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Abstract 

We propose a statistical framework ISLET to infer individual-specific and cell-type-
specific transcriptome reference panels. ISLET models the repeatedly measured bulk 
gene expression data, to optimize the usage of shared information within each subject. 
ISLET is the first available method to achieve individual-specific reference estimation 
in repeated samples. Using simulation studies, we show outstanding performance 
of ISLET in the reference estimation and downstream cell-type-specific differentially 
expressed genes testing. We apply ISLET to longitudinal transcriptomes profiled 
from blood samples in a large observational study of young children and confirm 
the cell-type-specific gene signatures for pancreatic islet autoantibody. ISLET is avail-
able at https://​bioco​nduct​or.​org/​packa​ges/​ISLET.
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Background
Clinical samples often contain a mixture of different cellular subpopulations. The real-
world clinical RNA-seq signatures are, therefore, mosaics of signals from multiple pure 
cell types. As a result, the observed bulk RNA-seq data can be viewed as the weighted 
average of signals from multiple cell types, whereas the weights, naturally, are the pro-
portions in the mixture. Over the last decade, researchers have gained substantial inter-
ests in computational methods to deconvolute cell population frequencies. For example, 
CIBERSORT [1], CIBERSORTx [2], TIMER [3], MuSiC [4], and DWLS [5] were pro-
posed to estimate cellular composition and infer cell-type-specific expression profiles. 
These new methods improved the resolution of traditional analytical approaches to 
identify bulk RNA-seq Differentially Expressed Genes (DEG).

Recently, novel methods including CARSeq [6], TOAST [7, 8], and TCA [9] were 
developed to incorporate pre-estimated cell mixture proportions in the modeling of 
observed bulk data and directly detect DEG at cell-type-specific resolution. This new 
type of DEG analysis at cell type level is generally referred to as cell-type-specific 
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Differentially Expressed Genes identification. The rapid methodological advancement 
in cell proportion deconvolution and csDEG calling during the recent years has offered 
refined tools for cell-type-aware knowledge mining. It is worth noting that although 
single-cell RNA-seq (scRNA-seq) or cell sorting from samples can directly measure sig-
nals from each cellular subpopulation, the costs and technical challenges in cell isolation 
is still a major hurdle to apply scRNA-seq in population-based study. For example, to 
investigate immunity-related signals in the blood samples in a multi-center cohort study, 
sorting peripheral blood mononuclear cells (PBMC) and profiling transcriptomes is cost 
prohibitive [10, 11]. Hence, bulk RNA-seq profiling is still favorable in medium- or large-
scale studies.

The longitudinal or repeated sampling has become a popular strategy in clinical tran-
scriptomic research, such as a longitudinal bulk RNA-seq study coupled with small-scale 
scRNA-seq profiling in high grade serous ovarian cancer [12, 13]. Another recent study 
[14] using longitudinal whole blood bulk gene expression found that the gene markers 
contributing to the development of type 1 diabetes (T1D) were also related to blood 
immune cells. To discover the latent dynamics within each cellular subpopulation with-
out gene network construction, one should develop a novel framework that directly 
identifies temporal cell-type-specific gene signatures associated with disease status.

Despite numerous methods developed for bulk data deconvolution and csDE analy-
sis [4, 7, 15–18], limitations exist due to the rare usage of participant indicator and 
lack of participant-level reference profile. Traditionally, these methods were developed 
under the assumption of one identical feature-by-cell type reference panel across all the 
samples, which were not capable of characterizing individual cell-type-specific gene 
expression reference. In contrast, the algorithms in recent tools TCA [9] recovered the 
reference panel for each sample without specifying the between-subject heterogeneity 
[19]. Another concern in these methods is the strong heterogeneity within each sub-
ject, as time-dependent variation in transcriptomes may not be profound in subgroups 
of participants [20]. Hence, a subject-specific reference information shared by different 
time points is more reasonable than assuming independent reference panels across time 
points. To accurately detect cell-type-specific gene signatures, an individual-specific ref-
erence panel should be reconstructed for longitudinal bulk gene expression data.

Here, we present a novel computational method ISLET (Individual Specific celL typE 
referencing Tool), to estimate the cell-type-specific gene expression reference panel for 
each participant. The unobserved panel per subject are estimated by the expectation-
maximization (EM) algorithm in a mixed-effect regression model. ISLET leverages mul-
tiple or temporal observations of each subject, to construct a likelihood-based statistics 
for csDEG inference. This is the first statistical framework to recover the subject-level 
reference panel by employing multiple samples per subject. Our model also provides the 
flexibility to incorporate group-wise change rate across time points in the reference gene 
expression and then identify differential dynamics in each cellular subpopulation.

We designed an extensive simulation study to compare our method ISLET with csSAM, 
TOAST, TCA, CARSeq, aDESeq2 [6, 7, 9, 15, 21], demonstrating ISLET being a power-
ful and robust tool that outperformed these competing methods. We applied ISLET to the 
longitudinal bulk RNA-seq data in The Environmental Determinants of Diabetes in the 
Young (TEDDY) cohort [14] and the Parkinson’s Disease Biomarker Program (PDBP). Our 
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method successfully identified potential gene signatures differentially expressed in B cells, 
natural killer (NK) cells prior to the onset of pancreatic β-cell autoantibodies, and those 
in CD8+ T cells, NK cells for Parkinson’s disease. ISLET is available on Bioconductor at 
https://​bioco​nduct​or.​org/​packa​ges/​ISLET [22]. Overall, the improved resolution of subject-
specific and cell-type-specific biomarkers, estimated by ISLET, helped to achieve more pre-
cise biomarker associations with clinical outcomes.

Results
Deconvolution of individual reference profile and temporal csDE analysis

Our framework utilizes repeatedly measured bulk transcriptomes as input to retrieve a 
cell-type-specific gene expression profile for each participant (subject) and perform the 
csDE analysis, as illustrated in Fig. 1. Besides the bulk transcriptomic data, it also takes cell 
type proportions, subject disease status, and optional covariates as the input. Note that the 
cell type proportions can be estimated by an existing tool (such as CIBERSORT, MuSiC, 
TOAST, or AutoGeneS [1, 4, 7, 23]) in practice and thus is treated as a known input in our 
model. As an example, each subject or participant j has whole blood or PBMC samples col-
lected at multiple time points t = 1, . . . ,Tj . The gene expression measured in participant 
j’s sample at time point t is yjt , and zj is the indicator for each individual’s treatment group, 
phenotype, or case-control status. The gene expression value yjt is either raw or normalized 
counts without batch effect and can be replaced by DNA methylation measurement if the 
feature is a CpG site. There are K cell types of interest in each sample, with estimated or 
known proportions θjtk , and naturally K

k=1 θjtk = 1 . Given the input cell proportions, the 
observed bulk gene expression yjt can be described by a linear mixed effect model

(1)E(yjt) =
∑K

k=1

(

mk + βkzj + ujk
)

θjtk

Fig. 1  An overview of our proposed method ISLET (Individual Specific celL typE referencing Tool). A ISLET 
takes repeatedly measured bulk RNA-seq data, cell type proportions (known or estimated), and disease 
status as the algorithm input. Additional covariates are optional. B By a hierarchical mixed-effect modeling, 
ISLET can iteratively retrieve individual-specific and cell-type-specific gene expression reference panels. The 
fixed effect is the group-level average and the random effect is the individual-level deviance from the group 
mean. C Given the individual-specific reference panel, ISLET can conduct test to identify cell-type-specific 
differentially expressed genes (csDEG)

https://bioconductor.org/packages/ISLET
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where mk is the mean gene expression in cell type k for the baseline group (i.e., controls, 
zj = 0 ), and mk + βk is the mean expression in cell type k for cases ( zj = 1 ). The ran-
dom variable ujk , shared by the repeated or longitudinal samples from the same subject, 
represents a subject-specific deviation in the group-wise mean expression in cell type 
k. This unobserved random term accounts for the within-subject measurements cor-
relation. Hence, we can deconvolve the mixture-cell gene expression into K cell types 
for each subject, individually, by estimating the fixed and random effects ( mk ,βk ,ujk ), 
as illustrated in Fig. 1. To detect csDEG between cases and controls, one can test the 
hypothesis H0 : βk = 0.

This framework can be extended by adding time-related change in the reference pan-
els, with change rate fixed by group. For simplicity, we assume linear change rate (i.e., 
slope) in the present research. The model in (1) can be generalized as

with cjt denoting the time or sample age and α̃k denoting the slope in baseline group. 
The other potential covariates can be included in cjt as a vector. The parameter β̃k repre-
sents age-independent difference between groups in cell-type-specific gene expression. 
A differential slope γk  = 0 implies that the cases’ gene expression change over time in 
cell type k is associated with the disease status zj . There may be no significant group 
effect in the intercept ( β̃k = 0 ) or slope ( γk = 0 ), but the participants still have distinct 
underlying reference profiles ( ujk ). The csDEG in intercept or slope can be identified by 
testing H0 : β̃k = 0 or H0 : γk = 0 , respectively. Parameters estimation from the mod-
eling above can be achieved by adopting expectation-maximization (EM) algorithm and 
is detailed in the “Methods” section.

Simulation study

Temporal cell type proportions

The cell type proportions were generated based on real single-cell RNA-seq (scRNA-
seq) datasets, from annotated and well-labeled cell types. Here, we compiled a pool of 
cell type labels by aggregating multiple scRNA-seq datasets cell labels and conducted 
bootstrap to generate cell type labels and calculate the cell type proportions, from each 
resampling. Those bootstrapped proportions were then fitted by the Dirichlet distribu-
tion to estimate the parameters α . Note that the number of cell types can be customized 
during this procedure. This enables us to simulate cell type compositions in different 
scenarios. For example, a study could have one dominant cell type and several minor cell 
types; or in contrast, a study could have relatively balanced cell type proportions with 
low composition variation. This procedure allows us to obtain cell type proportions that 
best mimic real data. Details of cell type proportion simulation are described in “Meth-
ods” section.

Individual reference panel and temporal gene expression

Cell type-specific underlying expression reference profile were also generated based 
on real cell line RNA-seq dataset. All parameters were derived from a real study 
(GSE60424) and solved by the Bioconductor package PROPER [24]. This real dataset 

(2)E(yjt) =
∑K

k=1

(

m̃k + α̃kcjt + β̃kzj + γkcjtzj + ujk

)

θjtk
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collected immune-associated diseases and pure immune cell line bulk RNA-seq data. 
The expression mean and biological dispersions per gene and cell type are estimated by 
estParam function in PROPER at log scale. This real data suggests strong associations 
across cell types in mean expression and biological dispersion. Thus, we adopted mul-
tivariate normal (MVN) distribution to compute the variance-covariance information, 
�m and �φ , respectively, for mean and overdispersion parameters. For gene g, the mean 
expression and overdispersion per subject j are simulated by MVN with µ̄m and µ̄φ , who 
are K-dimensional vectors representing the mean and overdispersion parameters esti-
mated from PROPER.

To simulate the biological variation, we adopted a Gamma distribution to generate 
the true cell-type-specific gene expression matrix. We assume cases and controls have 
identical gene-wise overdispersion �φ but different mean expression specified by log fold 
change (LFC). The reference gene expression per control (baseline group) are simulated 
by the above process with mean µ̄ctr

m  , while the expression for cases are generated by 
the same process with mean µ̄case

m = µ̄ctr
m +� , where � is LFC. The true mixture-cell 

expression per gene per sample ( ̄�gjt ) is the weighted sum of the reference gene expres-
sion, with weights as cell proportions. We set 10% genes as DE in a cell type, although 
two of the six cell types do not contain any DE genes. The values of LFC are set at 
LFC = 0, 0.5, 0.75, 1.0, 1.25, 1.5 . The number of subjects is set at N = 50, 100, 150, 200 . 
Each subject has measurements at three time points, and the number of subjects are 
equal between two groups. The observed raw counts is generated by Poisson distribu-
tion with mean �̄gjt to mimic the technical noise in sequencing experiments.

Reference panel deconvolution

We first evaluated the accuracy of ISLET on individual-specific reference panel recovery, 
using the synthetic data outlined above. Since ISLET is the only method that estimates 
subject-specific reference expression from longitudinal bulk samples, the comparison 
with existing methods in subject-specific reference panel is not directly viable. Never-
theless, we chose TOAST and TCA for a detailed comparison. TOAST can solve for one 
reference panel per group (case/control), and this group-wise reference matrix is then 
treated as the subject-specific reference panel in evaluation. TCA can solve for sample-
specific reference panel; thus, we use the average of multiple estimated reference panels 
per subject to obtain the subject-specific profile. These two approaches reflect the two 
ends of the deconvolution spectrum: a fixed reference panel across subjects (or sam-
ples) per group vs. a sample-specific reference, while ISLET fills the methodology gap in 
between.

For the aforementioned three methods, cell type proportions were provided as input. 
We assessed the reference estimation accuracy in two scenarios, in which the true and 
pre-deconvoluted proportions served as the input, respectively. The pre-deconvoluted 
proportions were obtained by CIBERSORTx using noise-added reference panels, with 
200 marker genes identified independently by TOAST package based on coefficient of 
variations. There are N = 50 subjects per group, each has three samples under the null 
hypothesis (0% DEG). The ISLET-estimated individual reference panel, based on the true 
or pre-deconvoluted cell type composition, are shown in scatterplots (Fig. 2A, B). The 
true cellular proportions (Fig. 2A) yields more precision in reference panel estimation, 
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compared with the computationally deconvoled proportions (Fig. 2B). This difference is 
more profound in low-expression genes (log-expression < 7).

We next assessed if the effect size of DEG could have an impact on reference esti-
mation. The effect size is reflected through the log-fold change (LFC) value of the syn-
thetic DEG. Figure  2C shows the estimation error, represented by normalized mean 
squared error (NMSE) for the three methods across various choices of LFC ranging 
from 0 (under the null) to 1.5 (large effect size). ISLET has the lowest median and lowest 

Fig. 2  ISLET accurately estimates individual-specific gene expression reference panels. A Scatterplot showing 
ISLET estimated reference panel versus the true reference panel, in log scale, when using the true cell type 
proportions as the input. B Scatterplot similar to panel A but using the estimated cell type proportions as the 
input. C Normalized mean squared error (NMSE) in reference panel estimation, from three methods: TOAST, 
TCA, and ISLET, at various effect sizes. Log fold change (LFC) used in simulation: 0, 0.5, 0.75, 1, 1.25, and 1.5. D 
NMSE at various samples sizes per group (25, 50, 75, and 100), comparing three methods. E NMSE stratified by 
gene expression level (low expression: ≤160 and high expression: > 160). N = 20 simulations are conducted 
in each scenario
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variation NMSE under all choices of effect sizes, showing the most accurate and stable 
estimation. In addition, ISLET is robust with the least NMSE increase at larger effect 
sizes. In contrast, TOAST have inflated error at large LFC and TCA has higher variabil-
ity. The estimation accuracy at different sample sizes is shown in Fig. 2D. As expected, 
all methods benefited from an increased sample size. ISLET achieved the lowest error 
consistently at sample sizes of 25 to 100 per group. It has the lowest median error as well 
as the lowest variation. Next, to investigate if the expression level would impact the esti-
mation accuracy, we stratified the genes into two groups: low expression genes (expres-
sion count value ≤160) and high expression genes (expression count value > 160). As 
shown in Fig. 2E, the bias of ISLET is the lowest at both strata, showing the most robust 
performance among the three methods. Similar conclusions can be drawn in other com-
binations of LFC and sample size (Additional file 1: Figs. S1-S7 ). Side-by-side compari-
sons using ground true proportions versus estimated proportions (Fig. S2) indicates that 
imprecise cell type proportions would impact reference panel estimation negatively. Our 
method ISLET still achieves the lowest NMSE on average and the smallest variation in 
each simulation scenario, compared with other methods. These results, overall, highlight 
both the unfavorable impact of imprecise proportions to reference panel estimation, and 
the merits of our modeling approach compared to others. Furthermore, our method 
still outperforms TOAST if the TOAST deconvolution is performed on each subject’s 
repeated samples, individually.

Improved csDEG identification

With the improved reference estimation demonstrated above, we further investigated 
ISLET performance in cell-type-specific differentially expressed genes (csDEG) identi-
fication by using the model in Equation (1). We compared ISLET with five methods, i.e., 
CARseq, TOAST, TCA, DESeq2, and csSAM. All the competing methods used the true 
cell type proportions along with bulk gene expression values as input. The csDE analysis 
in DESeq2 can be performed by testing the coefficients for interaction terms of each cell 
type and group.

The result is shown in Fig. 3 and benchmarked by metrics of true discovery rate (TDR), 
receiver operating characteristic (ROC), and sensitivity and false discovery rate (FDR). 
Here, the TDR is defined as the proportion of true csDEG, among the top-ranking iden-
tified genes for each method. TDR is equivalent to precision and reflects a practical con-
sideration: biologists may focus on the top-ranking significant csDEG output given a 
certain method; thus, the accuracy among them matters the most for biomarker discov-
ery. Figure 3A shows the averaged results for 20 replicates, among all six methods, for 
the sample size of N = 25 subjects per group at one cell type. ISLET shows the highest 
precision among top-ranking genes in TDR and the largest AUC in ROC. We also exam-
ined the distributions of sensitivity and FDR, for each method, among all cell types. The 
third panel of Fig. 3A shows joint distribution of sensitivity and FDR, given the intended 
FDR level 0.1. Apparently, ISLET yields the highest sensitivity and reasonably controlled 
FDR. TCA can outperform ISLET in terms of sensitivity only in very few datasets, but its 
seriously inflated FDR is a concern. DESeq2 also resulted in poor FDR, due to its inflated 
type I error for empirical Bayes approach under large sample sizes [25]. The sensitiv-
ity plot in the fourth column of Fig. 3A demonstrates that ISLET is the most powerful 
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method for various LFC with N = 25 subjects per group. All the competing methods 
show increased sensitivity at larger LFC.

Simulations at a larger sample size of N = 75 per group show a similar conclusion as 
the above, in terms of the same metrics (Fig. 3B). In addition, similar conclusions can 
be drawn from an exhaustive combination of sample size and LFC, broken down by cell 
type (Additional file  2: Figs. S8-S20). The simulation results implied that the perfor-
mance of each method is affected by the cell type proportions, i.e., better performance in 
higher-abundance cell types. All methods are less powerful for the cell subpopulations at 
lower frequencies ( < 10% ), and thus the performances are often similar.

Figure 3C shows the heatmap of average AUC, combining all cell types, at different 
sample size and LFC. This shows the aggregated performance across all cell types in a 
synthetic replicate, whereas two out of the six cell types do not have any csDEG. Here, 
ISLET still achieves the highest AUC, at all scenarios. TOAST and TCA’s rankings 
follow immediately after ISLET, in most cases. Overall, in Fig. 3, ISLET demonstrates 
considerably improved and consistent csDEG detection performance, with the help of 
improved reference panel recovery.

We also performed simulations to compare the impact of modeling versus the 
impact of imprecise proportions on csDE testing power. Results are compiled in 

Fig. 3  ISLET improves testing accuracy in cell-type-specific differentially expressed genes (csDEG) 
identification. A True discovery rate (TDR), receiver operating characteristic (ROC), sensitivity versus false 
discovery rate (FDR), and sensitivities at various effect sizes are shown from left to right. Results for one cell 
type, at sample size of N = 25 subjects per group with log fold change (LFC) = 0.5, are shown for the first 
three panels. Intended FDR level of 0.1 (vertical line) in the third panel. The fourth panel shows the averaged 
sensitivity across all cell types, at various LFCs. Benchmarked methods include CARseq, TOAST, TCA, DESeq2, 
and csSAM. B Displaying the same metrics as in A except sample size per group is N = 75. C Averaged 
AUC values across all cell types, at various combinations of sample sizes and LFCs. N = 20 simulations are 
conducted for each simulation scenario described above
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Additional file  2: Figs. S21-S22, with sample size at N = 25, 50, 75, 100 participants 
per group. Using estimated proportions would negatively impact all methods, but the 
order of methods would retain. TDR and ROC curves show the advantage of using 
ISLET compared with other methods, within either the true or estimated proportions. 
It is worth noting that ISLET with deconvoluted proportions could outperform other 
methods with true proportions, at certain top-gene cutoff and towards the tail of 
ROC curves, despite ISLET maintains a comparable performance in FDR. The impact 
of imprecise cellular composition on FDR is profound for each compared method. 
Furthermore, we compare ISLET and DESeq2 at small sample size with N = 5 sub-
jects per group. The results in Additional file 2: Figs. S23-S24 show that in a longitu-
dinal study with small sample size, our model still yields higher sensitivity in csDEG 
calling than the methods borrowing information across genes, such as DESeq2.

In the meantime, we illustrate the performance of slope test based on the framework 
in Equation (2) by generating synthetic gene expression with differential slope. The sim-
ulation design for this scenario is similar to the above, as described in the “Methods”. In 
Additional file 3, Figs. S25-S28 show the false positive rate (FPR) and sensitivity of ISLET 
slope test at different LFC and sample size, while the FDR for all cell types is shown in 
Figs. S29. Briefly, ISLET slope test is powerful in detecting cell-type-specific differential 
change-rate, with robust type I error in each synthetic data and controlled FDR at larger 
LFC, sample size. This csDEG slope test is not available in the other tools.

Type I error under the null

We next evaluated these methods in terms of the validity of their p-values under the 
null distribution, where none of the genes are csDEG. Here, under the null hypoth-
esis, the p-value distribution should be uniformly distributed between 0 and 1. Our 
results showed that, among the six methods, TOAST provided the best-calibrated 
p-values for type I error control, immediately followed by ISLET. TCA and csSAM 
suffered from conservative issues, evident by the inflated density near p-values close 
to 1 (Fig. 4A). Conclusions were jointly supported by the histogram of p-value and 

Fig. 4  Simulation studies for type I error control under the null. A Histograms of the observed p-values under 
the null, when no gene is csDEG. The p-values shown above histograms are from the Kolmogorov-Smirnov 
(KS) test under the null hypothesis, for which the contrasted distribution is Uniform [0, 1]. The larger the 
p-value, the more uniform the distribution is. B Quantile-quantile plots of the same p-values as in A but 
on the − log10 scale. Methods return well-calibrated small p-values will stay close to the red diagonal line. 
N = 20 simulations are conducted each setting
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by the Kolmogorov-Smirnov (KS) test, which evaluated goodness of fit for p-values 
distributed uniformly. Since the small p-values are essential in csDEG calling, we 
also show the quantile-quantile plot of the p-values on -log10 scale for a zoomed-
in examination of the small p-values (Fig. 4B). CARseq and TOAST have the best-
calibrated small p-values. ISLET and TCA have roughly calibrated distribution. In 
contrast, the p-values of csSAM and DESeq2 deviate from the expected distribution.

Application in TEDDY longitudinal bulk transcriptomes

An overview of TEDDY cohort and whole blood bulk RNA-seq data is available 
in Additional file  4. To apply the competing methods to TEDDY longitudinal bulk 
RNA-seq data, we selected the participants with IAbs onset between the age of 
21 and 27 months and their matched controls. The whole blood samples used in 
this analysis were collected every 3 months from 9-month age until the first posi-
tively-confirmed IAbs onset in the cases (i.e., endpoint), exclusive of the endpoint. 
Hence, each matched case-control pair had bulk RNA-seq transcriptomes longitu-
dinally profiled at the same age prior to IA seroconversion. Genes with TPM-nor-
malized mean expression less than 1 were removed in downstream analysis. Next, 
we selected G = 2000 genes with top coefficient variation and < 20% zero counts to 
perform csDE analysis by each method as illustration. The tools csSAM, CARSeq, 
TOAST, and DESeq2 were only applicable in the (mean) test described by Eq. (1), 
while ISLET was capable of detecting csDEG in both mean and change-rate.

We used BH procedure to control FDR in multiple testing, and then reported 
csDEG at FDR< 0.1 in each method. ISLET and TOAST detected DEGs in either 
B cell or NK cell by the mean test without age-dependent effect. This result was 
consistent with the findings in [14], i.e., IA-signatures were strongly enriched in B 
cell and NK cell transcripts, kinases, and transcription factors. For each method, 
the csDEGs identified in multiple cell populations are shown in Additional file  4: 
Figs. S30-S34. TCA detected a large number of csDEGs overlapped between differ-
ent cell types, which may be a result of the inflated false positive rate of TCA. On 
the other hand, the csDEG called by ISLET or TOAST were not severely overlapped 
between cell subpopulations, similar to our simulation design. TOAST and DESeq2 
identified csDEG partially overlapping with the above ISLET-identified signatures 
(Figs. S35-S36). For each immune cell type, we performed Gene Sets Enrichment 
Analysis (GSEA) across 45 candidate REACTOME pathways with size of at least 20 
genes, using the rank of test statistics in each method and Bioconductor package 
fgsea [6, 26]. The significantly enriched pathways were selected by q-value< 0.1 or 
p-value< 0.001 and shown in Fig. 5A. Specifically, ISLET mean test identified poten-
tial signature genes differentially expressed in IA cases within NK cells prior to the 
onset of IAbs. The slope test implemented in ISLET detected the latent differen-
tial dynamics in CD4+ T cell (IGLV1-40) and NK-cell (RETN) preceding IAbs onset, 
although the relation of CD4+ T cell with IA or T1D was not profound in TEDDY 
microarray data [14]. These genes showed difference in the change-rate of mixture-
cell gene expression (Fig. 5B).
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Application in PDBP longitudinal bulk transcriptomes

We obtained another longitudinal bulk transcriptome dataset from the Parkinson’s 
Disease Biomarker Program (PDBP, https://​amp-​pd.​org/), which is a part of the 
Accelerating Medicines Partnership (AMP) Parkinson’s Disease program. This data-
set include both Parkinson’s Disease (PD) cases and healthy controls, with repeated 
measures at baseline, 6, 12, 18, and 24 months. In our analysis, study participants with 
at least two follow-up visits, besides baseline, were selected. A total of 572 partici-
pants (399 PD cases and 173 controls) with 2599 longitudinal blood samples within 
the two years were included. RNA samples were extracted from whole blood and 
sequenced. Transcripts per million (TPM) was adopted to represent the gene expres-
sion level. We adopted CIBERSORT for deconvolution for cell type proportions. Lon-
gitudinal transcriptome data, retrieved cell type proportions, and PD status served 

Fig. 5  Application of ISLET in TEDDY bulk RNA-seq data. A Heatmap of p-values for pathway enrichment 
analysis on csDE results from ISLET, DESeq2, and TOAST. B Dynamics of csDEG identified by ISLET slope test

https://amp-pd.org/
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as the inputs for ISLET, TOAST, and DESeq2. Same FDR control procedures were 
adopted as in the first real data analysis.

As shown in Additional file 4: Section 2, ISLET detected 12 and 6 csDEGs in CD8+ 
T cells and NK cells, respectively, in the mean test comparing PD and controls. A PD-
linked mutation marker DNAJC6 [27] was called by ISLET as DEG in CD8+ T cells, 
which was not detected by TOAST or DESeq2. This mutation was also found associated 
with neurodegeneration in human brain [28]. In addition, the pathway analysis based on 
ISLET result indicates that the combined csDEGs is enriched in response of EIF2AK4 
translation regulation, which is one of the main features of transcriptome profiles in PD 
[29] and a known pathological alterations in PD and other non-communicable diseases 
[30]. TOAST called HLA-DQB2 as DEG in CD8+ T cells, which was found being asso-
ciated with PD [31]. DESeq2 also detected several genes such as CCNA2 that had been 
reported to be associated with PD [32], but these genes were called in multiple cell types 
by DESeq2 with potential concern of being false positive.

Discussion
We implemented our model and algorithm in Bioconductor package ISLET to recover 
reference panel and perform csDEG test. The algorithm implemented in ISLET has 
several advantages. First, the individual-specific random effect in the reference panel 
represents the shared information between repeated samples collected from the same 
participant. This framework also allows the heterogeneity between repeated samples by 
incorporating age-dependent effect. Second, ISLET does not require the input of single 
cell gene expression data from a pilot experiment, which is an essential component in 
some other csDE analysis tools such as PRISM [13]. In addition, the statistical model 
used in ISLET can be applied to normalized or re-scaled gene expression and the other 
types of omics data (e.g., microarray gene expression and DNA methylation), because 
of the Gaussian density employed in EM algorithm. In contrast, the other csDE analysis 
tools such as CARSeq, PRISM, and DESeq2 are only applicable to RNA-seq counts data.

A limitation in the present research is the lack of longitudinal pure cell transcriptomes 
from PBMC samples. The temporal cell-type-specific marker genes for IA in the TEDDY 
cohort cannot be validated in the current bulk RNA-seq data. To benchmark the esti-
mated individual-specific and cell-type-specific gene expression, it is necessary to design 
an experiment with sorted cells and then compare with the individual reference panel 
predicted by ISLET. Based on the individual reference profile deconvolved by ISLET, 
cell type composition can be re-estimated by applying CIBERSORT or the non-negative 
least square (NNLS) method to the observed longitudinal bulk gene expression and pre-
dicted reference panel per subject. This is similar to the option of recalculating cell type 
proportions in TCA, although TCA constructs the reference panel for each sample. Our 
future work should iteratively update the cell type proportion estimate and cell-type-
specific reference panel.

The current version of ISLET did not incorporate any non-negative restriction in 
parameter estimation, although the output individual reference panel was truncated at 
zero and ISLET showed superior performance in reference panel estimation. The param-
eter estimate in ISLET should be improved by adopting either a restricted EM algorithm 
with non-negative restrictions [33] or penalized least square regression [34]. Another 
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improvement in future research is to estimate the cell type proportions and individual-
specific gene expression matrix simultaneously. The concurrent deconvolution of lon-
gitudinal cell type proportions and individual-specific reference panels may require a 
complex framework, but this will also reduce the bias in estimated cellular composition 
and improves the deconvolved individual reference profiles.

Conclusion
ISLET is a robust and powerful tool for cell-type-specific gene expression recovery 
and longitudinal differential analysis in bulk RNA-seq data. This framework globally 
improved the detection of cell-type-specific latent gene signatures.

Methods
Overview

Our present work excluded the genes with low expression (mean TPM < 1 ) or excess 
zero counts (in > 20% samples) in the real data. The gene-wise overdispersion is a key 
parameter in the statistical modeling for RNA-seq data, which may vary between solid 
tissues and whole blood samples. Hence, we used the raw and TPM-normalized counts, 
individually, to assess the overdispersion pattern in the whole blood bulk RNA-seq 
data in TEDDY. The scatter plot in Additional file 4: Fig. S39 illustrated that the mean-
variance relation in the filtered genes in TEDDY data is similar to that of Poisson or 
Log-Normal distribution, both can be approximated by Gaussian. In addition, a general 
Gaussian assumption is favorable in the analysis of other omics data such as DNA meth-
ylation and is computationally efficient because of the explicit form of EM estimator. 
Therefore, we adopted Gaussian density function and the EM algorithm to estimate the 
group effect and individual-specific random effect.

Cell‑type‑specific and individual‑specific random effects

To justify our assumption about individual-specific reference matrix and the random 
effect terms, we employed scRNA-seq and bulk RNA-seq data profiled from blood 
samples to illustrate the heterogeneity between subjects at cellular level. We first used 
scRNA-seq PBMC data in [35] to evaluate the inter-subject heterogeneity of cell-type-
specific gene expression. The scRNA-seq PBMC raw counts was converted to cell-type-
specific counts and normalized by TPM. Genes with mean TPM < 1 were removed. To 
reduce the potential covariate effect (e.g., disease status) on gene expression, we used 
control samples in the following analyses. We first employed a chi-squared statistic to 
confirm that a large proportion of genes in B cells (78%) and CD4+ T cells (62%) had 
standard deviation greater than half of the empirical mean. Statistical significance of this 
chi-squared test was determined by FDR < 0.1 . In addition, to evaluate the improve-
ment in goodness-of-fit brought by random effects, we compared the gene-wise Akaike 
information criterion (AIC) of the generalized linear mixed effect model (GLMM) and 
generalized linear model (GLM), using a paired t test and 1000 most variable genes in 
TEDDY and PDBP bulk transcriptomic data. We adopted the normal distribution in 
GLMM and GLM to reduce the impact of density function on AIC. The results showed 
that GLMM yielded lower AIC than GLM (p< 0.0001 ) in TEDDY and PDBP data, while 
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the estimated random effect variance is non-zero for at least 60% and 50% genes per cell 
type in TEDDY and PDBP data, respectively.

We further applied the function estimateDisp in Bioconductor package edgeR to assess 
intra- and inter-subject heterogeneity in the same scRNA-seq data [35]. The intra-sub-
ject overdispersion was estimated based on the longitudinal samples per subject, while 
the inter-subject overdispersion was evaluated based on the samples at a fixed time 
point for all subjects. Additional file 5: Figs. S43-S44 show the gene-wise overdispersion 
between and within subjects by cell type, whereas the inter-subject heterogeneity is sig-
nificantly larger than intra-subject heterogeneity (Wilcoxon signed rank test p < 0.0001 ). 
We also evaluated the common overdispersion shared by genes across all time points 
and at a single time point, individually. The common overdispersion between subjects at 
a fixed time point was 2.88 for B cells and 1.77 for CD4+ T cells, being close to that of all 
longitudinal samples, i.e., 3.32 for B cells and 1.92 for CD4+ T cells. Therefore, our cur-
rent model focuses on the inter-subject variation.

Mixed‑effect regression framework

We use the same model for each gene and implement our algorithm by parallel comput-
ing; therefore, we drop the gene index in model description below. Suppose the subject is 
indexed by j, where j = 1, 2, ..., J  . For each subject j, there are Tj longitudinal observations. 
We use yjt to represent the observed gene expression for subject j at time-point t. The 
dependent variable vector is thus y , where y = (y11, y12, · · · , y1T1 , · · · , yJ1, yJ2, · · · , yJTJ )

′ , 
with length N =

∑J
j=1 Tj . It contains the gene expression values across J subjects’ longi-

tudinal observations.
Meanwhile, we also have other inputs that can be treated as known. These include the 

number of cell types K, and the cell type proportions θjTjk for each subject, each sam-
ple, and each cell type. Naturally, θjTjk ∈ (0, 1) and 

∑K
k=1 θjTjk = 1 . Additionally, we use a 

binary scalar zj to indicate the subject’s disease status: (e.g., disease = 1 vs. normal = 0). 
We then have this following mixed-effect regression model:

where ε ∼ N (0, σ 2
0 I) are the residuals. Here, X and A are the design matrices for the 

fixed-effect β and random-effect u , respectively, where β = (m1,m2, · · · ,mK ,β1,β2, 
· · · ,βK )

′ has two components: (m1,m2, · · · ,mK ) are the baseline average gene expres-
sion in the control group, and (β1,β2, · · · ,βK ) are the difference between the case 
group and the control group. The random effect u = (u11,u21, · · · ,uJ1,u12,u22, 
· · · ,uJ2, · · · ,u1K ,u2K , · · · ,uJK )

′ captures the individual-level gene expression deviance 
from the group-level mean, for each cell type. The design matrices X and A are in the 
form:

(3)y = Xβ + Au+ ε
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where ajk :=(θj1k , θj2k , · · · , θjTjk)
′ is simply a reorganized vector of cell type proportions, 

to align with random effect u.

Parameters estimation by expectation‑maximization algorithm

The parameter estimation for the Equation (3) can be achieved by an expectation-maxi-
mization (EM) algorithm, although other viable approaches exist. Here, to facilitate 
the setup of the EM algorithm, we first define the “observed” and the “missing” data: 
w = (y,u) := (wobs,wmis) , where wobs := y is the observed data of admixed gene expres-
sion, and wmis := u is the missing data of individual-level deviance from the group 
mean. Then, we have the conditional distribution wobs|wmis = y|u ∼ N (Xβ + Au, σ 2

0 I) 
and marginal distribution wmis = u ∼ N (0,�u) . Here, �u is a block-diagonal matrix 
�u = diag(σ 2

1 I J , σ
2
2 I J , · · · , σ

2
K I J ) . By calculating the variance-covariance matrix of wmis 

and wobs , we have the following multivariate normal distribution:

The EM algorithm calculation will then follow naturally.
E-step:

Here, s = Au+ Xβ − y , V := A�uA
′ + σ 2

0 I , �pk is the kth diagonal block of matrix �p , 
and µpk

 is the kth sub-vector in µp.
M-step:
For the (t + 1)th iteration given the tth iteration:

(4)X =

























θ111 θ112 ... θ11K z1θ111 z1θ112 ... z1θ11K
θ121 θ122 ... θ12K z1θ121 z1θ122 ... z1θ12K
... ... ... ... ... ... ... ...

θ1T11 θ1T12 ... θ1T1K z1θ1T11 z1θ1T12 ... z1θ1T1K

... ... ... ... ... ... ... ...
θJ11 θJ12 ... θJ1K zJ θJ11 zJ θJ12 ... zJ θJ1K
θJ21 θJ22 ... θJ2K zJ θJ21 zJ θJ22 ... zJ θJ2K
... ... ... ... ... ... ... ...

θJTJ 1 θJTJ 2 ... θJTJ K zJ θJTJ 1 zJ θJTJ 2 ... zJ θJTJ K

























N×2K

(5)A =









a11 0 0 0 ... a1K 0 0 0
0 a21 0 0 ... 0 a2K 0 0

0 0
. . . 0 ... 0 0

. . . 0
0 0 0 aJ1 ... 0 0 0 aJK









N×Q

(6)
(

wobs

wmis

)

= N

[(

Xβ
0

)

,

(

A�uA
′ + σ 2

0 I A�u

�′
uA

′ �u

)]

E[u|wobs = y] = �uA
′V−1(y − Xβ)

E
[

s′s|wobs = y
]

= tr(A�pA
′)+ (Aµp + Xβ − y)′(Aµp + Xβ − y)

E
[

u′
kuk |wobs = y

]

= tr(�pk )+ µ′
pk
µpk

β̂
(t+1)

= (X ′X)−1X ′(y − AEη(t) (u
(t)))
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The E-step and M-step above are repeated until convergence. The details of modeling 
and algorithm is available in Additional file 5.

Hypothesis testing

To detect csDEG, we can test each hypothesis H0 : βk = 0 , individually, or jointly 
H0 : β1 = ... = βK = 0 , by using the (observed) marginal likelihood function L(β , σ ) and 
the likelihood ratio test (LRT) statistic � . That is,

and the test statistics:

where β̂ , σ̂ are the EM estimate for the full model in (3) and β̃ , σ̃ are the estimate for the 
reduced model under null hypothesis H0 . The test statistic follows chi-square distribu-
tion � ∼ χ2

d , where d is the degree of freedom determined by the number of parameters 
in hypothesis H0 . An alternative approach to test csDEG is to apply existing DE analysis 
methods to the predicted individual-specific gene expression, although this strategy is 
not ideal due to the possible bias in reference prediction.

Data generation process in simulation study

Using the procedure described above, we acquire the Dirichlet distribu-
tion parameters for cell population composition in controls (denoted as ᾱC ) and 
cases (denoted as ᾱD ), respectively: ᾱC = (8.85, 6.49, 5.98, 5.28, 4.22, 3.85) and 
ᾱD = (1.90, 2.25, 2.10, 5.72, 7.33, 15.37) . To simulate within-group and within-subject 
overdispersions, two additional parameters ( ξZ and ξS ) are introduced in the Dirichlet 
sampling. We first simulate the mean frequencies of K cell types for each subject j in 
group Z (cases or controls) by Dirichlet distribution θ̄ j ∼ Dir(θ̄

(0)
Z , ξZ) , where θ̄ j is a 

K × 1 vector. The parameters θ̄ (0)Z  and ξZ are the expected frequencies and overdispersion 
for group Z. The cell type composition for subject j at time point t is θ̄ jt ∼ Dir(θ̄ j , ξp) , 
where ξp is the mean overdispersion estimate for the longitudinal samples per subject 
and represents the heterogeneity between time points.

For gene g, the mean expression and overdispersion per subject j are simu-
lated by Mgj ∼ MVN (µ̄m,�m) , �gj ∼ MVN (µ̄φ ,�φ) . For each cell type k, 
the true reference expression in subject j is generated by Gamma distribution 
�gjk ∼ Ŵ(exp(−�gjk),Mgjk exp(�gjk)) , where Mgjk ,�gjk are components in vectors 
Mgj ,�gj . The true mixture-cell gene expression level per sample is �̄gjt = �

′
gj θ̄ jt , where 

σ̂
2(t+1)
0 =

Eη(t)
[

s′s|wobs = y
]

N

σ̂
2(t+1)
k =

Eη(t)
[

u′
kuk |wobs = y

]

J

(7)

L(β , σ ) = ln f (y;X ,A,β , σ )

=−
1

2
{N ln(2π)+ ln

∣

∣

∣A�uA
′ + σ 2

0 IN

∣

∣

∣

+ (y − Xβ)′(A�uA
′ + σ 2

0 IN )
−1(y − Xβ)}

(8)� = 2(L(β̂ , σ̂ )− L(β̃ , σ̃ ))
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�
′
gj = (�gj1, ..., �gjK ) and �̄gjt still follows Gamma distribution [36]. The observed bulk 

RNA-seq raw counts for gene g in subject j measured at time point t is generated from 
Poisson distribution Ygjt ∼ Pois(�̄gjt) . In the scenario of slope test, the reference panel 
per subject differs between time points, with age effect fixed by (case or control) group. 
That is shifting Mgjk to M̃gjkt = Mgjk +�t for t > 1 , where the value of �t is group-wise. 
The cell-type-specific true expression per gene per sample at each time point can be 
updated to �̃gjkt ∼ Ŵ(exp(−�gjk),Mgjkt exp(�gjk)) , and the mixture-cell expression is 
�̄gjt = �̃

′

gjt θ̄ jt , where �̃
′

gjt = (�gj1t , ..., �gjKt).
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