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Background
When expression and inheritance of a trait is under the control of many genes, it is con-
sidered a quantitative or complex trait, with growth- and fitness-related traits being 
almost always complex traits [1, 2]. The complexity of these traits comes not only from 
the large number of underlying genes/loci, but also from the multitude of potential 
allelic interactions within and between the genes involved. The best-understood type 
of allelic interaction is the additive effect, in which different alleles contribute to a trait 
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co-dominantly, and the offspring have an intermediate trait value that is close to the 
average of the two parental alleles. By definition, non-additive genetic effects are any 
deviations from this additive scenario, with two common examples being dominance 
and epistasis [1]. Due to limitations in technical and statistical frameworks, non-addi-
tive effects are much less studied and understood than additive effects [3]. Nevertheless, 
there is evidence that non-additive effects can be pervasive and contribute substan-
tially to what had for some time been perceived as “missing-heritability” [4–6]. Hybrids 
provide a unique opportunity to study the dominant portion of non-additive effects, 
enabling direct comparison of the relative importance of additivity and dominance to 
phenotypes of interest.

Causal genetic variants often exert their functional effects by modulating gene expres-
sion. Measuring gene expression differences and associating the variation with complex 
traits provides information regarding biological functions and processes causing natural 
phenotypic variation [7]. Over the last decade, statistical frameworks such as transcrip-
tome-wide association (TWA) and expression QTL (eQTL) have rapidly matured, pro-
viding insights into molecular functions of complex traits [7, 8]. The highly quantitative 
nature of transcriptomic, especially RNA-seq data provides an excellent opportunity for 
tracking additive versus dominant gene actions. By comparing the expression level of 
a gene in F1 heterozygotes to that of the parental average, one can easily calculate the 
degree of its non-additivity [9].

Above-ground biomass accumulation is a fitness-related trait that has an important 
bearing on both the local adaptation of wild plants [10] and the performance of agricul-
tural species [11, 12]. In the inbreeding plant Arabidopsis thaliana, rosette size, a close 
proxy for above-ground biomass, is not only a primary indicator of growth and gen-
eral performance [13, 14], but also both highly variable [14, 15] and strongly associated 
with fitness [15, 16]. The range of variation in this trait can be substantially increased by 
including F1 hybrids. While rare combinations are smaller than any naturally occurring 
accession [17, 18], most F1 hybrids have larger rosettes [19–21], an emergent positive 
phenotype that in outbreeding crops is usually termed heterosis. F1 hybrids are particu-
larly interesting systems to study, as alleles that are naturally segregated into different 
genomes are brought into contact with each other, leading to numerous novel genetic 
interactions [22, 23]. It has long been postulated that these novel genetic interactions, 
both additive and non-additive, may contribute to hybrid performance [22, 24, 25].

We are interested in understanding how common additive and non-additive gene 
action is, and how it relates, if at all, to growth phenotypes in F1 hybrids. We focus on 
dominance, though both dominance and epistasis have been hypothesized to be criti-
cal for hybrid phenotypes [9]. Specifically, we would like to learn at the species level (i) 
whether additive and dominant gene actions occur at a similar frequency, (ii) whether 
the gene actions are mostly specific to parental combinations, or if certain genes and 
pathways particularly frequently exhibit one of the effects, (iii) and whether emergent 
phenotypes in F1 hybrids are more likely to result from additive or dominant gene 
actions. Arabidopsis thaliana provides a powerful system to address these questions, 
due to the wealth of genomic resources and large collection of natural accessions [26]. 
Previous studies of intra-specific A. thalian hybrids have provided insights into mecha-
nisms affecting hybrid performance, such as the mitigation of defense-growth tradeoffs 
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in superior hybrids [27], and on the flip side, greatly compromised growth in hybrids due 
to incompatible allelic interaction and excessive activation of defense [17].

We designed a study in A. thaliana that surveyed not only a broad range of the species’ 
genetic diversity, but also allowed for the detection of interactions between an excep-
tionally large number of alleles. We find non-additivity in gene expression in F1 hybrids 
to be common, with dominant genes being much more commonly expressed below the 
parental average (mid-parent value, MPV) than above it. Expression close to the MPV in 
turn is rare, with a substantial fraction of such genes having a role in biotic defense path-
ways, suggesting that defense is particularly well buffered.

Results
Dominant gene action is more abundant in F1 hybrids

For our work, we drew on resources from the 1001 Genomes Project for this species [26], 
crossing re-sequenced, naturally inbred accessions to generate a panel of F1 hybrids. To 
broadly survey possible genetic interactions, and to evaluate whether consistent patterns 
of additive and dominant gene expression exist, we carried out an RNA-seq experiment 
for which 101 parent-F1 trios, i.e., each F1 hybrid and their inbred parents, were planted 
(Fig. 1A, Additional file 2: Table S1, “Methods” section). Of all genotypes, 82 F1s and 124 
inbred parents were included in the final analyses. Whole-rosette sizes, a good proxy for 
biomass (Additional file 1: Fig. S1, “Methods” section), were measured in inbreds and 
F1s.

The expression of many genes changes in F1 hybrids relative to the parents [9]. Under 
an additive model, gene expression in F1 hybrids is close to the parental average. We 
asked whether there are genes that are almost always additively, or dominantly expressed 
in F1s across all trios. Out of 16,667 expressed genes that passed our filter (Methods), 
we identified close to 900 genes that were consistently expressed in an additive fash-
ion (Additional file  1: Fig. S2, “Methods” section), and 1,805 genes (Additional file  3: 
Table S2) that were consistently expressed in a dominant fashion (Additional file 1: Fig. 
S3, “Methods” section) in all trios. Both the additive and the dominant genes had distri-
bution profiles of transcript abundances and coefficients of variation that were similar 
to background genes (Fig.  1C, D), i.e., including both high- and low-abundance tran-
scripts as well as ones that varied little across samples or ones that varied substantially. 
This indicates that expression level and variance did not greatly bias our ability to dis-
cover specific gene expression patterns. Parenthetically, the great majority of the addi-
tive genes had very low ranks on their dominance score (Fig. 1E), confirming that our 
gene calling algorithm was successfully selected for contrasting gene actions. Within our 
dominant genes, only 150 (~ 8%) of these were consistently expressed above MPV in the 
F1s. For the great majority of genes, the low expression level was dominant, such that 
most genes were expressed in the F1s at a level between the lower parent and the MPV.

Gene Ontology (GO) term analysis revealed that the additive genes are strongly 
enriched in cell death- and stress response-related processes (Fig. 1B). If a gene is typi-
cally expressed close to the parental average, then the expression values in the parents 
will be more broadly distributed than in the hybrids, because extreme parents would 
usually have been crossed to less extreme parents. We therefore interpret our result as 
indicating that the cell death- and stress-response pathways are systematically buffered 
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in F1s. In comparison, dominant genes are featured in much more diverse biological pro-
cesses (Fig. 1G), including regulation of immune system process, ribosomal RNA tran-
scription, plant organ formation, and others.

Dominant gene expression is thus pervasive in F1 hybrids, with the overwhelming 
majority of genes expressed below the parental average. Many biological processes are 
affected in the F1s by expression dominance, as the GO enrichment suggested.

Dominant genes covary with size

We reduced the dimensionality of our dominant gene set by grouping genes with a simi-
lar behavior across samples via k-means clustering (k = 13). We examined how well the 
behavior of different clusters across samples was correlated (Fig.  1F), finding that one 
particular cluster (cluster 6, n = 116) behaved in a manner that was opposite to that of all 
other clusters.

Probing into the underlying commonalities between the genes that drove the clus-
tering, we discovered that the mean expression value for eight of the clusters (clusters 
6–13) covaried with rosette size in both inbreds and hybrids. The most distinct cluster 
6 showed a clear positive correlation, while the other clusters were negatively correlated 
with rosette size (Fig. 2A). While the general trend of correlation between gene expres-
sion and rosette size remained the same in F1s and the inbred parental lines, the shape of 
the correlation differed.

To obtain further insight into the above observations, we formally investigated the 
relationship between the average gene expression of each cluster and rosette size, by per-
forming Bayesian linear-mixed-model spline fitting (Fig.  2B, Additional file  1: Fig. S4, 
“Methods” section). Clusters 1–5 showed no clear trend of association between expres-
sion and size, cluster 6 showed expression increasing in parallel with rosette size (Fig. 2B, 
top panel), and the remaining clusters showed expression decreasing with increasing 

Fig. 2  Dominant gene expression level correlates with final rosette size. A Heatmap showing the 
average expression of each dominant gene cluster (K-means) in each sample, sorted into F1s and inbred 
parental lines, and arranged by ascending final rosette size. Clusters 1–5 showed no clear expression-size 
association. Cluster 6 (n = 107) showed a positive association, and clusters 7–13 (n = 151) showed a negative 
association B Linear-mixed-model spline fitting of exemplary clusters. Top: cluster 6, which showed positive 
expression-size association; bottom: cluster 7, which showed negative expression-size association; points: 
cluster mean expression in each sample; shaded area: 95% Bayesian credible intervals. The systematic 
differences in expression levels across the entire rosette-size range seen in F1 hybrids are consistent with F1s 
being larger than parents
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rosette size. For these seven clusters, F1 hybrids tended to have lower expression than 
the inbreds across the entire range of rosette size (Fig. 2B, bottom panel). GO analysis 
did not indicate that clusters were specific for particular biological processes.

Therefore, a large number (n = 1420) of dominant genes showed covariation of expres-
sion level with rosette size. F1 hybrids systematically exhibited a shift towards either 
lower or higher expression levels in the direction consistent with the change in rosette 
size relative to inbred parental lines. The trend is unique for dominant genes, as repeti-
tive random subsets of the transcriptome showed neither profound covariation with size 
nor a systematic shift in the expression level in F1s (Additional file 1: Fig. S5).

F1 exhibits robust growth advantage

That gene expression exhibited a systematic shift in the F1 hybrids, and that dominant 
gene expression in the F1s covaried with rosette size prompted us to ask (i) whether the 
degree of dominant expression within individual parent-hybrid trios correlated with 
rosette size differences between the F1s and their parents, and (ii) whether a global per-
turbation to the plant’s developmental program would affect the F1s and the inbreds 
differently. To this end, we conducted a second experiment in which we applied BTH 
(acibenzolar-S-methyl), an analog of the defense hormone salicylic acid (SA) (Fig. 3A, 
“Methods” section), to 40 parent-F1 trios. Induction of pathogen defense was chosen as 
treatment because it causes morphological changes and at least sometimes extensive 
transcriptional reprogramming, as has been observed in some F1 hybrids of A. thaliana 
[28].

F1 hybrids are on average considerably larger than the inbred parents (inbred mock: 
118.2 ± 61.1 mm2, F1 mock: 157.1 ± 79.6 mm2, inbred BTH: 71.6 ± 35.5 mm2, F1 BTH: 
94.3 ± 44.3 mm2, Fig. 3B), consistent with our earlier experiment (Additional file 1: Fig. 
S6). Neither the distribution of the rosettes of the parents nor those of the F1 plants was 

Fig. 3  BTH treatment reduced rosette size in both inbreds and F1s. A Experimental design. B F1s maintained 
a robust growth advantage despite the reduction in rosette size upon BTH treatment. PM: parent mock, 
F1M: F1 hybrid mock, PB: parent BTH treated, F1B: F1 BTH treated. C Positive correlation between rosette size 
dominance under mock and BTH conditions. Numbered labels indicate the ID of the SHB2 trios. D Typical 
rosette phenotype of a trio. E Diverse response of three example trios to BTH treatment. Reaction norm lines 
connect the mean ± SD rosette area of each genotype under both treatments
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normal, with the F1 population having a significantly higher number of larger individuals 
(p = 8e − 5, two-tailed Kolmogorov–Smirnov).

In a comparison of randomly chosen trios, the F1 was almost twice as likely as one of 
the inbreds to be the larger individual (Cliff ’s delta = 0.31). BTH treatment significantly 
reduced plant size in both inbreds and hybrids (mock: 79.2 ± 3.0 mm2, BTH: 39.5 ± 4.2 
mm2, one-way ANOVA, p < 2 × 10−16, Fig. 3B, D, Additional file 1: Fig. S7), and induced 
considerable variation in growth responses (Fig. 3E, Additional file 1: Fig. S8). F1s exhib-
ited stronger size reduction but remained to be more likely to be larger than either par-
ent (p = 0.0002, two-tailed Kolmogorov–Smirnov, Cliff ’s delta = 0.31). Most trios showed 
similar patterns in rosette size growth emergence after both mock and BTH treatment, 
with the majority of F1s remaining larger than the MPV (Fig. 3C).

Growth advantage is therefore prevalent in the F1 hybrids included in both of our 
experiments (Fig.  3B, Additional file  1: Fig. S6), and is to a great extent robust to a 
perturbation of the developmental program. Although we cannot rule out that even 
stronger BTH treatment would eventually render hybrids smaller than the inbreds, it 
is, however, unlikely to occur in a natural setting, as our treatment already resulted in 
extremely dwarfed plants.

Degree of non‑additivity correlates with F1 growth advantage

Having established that dominantly expressed genes are systematically associated with 
plant size and that F1 rosettes frequently exhibit positive size emergence, we investigated 
whether the degree of expression non-additivity in F1s may be associated with this phe-
notypic non-additivity. We focused on genes showing general response to BTH treat-
ment (n = 6371) and asked whether deviations of F1 expression values from the MPV 
of any gene in individual trios exhibited a correlation to the non-additivity in F1 rosette 
size. Clear correlations could be observed for many genes, which could be broadly cat-
egorized into (monotonic) positive, (monotonic) negative, or quadratic (Fig. 4A), while 
in some cases no correlation was observed. We defined 61 groups of genes that fell into 
these different categories by k-means clustering. To establish the significance of the 
size-expression correlation, we performed a Wilcoxon signed-rank test on the genes in 
each of the 61 clusters (Fig.  4B, “Methods” section, Additional file  4: Table  S3). Some 
clusters shared similar relationships between the non-additivity in gene expression 
and rosette size, therefore we sorted the clusters further into 12 classes reflecting the 

Fig. 4  Genes whose degree of expression dominance in trios correlates with hybrid performance. A 
Exemplary clusters of “positive-positive” (left), “negative-negative” (middle), and “quadratic-negative” (right) 
genes. Thick solid line: spline fitting of the cluster means; thin lines: spline fitting of individual cluster 
members. B Average biomass MPH (the amount that F1 rosette size differs from that of corresponding 
parental mean) for rosette samples with low- vs. high- expression of genes in the same clusters as in A. Each 
violin depicts the distribution of cluster gene expression averaged across the top and the bottom (and the 
middle for the quadratic relationship) deciles of samples. C Pearson correlation coefficients (PCC) of all 61 
clusters based on LMM-spline modeling. The clusters are further sorted into 12 classes labeled on the right 
according to the relationship between gene expression and biomass under mock or BTH treatment. D GO 
enrichment for genes from the negative cluster. The small plot shows the overall GO network structure, and 
the positional relationship of the two enlarged graphs of the sub-network (i and ii). E Regulatory regions of 
genes from both positive and negative clusters are enriched for a PCF binding motif. F De novo motif search 
confirmed enrichment of the PCF motif

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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pattern of correlation under mock and BTH treatment (e.g., “negative-negative” means 
negative correlation under both treatments, Fig.  4C, “Methods” section). Correlation 
often changed in response to treatment, with the majority of genes exhibiting a nega-
tive correlation with rosette size non-additivity under at least one condition, a trend that 
increased after BTH treatment (Additional file 1: Fig. S9). This observation is consistent 
with your finding that negative dominance is more pervasively associated with rosette 
growth in A. thaliana.

The genes with negative size-expression correlation after BTH treatment (Addi-
tional file  5: Table  S4, “negative genes” hereafter) are enriched for GO terms “regula-
tion of gene expression”, “floral organ development”, and “response to (abiotic) stimuli” 
(Fig.  4D). Genes with positive correlation under both treatments (Additional file  6: 
Table S5 “positive genes” hereafter) were moderately enriched for photosynthesis (Addi-
tional file 1: Fig. S10). While it seems unlikely, we cannot exclude that the enrichment for 
abiotic response is due to our analytic focus on BTH-responsive genes, though a parallel 
GO enrichment test for all BTH-responsive genes did not return significant hits in any 
biological process. Together these results suggest that the F1 transcriptome is systemati-
cally repressed in reproductive growth and (abiotic) stress response functions while acti-
vated in photosynthesis. Such transcriptome signature of dominance is associated with 
the rosette growth advantage of the F1s, which is pervasive in our system.

To begin to discover potential regulatory mechanisms, we performed motif enrich-
ment analysis among the heterosis-associated genes (“Methods” section). Proliferating 
cell factor (PCF) and c-Myc transcription factor binding motifs are highly enriched in the 
promoters of negative genes (569/2248 genes, p = 10−42, and 433/2248 genes, p = 10−21, 
Fig. 4E, Additional file 1: Fig. S11). PCF-binding motifs are also highly enriched in the 
positive genes (144/499 genes, p = 10−13, Fig. 4E). These findings were corroborated by 
de novo motif searches (Fig. 4F). PCF/TCP proteins constitute a conserved plant-spe-
cific transcription factor family that includes several regulators of cell cycle, growth, 
and disease resistance [29, 30]. That both positive and negative genes were enriched for 
PCF motifs points to these factors as a potential central toggle for global re-modeling of 
hybrid transcriptomes.

Parenthetically, close to 900 additively expressed genes were called from the second 
experiment, and 300 of which (hereafter, common additive genes) overlapped with 
the first experiment (Additional file 1: Fig. S12, Additional file 7: Table S6, “Methods” 
section). GO-term analysis of the common additive genes revealed enrichment in cell 
death- and stress response-related processes (Additional file 1: Fig. S12), again confirm-
ing that genes from the second experiment were more enriched for defense response 
than the genes from the first experiment without BTH treatment (Additional file 1: Fig. 
S13).

Dominant, not additive complementation underlies the emergence of F1 growth 

advantage

We next asked whether the association between expression level and F1 growth has a 
common genetic basis. Hybrids offer a genomic playground where deleterious alleles 
from each of the parental genomes may be complemented, one of the leading hypoth-
eses for growth advantage in hybrids. Deleterious alleles are expected to be segregating 
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at lower frequency in the population, and those residing in the gene regulatory regions 
have been associated with mis-expression of genes in cis [31]. To gauge the effect of 
genetic complementation in the F1s, we turned to regulatory rare alleles, looking into the 
relationship between gene expression level and the average number of regulatory rare 
SNPs (within 1 kb upstream of genes), which are more likely to have a deleterious effect 
on gene expression than common SNPs, in both inbred parents and the F1s (Methods).

Regardless of the treatment, we observed on average a significantly higher rare allele 
counts upstream of the common additive genes associated with low expression ranks in 
inbred parents (Fig. 5A, Wilcoxon signed rank-sum test with Benjamin-Hochberg FDR: 
mock, α = 1.1 × 10−5, BTH: α = 1.1 × 10−5). The trend was moderate in the positive genes 

Fig. 5  Rare allele burden affects gene expression and the emergence of F1 growth advantage. A-C 
Association between gene expression rank and upstream rare allele count of additive genes (A), positive 
genes (B), and negative genes in inbred parents (C). Average upstream rare allele counts were calculated 
sensu Kremling et al. (2018) [31]: for each gene within the gene list (the cluster), all inbred samples received 
a rank based on their expression value. Across the gene list, average upstream rare allele counts of all 
samples sharing the same rank were plotted as points, and lines indicate LOWESS trend lines. Insets show 
the upstream rare-allele count of samples in the top (Mock 10, BTH10) and bottom decile (Mock 1, BTH 1) 
of expression ranks. D–F Association between gene expression rank and upstream rare allele count of three 
gene lists in F1 hybrids. F1 samples are ranked by expression value the same way as the inbreds in A–C. The 
rare allele count for the F1s is calculated as the average number of rare alleles between their corresponding 
parents. G–I Association between rosette growth emergence and mean parental rare allele burden in 
additive (G), positive (H), and negative (I) genes. For each gene, F1s were ranked by the average number of 
rare alleles in their parents. Points: average non-additivity in rosette size of all F1s sharing the same rank; lines: 
LOWESS trend lines
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(Fig.  5B, mock: α = 0.03, BTH: α = 0.10) and in the opposite direction in the negative 
genes (Fig. 5C, mock: α = 7 × 10−6, BTH: α = 7 × 10−7). Trends in F1s were in all three 
gene groups consistent with what was seen in the parents (Fig.  5D, F, α = 5.1 × 10−5, 
additive-mock; α = 3.8 × 10−4, additive-BTH; α = 0.005, positive-mock; α = 0.23, positive 
BTH; α = 3 × 10−12, negative-mock; α =  × 10−7, negative-BTH). Note that for the domi-
nantly expressed genes, increased upstream rare-allele count was always associated with 
an expression pattern that is consistent with a smaller plant. Upstream rare-allele bur-
den therefore tends to lead to more extreme, and deleterious expression of these genes, 
in parents and the hybrids alike.

We next asked what the likely phenotypic consequence of the upstream rare-allele 
burden might be. Because dominance in gene expression varied less with rare-allele bur-
den than additive gene expression (Fig. 5A, D), we expected these additive genes to be 
critical for F1 growth advantage. To our surprise, the number of rare alleles upstream of 
these common additive genes did not seem to be particularly relevant for rosette growth 
advantage in the F1s (Fig. 5G, Pearson correlation R = -0.16, p = 0.38). Additive comple-
mentation may therefore be an inherent property of hybrids without directly influenc-
ing growth advantage. In contrast, the number of mean upstream rare alleles in both 
positive (Pearson correlation R = -0.701, p = 8.04e − 6) and negative (Pearson correlation 
R = -0.817, p = 1.20e − 8) genes is a strong negative predictor of rosette growth advan-
tage in F1 hybrids (Fig. 5H, I, suggesting that growth advantage tends to be greater in 
hybrids derived from parents with fewer rare alleles in the upstream regions of these 
dominantly expressed genes. We conclude that dominant complementation contributes 
heavily to the F1 growth advantage observed in our system.

Discussion
Most, if not all, of the growth and survival phenotypes of an organism are complex traits. 
Although the infinitesimal model predicts that dominance contributes only minimally to 
most structural traits [32], their impact is expected to be far greater in fitness-related 
traits [33]. To date, most of the methods for mapping and genomic selection are based 
on additive effects only [3]. However, incorporating non-additive, i.e. dominant and epi-
static, effects into quantitative genetics modeling can improve heritability estimates and 
accuracy of genomic prediction [34–37]. Limited empirical data exists for non-additive 
variance estimates, which varies greatly between organisms and can range from around 
3 to 15% of total phenotypic variance in humans and animals [38, 39] to a third or more 
in plants [37, 40, 41]. Adequate knowledge of non-additive genetic action is therefore of 
pivotal importance for a thorough understanding of the genetic architecture of complex 
traits, especially those that are fitness-related, and their evolutionary trajectory.

Motivated to better understand the prevalence and consequence of non-additive, 
especially dominant genetic action, we systematically compared the additivity and domi-
nance in gene expression in A. thaliana F1 hybrids. Consistent with findings in other sys-
tems [24, 42], we found non-additivity to be prevalent. Moreover, there was a prominent 
association between non-additivity and biomass on a cross-population scale, lending 
support to the theory of directional dominance being an underlying factor of emergent 
phenotypes in hybrids [1].
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We observed a common occurrence of rosette growth advantage in our F1 collection, a 
metric for heterosis in A. thaliana. Previous inferences from smaller sets of A. thaliana 
F1 hybrids [19, 20] have suggested similarly. Despite extensive exploitation in breeding 
and agriculture, we are only beginning to understand the molecular basis and mecha-
nisms behind heterosis due to its highly heterogeneous nature. One recurring ques-
tion is whether true heterozygote advantage exists due to overdominance at a few loci, 
or whether there is merely additive complementation of numerous mildly unfavorable 
recessive alleles [43]. The search for overdominant loci has proven to be exceedingly dif-
ficult, due to the genetic load of (domesticated) species as well as limitations in genetic 
mapping [44], which cannot be overcome with modern marker technology. In tomato 
and rice, there is good evidence for single genes, sometimes with overdominant effects, 
making major contributions to heterosis [45–47], while heterosis in maize appears to 
result from reciprocal complementation at a very large number of loci [31, 48]. There 
must, however, be a role for overdominance in maize, since the continuous purging of 
deleterious variants in inbred parents through breeding has not decreased heterosis in 
F1 hybrids [25].

In our system, heterosis seems to be driven in a large part by dominant gene expres-
sion. This goes in line with the recent finding in rice that non-additive preferred QTLs 
are the main contributor to heterosis [49]. Both studies also agree that dominant gene 
actions are more sensitive to environmental factors. It has long been postulated that 
heterosis is a result of directional dominance [1]. It is therefore noteworthy that we 
observed a consistent species-wide trend of partial dominance in expression leading to 
the relative gene-expression level in F1 hybrids being more similar to the low-expression 
parents. With the proviso that we cannot rule out that the absolute transcript abundance 
of these genes were in fact increasing, our measurements do indicate a relative decrease 
in cellular transcript concentration, which could have consequences for molecular inter-
actions [50, 51].

We observed putative deleterious effects (i.e., strong deviation of gene expression from 
the population means) of regulatory rare alleles upstream of both additive and domi-
nant genes, primarily in inbred parental accessions, and to a lesser degree in F1 hybrids, 
suggesting that rare-allele burden has common effects in inbreds and hybrids alike. In 
addition, in the dominant genes, the abundance of up-stream rare alleles is found to be 
strongly and negatively associated with heterosis, suggesting that the change of expres-
sion, as opposed to being merely a consequence of a common phenotype, had a genetic 
basis hence potential to respond to selection. Together this indicates that reciprocal 
complementation in dominant loci is important for heterosis in our system, consistent 
with the dominance model.

Interestingly, GO enrichment of the heterosis-related dominant genes pointed to repres-
sion of reproductive development and abiotic stress response, as well as increased photo-
synthesis as factors that support more robust growth in F1 hybrids. This goes against the 
perception that genetic complementation is highly genotype-specific hence lacking a com-
mon signature. It is possible, therefore, that mildly deleterious alleles are enriched in certain 
biological functions, likely due to either a small selection coefficient on the resulting trait 
or conditional neutrality. Another possible explanation of functionally-enriched non-addi-
tivity is that factors other than genetic complementation exist upstream of the dominant 
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genes. Two additional lines of evidence suggested the likelihood of this being partially true: 
for one, enrichment of binding motifs for a small number of transcription factors upstream 
of the dominant genes raises the possibility of concerted rewiring of transcriptional net-
works in trans; for another, inter-parental genetic distance calculated using neither whole-
genome common SNPs nor a subset of those in additive and dominant genes showed a 
strong correlation with F1 growth (Additional file 1: Fig. S15, “Methods” section). Genetic 
complementation alone, therefore, cannot fully account for heterosis in our system.

Another study recently reported high-parent expression of hub genes from regulatory 
networks of photosynthesis and cell cycles during early shoot development to be associ-
ated with a high degree of growth advantage in one specific F1 hybrid [52]. We similarly 
found the above-MPV expression of photosynthetic function in the later phase of vegeta-
tive growth to be positively correlated with increased growth. Both studies also agree in 
low-parent gene expression being common in F1 hybrids during the later stage of vegetative 
growth.

In contrast, additive (i.e., near-MPV) expression itself does not correlate with the larger 
size of F1 hybrids, hence probably does not directly contribute to hybrid advantage. The 
observation is consistent with the notion that additive variance is quickly driven to fixa-
tion in fitness traits [33]. Additive expression appears to be an intrinsic property for certain 
genes, mainly enriched in cell-death and stress-response pathways, in F1 hybrids, largely 
independent of specific parental combinations. We conclude that concerted dominant gene 
expression, rather than canalization via additive gene expression, is a main driver of growth 
advantage in A. thaliana F1 hybrids. Whether tighter control of biotic defense responses 
capacitates hybrid advantage requires further investigation.

A limitation of our study is that we do not know which genes, or rare alleles are causal for 
the growth advantage in F1 hybrids. This could be addressed by eQTL analysis in a larger 
dataset. This would enable the comparison of hybrid behavior when the hybrids carry the 
same or contrasting alleles at the eQTL.

Conclusions
Our systematic use of RNA-seq enabled the parallel comparison of thousands of gene 
expression traits, all quantified against the same scale. With this, we defined both “additive” 
and “dominant” genes by their expression at the population level, largely circumventing idi-
osyncratic behavior of genes in a specific trio, enhancing our confidence that our obser-
vations can be generalized across the species. By associating transcriptome changes and 
plant growth, we were also able to characterize growth as a high-dimensional phenotype, 
with under-dominance as the predominant type of gene action associated with growth 
advantage in F1 hybrids. Our work provides another step towards understanding molecu-
lar mechanisms and evolutionary forces that lead to dominance complementation of rare 
regulatory alleles.

Methods
Generation of genetic resource

Accessions covering the entire species range were chosen from the A. thaliana 1001 
Genomes Project [26]. F1 hybrids used in this study were generated via random crosses, 
either by randomly crossing individual accessions that reached the flowering stage at the 
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same time (SHB1) [53] or according to a pre-generated randomized crossing scheme 
after subjecting seedlings to a saturating (12 weeks) vernalization under 4 °C short-day 
conditions (SD, 8/16 h photoperiod) to synchronize flowering (SHB2).

Experimental design

The first experiment (Fig. 1A, “SHB1”) initially included 101 parent-F1 trios of altogether 
286 distinct genotypes. Single plants were grown following an incomplete randomized 
block design, with each tray as a block within which each genotype was sown as an adja-
cent pair. The second experiment (Fig. 3A, “SHB2”) included 40 parent-F1 trios. Single 
plants were grown in triplicates, following a split-block design where each block held 
10 parent-F1 trios with each row consisting of one trio with duplicates of plants in adja-
cent pots. The trios within each block and the relative positions of genotypes within each 
trio were randomized. Plants were subjected to either a mock or an artificial defense 
hormone treatment (see below). After accounting for germination, survival, and initial 
filtering of RNA-seq outputs, 82 hybrids and 124 inbred parents in SHB1, and 32 trios in 
SHB2 remained for downstream analyses.

To minimize circadian bias, sowing for both experiments was scheduled in batches to 
ensure that harvesting could be finished within a 30-min window at the same hour for 
several consecutive days. At 21 days after sowing, the healthiest appearing plant of each 
genotype was used for RNA-seq, to ensure any sampling bias is systematically towards 
the same direction for both inbreds and hybrids. Meanwhile, rosette size measurements 
were obtained for the same individual plants for which RNA-seq were performed.

For a list of genotypes analyzed in both experiments, see Additional file 2: Table S1.

Plant culture, treatment, and sampling

Single plants were grown in a 1:1 mixture of calcined clay media (Diamond Pro, Arling-
ton, TX, USA) and vermiculite (Floragard, Oldenburg, Germany) supplemented with 
liquid growth media [54]. Plants were not vernalized, to ensure that they remained in the 
vegetative growth phase. As a proxy of vegetative biomass (ref. [55] and Additional file 1: 
Fig. S1), the rosette area of 21-day-old plants was measured. The full rosettes grown 
under 16 °C long-day (LD,16/8 photoperiod) were harvested and flash-frozen at 21-day 
after germination (DAG).

Defense hormone treatment started 14  days after sowing. An analog of the defense 
hormone salicylic acid (SA), BTH (acibenzolar-S-methyl, Sigma-Aldrich) was used, with 
optimal dose and treatment scheme of the defense hormone that had been established 
in a pilot experiment on multiple accessions (Additional file 1: Fig. S2). Each 10 × 6-pot-
tray block was the unit of treatment and plants were treated by topical spraying every 
other day with either a mock solution (20 mL; ddH2O, 0.1% DMSO, 0.006% Silwet) or a 
BTH solution (20 mL; 100 mM acibenzolar-S-methyl, 0.1% DMSO, 0.006% Silwet), and 
covered for 1  h with transparent plastic lids after spraying. A total of five treatments 
were administered. Full rosettes were harvested and flash frozen at 21 DAG.

Growth analysis

Plant growth was monitored by daily image capture from the top of the trays using the 
RAPA system [56]. Rosette areas were acquired by automatic image segmentation and 
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counting of green pixels, supplemented with manual curation. The rosette size estimates 
were then converted from pixel counts to mm2 by multiplication with a calibration 
factor.

RT‑qPCR

To establish defense hormone treatment and dosage, the effect of salicylic acid and 
BTH application was tested by treating 18 accessions with Mock (ddH2O, 0.1% DMSO, 
0.006% Silwet), 350  mM SA and 100  mM BTH in 3 replicates, each with duplicated 
plants for phenotyping and qPCR. After 5 treatments the rosettes were harvested in one 
set of plants to compare their sizes, while the other set of plants were used for qPCR to 
compare the effect of 350 mM SA and 100 mM BTH treatments. Specifically, RNA was 
extracted and reverse transcribed. qPCR was performed using SYBER green (Thermo 
Scientific Maxima SYBR Green qPCR Master Mix (2x)) and primers for ACTIN2, 
UBC21, PR1, and NPR1. Normalization across plates was performed using the same set 
of samples featured on all plates. The data were analyzed by calculating ΔΔCq (Addi-
tional file 1: Fig. S14).

RNA‑seq

RNA-seq libraries were constructed as described [57], using 750 ng total RNA from full 
rosettes as input. All libraries, each carrying a unique barcode combination were pooled 
and sequenced in multiple single-end lanes on an Illumina HiSeq 3000 platform for a 
target coverage of 5 M reads per sample.

RNA‑seq read mapping and post‑processing

FASTQ files from multiple lanes were merged and mapped to the TAIR10 transcriptome 
using RSEM (bowtie2) with default parameters. Libraries with more than 8 M mapped 
reads were subsampled to 8 M with seqtk prior to mapping. Transcripts mapped to the 
chloroplast, mitochondria, rDNA clusters, transposable elements (TEs), and pseudo-
genes, as well as transcripts with an effective length less than 150 nt, were removed from 
the raw RSEM count file. TPM (transcripts per million) counts were then re-estimated 
for the rest of the genes. Libraries with fewer than 2 M mapped reads and those iden-
tified as extreme outliers following a principal-component analysis (PCA) of whole-
transcriptome log2 (TPM) values were excluded from further analysis. Gene lists were 
further filtered for average transcript abundance (trimmed mean of log2 (TPM) > 0.3) 
and coefficient of variance > 0.15.

Additive gene calling

For SHB1 data, the MPV of each gene was calculated for all complete parent-F1 trios by 
taking the arithmetic mean of the parental log2 (TPM). Linear regression was then per-
formed between the corresponding F1 expression value and the MPV. For SHB2, a linear-
mixed model was used to correct for treatment and batch effects. Genes were filtered 
for regression coefficient > 0.5 and R2 > 0.4 for SHB1, and regression coefficient > 0.4 and 
sigma < 0.6 for SHB2. All thresholds were determined by quantiles. Genes called in both 
SHB1 and SHB2 were taken as common additive genes.
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Non‑additive (dominant) gene calling

With SHB1, a population-wide MPV distribution was established for each gene by 
calculating arithmetic means of log2 (TPM) between all possible pairwise combina-
tions of inbred accessions. A two-sided Kolmogorov–Smirnov test was performed per 
gene to test if the log2 (TPM) from the F1 hybrids were drawn from the MPV distribu-
tion. Genes with q < 0.001 (Benjamin-Hochberg FDR) were considered as genes show-
ing expression dominance.

Bayesian modeling of dominant expression and plant size

Dominant genes from SHB1 were clustered by K-means, with the optimal K deter-
mined by the elbow method. A linear-mixed-model (LMM) spline was fitted using the 
lme4 package [58] in R (ref. [59]) for gene expression:

in which GeneExpression is the z-scaled log2TPM, IsHybrid is a binary code of the 
hybrid/inbred identity, Size is the z-score of rosette size at sampling. Natural cubic 
splines were modeled for Size and Size-IsHybrid interaction. The 95% credible intervals 
for the parameter estimates were established with 10,000 iterations of Bayesian simula-
tion using the arm package [60].

BTH responsive genes

The effect of BTH treatment on gene expression was identified by LMM:

To establish a significant threshold, 10,000 permutations were performed for each 
gene, and the empirical p-value was corrected with Benjamin-Hochberg FDR. Genes 
with q < 0.001 were kept as BTH-responsive genes (n = 8797) and examined for their 
size-MPH correlation.

Expression‑plant size MPH correlation

Expression-MPH and size-MPH were calculated per trio by calculating the per-
gene expression and rosette area difference between F1 and the MPV in correspond-
ing treatments and replicates. Size MPH-to-expression MPH regression spline was 
acquired separately for both treatments. An initial round of K-means clustering was 
performed on the resulting spline coefficients, with the optimal K determined as the 
division with the highest Dunn index which allows no more than 25% of the clusters 
carrying less than 5% of the genes. Resulting clusters were inspected and removed if 
size and expression MPH do not covary. The remaining genes (n = 6371) were re-clus-
tered with the same criteria, and the resulting clusters were manually sorted based 
on size-expression covariation into 12 general categories (Additional file 4: Table S3, 
Fig. 4D).

GeneExpression ∼ IsHybrid + Size+ Size : IsHybrid + IsHybrid|LibraryBatch ,

GeneExpression ∼ Treatment+ IsHybrid+Treatment ∗ IsHybrid+ (1|PlantBatch).
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Size‑MPH covariation test

To establish the significance of the size-expression correlation, we performed a Wil-
coxon signed-rank test on the genes in each of the 61 clusters (Fig.  4B). For each 
“none” cluster, each gene within the cluster was used as a data point, and the mean 
rosette size of 4 plants having the lowest and the highest expression MPH of the gene 
was calculated. The average rosette size corresponding to the two extremes of expres-
sion MPH was then compared with a two-sided Wilcoxon signed-rank test. Likewise, 
for “positive” and “negative” clusters, one-sided tests were used to test for significant 
differences between average rosette size corresponding to the two extremes of expres-
sion MPH within individual clusters. For “quadratic” clusters, separate one-sided 
tests were performed comparing the samples with extreme expression MPH against 
those with median expression MPH. Bonferroni correction was used to control for 
multiple hypothesis testing. The test revealed that our sorting procedure erred on the 
conservative side: while the top and bottom deciles were significantly different for 17 
clusters assigned to the “none” category, only 6 of the “none” clusters were misas-
signed as “positive”, and none were misassigned as “negative” (Bonferroni corrected 
α < 0.001, Additional file  4: Table  S3). The evidence for truly quadratic correlations 
was less clear.

GO enrichment

GO enrichment was performed using the Agrigo v2 platform [61], with all gene 
IDs that passed our initial filtering (n = 14,067, TAIR10 annotation) as background 
against the plant GOslim database. Fisher’s exact test was used, and the enrichment 
p-value was corrected using Yekutieli FDR. The enrichment results were visualized 
with the built-in DAG drawer of Agrigo v2.

Genetic distance

Pairwise SNP Hamming distances were calculated for parental combinations using 
PLINK v.1.90b (ref. [62]). For whole-genome genetic distance, all biallelic SNPs with 
minor allele frequency (MAF) > 0.2 were used. For sub-genome genetic distance, 
SNPs were further subset by the genome coordinates (gene body + 1  kb upstream) 
of target features using vcftools v4.2 (ref. [63]). Pearson correlation coefficients were 
calculated between rosette size MPH and genetic distance either using all common 
polymorphisms in the genome, or those within the target features of interest.

Rare allele analysis

Rare (MAF < 0.05), biallelic SNPs 1  kb upstream of gene features were subset from 
the SNP annotations of the 1001 Genomes Project [26]. Genotype information 
at these SNPs was acquired for the accessions used in SHB2, and the sum of these 
rare SNPs upstream of each gene was calculated per accession. For F1 hybrids, the 
upstream rare-allele count was determined by the mean of the rare-allele counts of 
both parents.

Samples, separated by inbred parents/F1 hybrids and with/without BTH treatment, 
were ranked for their expression values for each gene within a gene list of interest. For 
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each given rank, a gene-list mean upstream rare-allele count was acquired by averag-
ing across all samples that received the same rank in any of the genes within the gene 
list. Relationships between gene-list mean upstream rare-allele count and expression 
rank were examined by LOWESS regression and tested with Wilcoxon signed rank 
sum test between the top and bottom decile of the expression rank.

Likewise, an average rosette-size MPH for each rank was calculated for the gene 
list, and the Pearson correlation was acquired between average rosette-size MPH and 
upstream rare-allele count.

Motif enrichment and de novo motif finding

Motif enrichment and de novo motif finding were carried out using HOMER v4.10.4 
(ref. [64]) with TAIR10 reference genome and gene annotation. For every set of candi-
date genes, genomic sequences 1 kb upstream from the transcription start site (TSS) and 
1 kb downstream from the transcription termination site (TTS) were indexed from the 
strand-specific gene coordinates. Both assays were performed by using the findMotif-
sGenome.pl function and HOMER’s in-built plant promoter motif database as reference:

The top known motif hit (in all cases p ≤ 10–10) from each candidate set was then used 
for a second motif enrichment step, where the promoters and downstream sequences 
were searched for the significant motif using HOMER’s annotatePeaks.pl function:

to generate corresponding genomic coordinates, and subsequently associated back to 
the genes containing the motif of interest in their regulatory regions (bedtools v2.26.0 
intersect) [65].
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