genes 
generated from each dataset. A) FF cerebellum. B) FF lymph node. C) FFPE adenocarcinoma prostate. D) FF invasive 
ductal carcinoma breast tissue. E) FFPE prostate. F) FFPE invasive ductal carcinoma breast tissue. G) FF endometrial 
adenocarcinoma ovarian tissue. H) FF left ventricle. I) FF mouse brain coronal section. Fig S9. Comparison of ranked 
scGCO q-values against gene-matched Squidpy q-values of all genes generated from each dataset. A) FF cerebellum. 
B) FF lymph node. C) FFPE adenocarcinoma prostate. D) FF invasive ductal carcinoma breast tissue. E) FFPE prostate. 
F) FFPE invasive ductal carcinoma breast tissue. G) FF endometrial adenocarcinoma ovarian tissue. H) FF left ventricle. 
I) FF mouse brain coronal section. Fig S10. Gene ontology enrichment results using SVGs identified by each pack-
age as inputs across datasets. A) FF cerebellum. B) FF lymph node. C) FFPE adenocarcinoma prostate. D) FF invasive 
ductal carcinoma breast tissue. E) FF left ventricle. F) FFPE prostate. G) FFPE invasive ductal carcinoma breast tissue. 
H) FF mouse brain coronal Section. Fig S11. Spatial expression patterns of SVGs identified by all packages across 
the FF mouse brain coronal section dataset. A) Expression of Hap1 across the hypothalamus and amygdala, cross-
referenced with the Allen Mouse Brain Reference. B) Expression of Prkcd localised to the thalamus, cross-referenced 
with the Allen Mouse Brain Reference. C) Expression of Itpka, with highest expression in the isocortex, hippocampal 
formation (HPF) and cortical subplate consistent with patterns displayed in the Allen Mouse Brain Reference. D) 
Expression of Eef2, a known housekeeping gene in mouse (39). Fig S12. Simulated datasets generated with SRT sim. 
A) Location of simulated SVGs with a hotspot pattern visualised in blue, while red area indicates expression of noise 
genes. B) Location of simulated SVGs in both blue and green corners, while red area indicates expression of noise 
genes. C) Distinct overlap of SVGs compared to the control SVG list identified by different combinations of the four 
tested packages. 1500 SVGs were present in this dataset. D) Distinct overlap of SVGs compared to the control SVG 
list identified by different combinations of the four tested packages. 750 high signal SVGs and 750 low signal SVGs 
were present in this dataset. Fig S13. Top SVG identified by SpatialDE in negative simulated datasets generated by 
A) Randomising coordinates of FF Left Ventricle dataset. B) Randomising counts and coordinates of FF left ventricle 
dataset. C) Randomising coordinates of FFPE prostate dataset. D) Randomising counts and coordinates of FFPE 
prostate dataset. Fig S14. Upset plot of results generated from running SPARK-X and SpatialDE on simulated data 
with known pattern of SVGs.

Additional file 2: Table S1. Reported statistic and associated p-value from each combination of pairwise compari-
son of results between SpatialDE, SPARK-X, scGCO and Squidpy when reported p-values were compared using the 
Wilcoxon signed rank test. Table S2. Sensitivity and specificity of Squidpy, SPARK-X, SpatialDE and scGCO when used 
to analyse both simulated datasets generated with SRTsim. Sensitivity and specificity are reported over a range of 
q-value cut-offs, from 0.01-1.0. Table S3. Packages included for identification of SVGs in benchmarking study. The 
packages are ordered by assumptions made on distribution of gene expression. The rows highlighted in blue indi-
cate grouped packages using graph-based methods. Table S4. Overview of publicly available 10X Visium datasets 
to be included in benchmarking process. FF indicates tissues that are fresh frozen and FFPE indicates tissues that are 
formalin-fixed paraffin-embedded. The filtered output files and imaging data from the Space Ranger v1.0.0, v1.2.0 or 
V1.3.0 pipeline were downloaded for each dataset.

Additional file 3. Review history
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