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Abstract 

Background:  The pathophysiological causes of kidney disease are not fully under-
stood. Here we show that the integration of genome-wide genetic, transcriptomic, and 
proteomic association studies can nominate causal determinants of kidney function 
and damage.

Results:  Through transcriptome-wide association studies (TWAS) in kidney cortex, 
kidney tubule, liver, and whole blood and proteome-wide association studies (PWAS) 
in plasma, we assess for effects of 12,893 genes and 1342 proteins on kidney filtration 
(glomerular filtration rate (GFR) estimated by creatinine; GFR estimated by cystatin C; 
and blood urea nitrogen) and kidney damage (albuminuria). We find 1561 associations 
distributed among 260 genomic regions that are supported as putatively causal. We 
then prioritize 153 of these genomic regions using additional colocalization analyses. 
Our genome-wide findings are supported by existing knowledge (animal models for 
MANBA, DACH1, SH3YL1, INHBB), exceed the underlying GWAS signals (28 region-trait 
combinations without significant GWAS hit), identify independent gene/protein-trait 
associations within the same genomic region (INHBC, SPRYD4), nominate tissues under-
lying the associations (tubule expression of NRBP1), and distinguish markers of kidney 
filtration from those with a role in creatinine and cystatin C metabolism. Furthermore, 
we follow up on members of the TGF-beta superfamily of proteins and find a prognos-
tic value of INHBC for kidney disease progression even after adjustment for measured 
glomerular filtration rate (GFR).

Conclusion:  In summary, this study combines multimodal, genome-wide association 
studies to generate a catalog of putatively causal target genes and proteins relevant to 
kidney function and damage which can guide follow-up studies in physiology, basic 
science, and clinical medicine.
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Background
Chronic kidney disease (CKD), defined as a persistent decrement in glomerular filtra-
tion rate (GFR) or the presence of kidney damage, affects more than 10% of the adult 
population worldwide [1, 2]. GFR is typically estimated with serum creatinine (eGFRcr), 
serum cystatin C (eGFRcys), or blood urea nitrogen (BUN), and damage is quantified by 
the urinary albumin-to-creatinine ratio (ACR) [3]. Treatment for CKD is limited, in part, 
because the pathophysiological mechanisms contributing to its origin and progression 
are not fully understood. Gaining insight into disease pathogenesis can help identify new 
targets for pharmaceutical interventions.

Technical advances in transcriptomic and proteomic profiling provide unprecedented 
access to tissue-specific and circulating gene products which are relevant in disease and 
health. However, observational studies relating gene transcript or protein abundance 
directly to phenotypes can be confounded or represent reverse causation [4]. The inte-
gration of genetic data with gene transcripts, proteins, and phenotypes can help nomi-
nate specific biomarkers as potential causal determinants of disease [5]. For example, 
Gusev et al. [6] used single-nucleotide polymorphisms (SNPs) in cis to genetically impute 
transcripts and relate them to GWAS summary statistics of a trait of interest in order to 
provide evidence of causality (transcriptome-wide association study, or TWAS) [7–10]. 
We recently adapted this approach for proteome-wide association studies (PWAS) based 
on genetically imputed models of the plasma proteome (SomaScan V4 platform) [11]. In 
these implementations, TWAS and PWAS can be viewed as instrumental variable (IV) 
analyses akin to two-sample Mendelian randomization (MR) [12]. The genetic models 
used as instrumental variables are restricted to the cis-region of the gene transcript or 
protein, i.e., genetic variants within or close to the encoding gene, which reduces the risk 
of confounding by horizontal pleiotropy (independent of the protein). Combined with 
colocalization analyses accounting for multiple causal variants with the same region, 
these methods reduce the risk of genetic confounding due to linkage disequilibrium 
[13–15].

In order to implicate new roles of gene transcripts and proteins in the development of 
CKD, we apply the TWAS, PWAS, and colocalization methods to recent GWAS of kid-
ney filtration and damage [16–18] (12,893 genes and 1342 proteins tested; GWAS N up 
to 1 million; Fig. 1). Essential tissues related to kidney function and damage are the kid-
ney cortex, the part of the kidney where glomeruli interact with (whole) blood; the kidney 
tubule that participates in the exchange of substances from the tubular fluid (pre-urine) 
and blood; and the liver which has been shown to be co-regulated with kidney tissue 
[16], is linked to genetic determinants of eGFRcr [19], and which together with kid-
ney are the key organs underlying the regulation of urinary metabolite concentrations 
[20]; hence, we focus the TWAS on these tissues. The PWAS focused on whole blood 
plasma, which represents the most targetable biospecimen. To increase confidence that 
a marker represents CKD processes rather than a metabolic byproduct, we integrate 
across different markers of filtration (eGFRcr, eGFRcys, and BUN) and kidney damage 
(ACR). To better isolate the location of putative causal genetic variants and the tissues in 
which they influence disease, we conduct conditional analyses to prioritize omics layers. 
Finally, to assess their feasibility as treatment targets, we pharmacologically annotate the 
markers of interest with approved drugs and drugs under development.



Page 3 of 17Schlosser et al. Genome Biology          (2023) 24:150 	

Results
Tissue‑specific transcriptome‑wide association studies (TWAS) of kidney function 

and damage

We conducted tissue-specific TWAS for four kidney function-related tissues, using 
models for kidney cortex (models built based on N = 73), liver (N = 208), and whole 
blood (N = 670) from the GTEx project v8 [6] and micro-dissected kidney tubule 
(N = 121) from Doke et al. [21]. GWAS summary statistics for kidney function (meas-
ured as eGFRcr, eGFRcys, and BUN; N = 1,004,040; 460,826; and 243,031, respectively) 
and kidney damage (ACR; N= 547,361) were obtained from the Chronic Kidney Disease 
Genetics (CKDGen) Consortium [16–18, 22].

TWAS of eGFRcr and eGFRcys identified 849 and 416 transcript associations, respec-
tively (Table 1; Fig. 2; Additional file 1: Table S1; Additional file 2: Fig. S1; P < 3.9 × 10−6, 
“Methods”). Approximately 43% of these associations originated from the whole blood 
TWAS, reflecting the wider coverage of the transcriptome and better prediction mod-
els given the larger sample size for the underlying expression Quantitative Trait Loci 
(eQTL) analyses. There were 229 shared associations across eGFRcr and eGFRcys, thus 
representing kidney function rather than effects of creatinine- and cystatin C metabo-
lism. In contrast, the strongest hits identified only for eGFRcr or eGFRcys are known 

Fig. 1  Workflow of integrated transcriptome-wide and proteome-wide association studies of kidney function 
and damage. We performed TWAS (gray boxes) and PWAS (orange box) using genetic instruments to model 
life-long differences in transcript expression and protein abundance and their effect on kidney function and 
damage (eGFRcr, eGFRcys, BUN, and ACR). Significant TWAS / PWAS associations which additionally displayed 
statistical colocalization of the kidney function / damage GWAS and the transcript / protein GWAS (eQTLs, 
pQTLs) were moved forward and compared across genomic regions and kidney function traits. Conditional 
analyses were used to prioritize genes and tissues of origin per genomic region. Putative treatment targets 
were pharmacologically annotated. Icon credit: Servier Medical Art by Servier (licensed under a Creative 
Commons Attribution 3.0 Unported License)
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to be involved in creatinine and cystatin C production (GATM and CST3, respectively). 
The strongest associations among the 229 shared signals were observed for DAB2 
(tubule), SHROOM3 (liver), AMLS1P1 (liver), and NRBP1 (tubule) (Fig.  2; Additional 
file 1: Table S1).

The TWAS for BUN and ACR, although based on smaller GWAS studies [16, 18], 
identified 75 BUN and 97 ACR associations (Table 1; Additional file 1: Table S1; Addi-
tional file 2: Fig. S2-3; P < 3.7 × 10−6, “Methods”).

Next, to minimize the risk of genetic confounding, we performed colocalization 
analyses for each identified transcript in the TWAS analyses. We identified independ-
ent signals of the underlying GWAS summary statistics based on conditional analyses 

Table 1  Number transcripts associated with kidney function and damage (P < 3.9 × 10−6)

Tissue Trait
eGFRcr
GWAS N = 
1,004,040

eGFRcys
GWAS N = 
460,826

BUN
GWAS N = 
243,031

ACR​
GWAS 
N = 
547,361

Kidney cortex
# models = 2633, eQTL N = 73

88 55 6 8

Kidney tubule
# models = 1875, eQTL N = 121

146 65 16 15

Liver
# models = 5213, eQTL N = 208

249 113 20 23

Whole blood
# models = 9388, eQTL N = 670

366 183 33 51

Fig. 2  TWAS analyses highlight gene expression in kidney-related tissues consistent with genetic 
determinants of both eGFRcr and eGFRcys. Genes that were significant for the estimated glomerular filtration 
rate based on creatinine (eGFRcr) and for the estimated glomerular filtration rate based on cystatin (eGFRcys) 
and that were additionally supported by colocalization analyses of eGFR and expression quantitative 
trait loci (posterior probability > 0.8) were labeled. The color code indicates the tissue of the TWAS model 
and − log10(P-values) were capped at 50 (associations indicated by stars). The red lines indicate the Bonferroni 
adjusted significance threshold (P < 3.9 × 10−6)
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(“Methods”). The median number of independent signals per cis-eQTLs was one, and 30 
loci displayed multiple signals. The median number of independent signals per GWAS 
of kidney traits was again one and 343 loci had multiple signals. We observed a colo-
calization (PP > 0.8; “Methods”) of eQTLs and kidney function traits for 288 of the 1437 
combinations originating from 214 unique genes (Fig.  2, Additional file  2: Fig. S2-3, 
Additional file 1: Table S2).

Proteome‑wide association studies (PWAS) of kidney function and damage

We conducted PWAS using models for 1342 circulating proteins constructed in the 
European ancestry (EA) subpopulation of the Atherosclerosis Risk in Communities 
(ARIC) study [11]. GWAS summary statistics for kidney function (eGFRcr, eGFRcys, 
BUN) and damage (ACR) were obtained from the CKD Gen Consortium, as was done in 
the TWAS analyses [16–18].

PWAS of eGFRcr and eGFRcys identified 69 and 41 associations, respectively (Addi-
tional file 1: Table S3; Additional file 2: Fig. S4; P < 3.7 × 10−5, “Methods”). There were 
22 shared associations across eGFRcr and eGFRcys, thus likely representing kidney 
function rather than creatinine- and cystatin C-metabolism-related effects (Fig. 3). The 
strongest associations among these were observed for IDI2, SNUPN, and INHBC (Addi-
tional file 1: Table S3). For signals associated with a single marker alone, the strongest 
overall associations were observed for CST3 and CST4 for eGFRcys (P-values below 
1 × 10−320 and z-score =  − 117.8 and 63.6, respectively), highlighting the contribution of 
the genes in cystatin C synthesis.

Fig. 3  PWAS analyses identify circulating proteins consistent with genetic determinants of both eGFRcr 
and eGFRcys. Proteins that were significant for both the estimated glomerular filtration rate based on 
creatinine (eGFRcr) and for the estimated glomerular filtration rate based on cystatin (eGFRcys) were labeled. 
Proteins with additional support through colocalization analyses of eGFR and protein quantitative trait loci 
(posterior probability > 0.8, “Methods”) were highlighted in orange and − log10(P-values) were capped at 50 
(stronger associations indicated as stars). The red lines indicate the Bonferroni adjusted significance threshold 
(P < 3.7 × 10−5)
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The PWAS for BUN identified ACP1, INHBC, and two aptamers of RSPO3 
(SeqId_13094_75 and SeqId_8427_118; Additional file 1: Table S3; Additional file 2: Fig. 
S5-6; P < 3.7 × 10−5, “Methods”). ACR showed ten significant associations, with CSK 
exhibiting the strongest ACR association (P = 1.2 × 10−11).

The identified proteins in the PWAS analyses were further studied by conditionally 
independent colocalization analyses, similar to the procedure performed for the tran-
scripts identified in the TWAS analysis (“Methods”). The median number of inde-
pendent signals per cis-protein quantitative trait locus (pQTL) was three and 100 loci 
displayed multiple signals, while the kidney function traits again had a median of one 
and 31 loci with multiple signals. We observed a colocalization (PP > 0.8; “Methods”) for 
53 of the 124 associations (Fig. 3, Additional file 2: Fig. S5-6, Additional file 1: Table S2 
and 3, 30 eGFRcr, 16 eGFRcys, 2 BUN, 5 ACR). For ACP1 and INHBC, two consist-
ent PWAS associations across eGFRcr, eGFRcys, and BUN, we observed colocalizations 
across all three traits (Fig. 3, Additional file 2: Fig. S4).

Integration of transcriptome‑ and proteome‑wide association studies using conditional 

analyses

Combining the TWAS and PWAS results, there were 260 genomic regions encapsulat-
ing 398 trait-region associations. Genomic regions were defined by merging all overlap-
ping gene windows (gene start/stop + / − 500 kb) of significant transcripts and proteins 
across the four traits (“Methods”). Through the iterative nature of these merges, some 
genomic regions—even outside the HLA region—spanned more than 5  Mb and thus 
are expected to harbor several independent associations. This procedure ensures that 
subsequent conditional analyses for each trait (performed separately, between all tran-
scripts and proteins in the region) encompass the most comprehensive set of compari-
sons. The colocalization analyses supported 196 trait-region associations (PP > 0.8; 110 
eGFRcr, 54 eGFRcys, 12 BUN, 20 ACR) within 153 regions (Fig.  4a; Additional file  1: 
Table  S4; labeled as region number 1–153). Using the most significant regional asso-
ciation extracted from the corresponding source GWAS of kidney function and dam-
age, 168 of the trait-region associations reached the standard common-variant GWAS 
threshold (P-value < 5 × 10−8) and 28 were only detected through TWAS/PWAS and did 
not reach GWAS significance (i.e., GWAS P-value > 5 × 10−8). These novel associations 
were detected through a combination of power gain and reduced multiple testing bur-
den of the TWAS and PWAS approach, indicating that these approaches can aid in the 
identification of the underlying mechanisms of complex traits. Furthermore, they may 
nominate both the molecular mechanisms as well as potentially relevant tissues.

Nearly half of the regions identified in eGFRcys analyses were also supported by 
eGFRcr analyses (26 of 54), and more than half of the regions in BUN analyses were 
supported by both eGFRcr and eGFRcys (7 of 13). In contrast, there was less overlap 
between ACR (a damage marker) and the three filtration markers. Only 3 of 20 ACR 
regions were supported by at least two of the other traits. Two regions—the NRBP1 
(tubule) and MUC1 (tubule, whole blood)—were supported by all four traits.

For 58 of the 196 trait-region associations supported by colocalization analysis, sig-
nificant colocalization was observed for a single tissue and gene, which was prior-
itized. For the remaining 138 associations, we observed colocalization signals with 
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multiple tissues or genes. With the goal of prioritizing the model underlying each 
genomic region or identifying multiple independent associations, we performed con-
ditional analyses. To do this, we first estimated the cis-regulated genetic correlation, 
i.e., the genetically encoded co-regulation within the comparison TWAS and PWAS 
models (“Methods”). We then used these co-regulation estimates to perform condi-
tional analyses using a regression with summary statistics approach [11, 23]. In this 
manner, we compare between not only different genes but also different tissues and 
plasma (Additional file 1: Table S4).

As an example, on chromosome 12, there were several shared associations for 
eGFRcr, eGFRcys, and BUN, implicating both INHBC (colocalizing with plasma 
protein) and SPRYD4 (colocalizing with whole blood expression) (Additional file  1: 
Table  S4; region number 103). Plasma levels of INHBC and whole blood SPRYD4 
expression demonstrated negative co-regulation (cis-regulated genetic correla-
tion =  − 0.04) and the genetic lead variants of the pQTLs and eQTLs were inde-
pendent of each other (R2 = 0.0001, Fig.  4b). The conditional analysis of the two 
co-regulation estimates demonstrated even stronger association signals for both 
genes, providing support for there being two independent associations in the same 
region, i.e., INHBC & SPRYD4 (Fig. 4).

Another illustrative example was seen on chromosome 2, where a shared signal was 
observed between eGFRcr, eGFRcys, and BUN with SH3YL1 (colocalizing with gene 
expression in kidney cortex, tubule, and whole blood) and ACP1 levels (colocalizing 
with plasma protein) (Additional file 1: Table S4; region number 19; Fig. 5a). Distin-
guishing between the transcript and protein signals is complicated by the fact that 
there are no models of SH3YL1 for circulating proteins nor ACP1 transcription mod-
els available. However, both signals colocalized with the same eGFR peak (PP > 0.8). 
Conditional analysis showed a markedly strong negative co-regulation of tubule 

Fig. 4  Shared and distinct genomic regions underlying the kidney function and damage markers. a 
Venn diagram of the 153 genomic regions identified through TWAS/PWAS and additionally supported 
by colocalization across eGFRcr, eGFRcys, BUN, and ACR. For intersections with less than five regions, the 
prioritized genes instead of the number regions were listed. Multiple independent genes pertaining to the 
same region were separated by an ampersand. b Regional association plot for the shared association of the 
filtration markers represented by eGFRcr that corresponds to independent associations with plasma INHBC 
protein levels (conditional independent signal) and whole blood SPRYD4 expression (marginal statistics). The 
gray dashed line indicates genome-wide significance (5 × 10−8) on the eGFRcr/SPRYD4 y-axis. INHBC p-values 
are plotted on a separate y-axis. Expression quantitative trait loci (QTLs) and protein QTLs were annotated by 
the posterior inclusion probabilities of SNPs being the driving variant in the region (dot size, “Methods”)
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SH3YL1 and plasma ACP1 (cis-regulated genetic correlation =  − 0.92) thereby point-
ing to the same underlying association. Tissue-wise, the strongest association was 
observed for whole blood with a high correlation with kidney tubule SH3YL1 (cis-reg-
ulated genetic correlation = 0.89). Subsequently comparing single-cell RNA expres-
sion among cell types in the kidney tissue atlas from the Kidney Precision Medicine 
Project (KPMP) showed a higher expression of SH3YL1 than ACP1 with a specifically 
high expression for proximal tubule (Fig. 5b).

As a final example of using conditional analyses of co-regulation estimates to discern 
between shared signals, the genomic region on chromosome one near MUC1 (region 
number 13) displayed signals for eGFRcr, eGFRcys, BUN, and ACR. Depending on the 
trait, the association signal was strongest for whole blood or tubule models (cis-regu-
lated genetic correlation = 0.66), and for each trait at least one of these associations was 
additionally supported by colocalization (Additional file 2: Fig. S7). MUC1 encodes an 
O-glycosylated protein that helps maintain the protective mucous barriers of epithelial 
cells. A variable number of tandem repeat (VNTR) region of MUC1  is associated with 
the formation of a frameshift, which results in a truncated protein responsible for a rare 
form of CKD, autosomal dominant tubulo-interstitial kidney disease (ADTKD) [24, 25]. 
Based on the TWAS models, we connected MUC1 to a range of kidney function and 
damage markers in the general population as well (Additional file 2: Fig. S7).

Fig. 5  Regional association plot of the single signal in the ACP1 / SH3YL1 region. a Regional association 
plot for the shared association of the filtration markers represented by eGFRcr that identified the same 
association for plasma ACP1 protein levels (independent signal indexed by rs79716074) and tubule SH3YL1 
expression (marginal statistics). The gray dashed line indicates genome-wide significance (5 × 10−8) on 
the eGFRcr/SH3YL1 y-axis. ACP1 p-values are plotted on a separate y-axis. SNPs were annotated by the 
posterior probabilities of them being the driving variant in the region (dot size, “Methods”). b Single-cell 
RNA sequencing levels across kidney cell types of SH3YL1 and ACP1 in the Kidney Precision Medicine Project 
(KPMP) are displayed. KPMP acute kidney injury samples were excluded



Page 9 of 17Schlosser et al. Genome Biology          (2023) 24:150 	

Higher levels of INHBC and INHBB precede CKD progression

The two strongest PWAS associations supported by colocalization for eGFRcr and 
eGFRcys were INHBC on chromosome 12 and INHBB on chromosome 2. Both encode 
members of the TGF-beta (transforming growth factor-beta) superfamily of proteins, 
specifically subunits of activin complexes. To evaluate whether levels of INHBB and 
INHBC were associated with CKD progression (ESKD or doubling of serum creati-
nine), we tested measured INHBB and INHBC protein abundance in the African Ameri-
can Study of Kidney Disease and Hypertension (AASK), an external cohort of CKD 
patients followed for a median of 8 years and 10 months. Both proteins showed signifi-
cant associations with CKD progression when adjusting for age, sex, smoking, history 
of cardiovascular disease, systolic blood pressure, and high-density lipoprotein (HDL) 
levels (Additional file 1: Tab. S5; “Methods”). Concordant with the inverse relationship 
of protein abundance and eGFR estimated in the PWAS, hazard ratios in AASK indi-
cated an increased risk for CKD progression with increased protein levels. The associa-
tion between INHBB and CKD progression was attenuated after adjusting for measured 
GFR, but the association between INHBC and CKD progression remained significant 
(HR 1.86 per doubling in INHBC levels, p = 5.9 × 10−5).

Druggability of identified targets

For the 153 trait-region associations with support from colocalization analyses, we per-
formed annotation of the regions using the open targets database [26]. There were exist-
ing drugs that target 29 of the genes, including 14 genes with drugs already approved 
for use in specific diseases (Additional file 1: Tab. S6). Disease categories of these drugs 
ranged from diabetes mellitus (CD86) to urinary tract infection (DPEP1) to COVID-19 
(CASP9). Of note, MUC1 (Additional file 2: Fig. S7; Additional file 1: Tab. S1) is targeted 
by HuHMFG1 [27, 28], SAR-566658 (ClinicalTrials.gov Identifier: NCT02984683), and 
cantuzumab ravtansine (Drugbank accession number: DB05594). HuHMFGI specifically 
targets a sequence within the VNTR. However, MUC1 appears to cause lower levels of 
BUN (z-score in whole blood and tubule TWAS − 10.9 and − 10.6) and thus might be 
best addressed with an agonist.

Discussion
Using a cross-omics integrative approach, we generated a genome-wide catalog of 
potentially causal contributors to CKD. We identified 1561 associations between genetic 
models of gene expression and proteins with genetic determinants of three markers of 
kidney filtration (eGFRcr, eGFRcys, BUN) and one of kidney damage (ACR). Through 
support by colocalization and conditional analyses, we structured these findings into 
196 genomic region-trait combinations. For these regions, our results provide insight 
into gene identification, confirm previous findings in experimental models, identify tis-
sue sites of action, distinguish markers of creatinine or cystatin metabolism from that of 
GFR, and nominate early biomarkers of CKD progression.

The approach of TWAS and PWAS integration builds upon GWAS by aiding in the 
identification of genes underlying loci. For example, while INHBC was known to be 
genetically associated with eGFRcr [29] and upregulated in patients with diabetic 
nephropathy [30], the neighboring association of SPRYD4 was less well studied, with 
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only one study finding higher expression in kidney tissue [31]. Our study provides evi-
dence that these represent two independent signals. In contrast, our study helped iden-
tify the signals seen with SH3YL1 and ACP1 on chromosome 2 as being one and the 
same. Previous studies have identified associations between SNPs within SH3YL1and 
various traits including blood pressure [32], HDL [33], BMI-adjusted waist circumfer-
ence [34], as well as eGFRcr [16], BUN [35],and gene expression of SH3YL1in various 
tissues, including the kidney tubule [16]. Our study established associations between 
SH3YL1 and eGFRcys and uncovered extensive negative co-regulation of the SH3YL1 
expression and ACP1 protein levels (cis-regulated genetic correlation =  − 0.97). Because 
of the greater expression of SH3YL1 in kidney cells (Fig. 5b) and support from animal 
models, we suspect that SH3YL1 underlies the causal association. Specifically, murine 
knock-out models of Sh3yl1  show reduced inflammatory response, tubular apoptosis, 
renal failure, and mortality after endotoxin exposure [36].

The validity of our approach is strengthened by that fact that several of our findings 
have orthogonal support from existing animal models. We identified MANBA in whole 
blood and tubule TWAS as well as plasma PWAS for eGFRcr and eGFRcys (region 
number 51; Fig. 3; Additional file 1: Tab. S4). MANBA was recently studied in a murine 
knock-out model which linked the gene to differential kidney fibrosis after toxic injury 
induced by cisplatin or folic acid [37]. Similarly, DACH1, which was associated with 
eGFRcr, eGFRcys, and BUN in our study, was previously studed in murine models that 
demonstrated tubule-specific Dach1 deletion caused more severe renal fibrosis after kid-
ney injury [21].

The integration of TWAS and PWAS can help nominate specific tissues underlying 
causal associations. NRBP1  is a known eGFRcr GWAS locus that was previously sup-
ported by colocalization with methylation QTLs [38]. Interestingly, nearby CpG methyl-
ation sites were associated with eGFRcr and ACR in epigenome-wide association studies 
(eGFRcr: cg11111225; 514 kb upstream; P-value = 2.2 × 10−6; ACR: cg23635560; 177 kb 
upstream; P-value = 1.2 × 10−7) [39]. Our study adds to this work by confirming asso-
ciations between NRBP1 and all of the studied kidney traits, as well as nominating kid-
ney tubule expression as the possible site of action. Consistent with this finding is that 
knock-down of NRBP1 in mice resulted in upregulation of ABCG2, a urate transporter 
in the proximal tubule, and that overexpression of NRBP1 resulted in downregulation of 
SLC22A12 and SLC2A9, two organic anion transporters found in epithelial cells in the 
proximal tubule [40].

The combined study of different kidney function biomarkers can isolate genes involved 
in determining kidney function from those involved in creatinine or cystatin C metab-
olism. Recently, a study used massively parallel reporter assays to functionally evalu-
ate genetic variants for eQTLs and 114 human traits [41]. They found six independent 
eQTLs in SPATA5L1 colocalizing with GWAS summary statistics for CKD (defined 
using eGFRcr). Another study also identified SPATA5L1 as one of the strongest eGFRcr 
GWAS loci and reported a positive colocalization with SPATA5L1  expression [42]. 
Consistent with this finding, one of the strongest TWAS associations in our study was 
observed for SPATA5L1 and GATM, a neighboring gene that was implicated in some of 
the earliest eGFRcr-based GWAS [43]. However, GATM is an essential enzyme in cre-
atine biosynthesis, catalyzing the transfer of a guanido group to the immediate precursor 
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of creatine. We observed no association of SPATA5L1 and GATM with eGFRcys or BUN, 
consistent with a role in creatine production but not kidney function per se. In contrast, 
we found 229 TWAS associations, 22 PWAS associations, and 26 colocalization-sup-
ported genomic regions that were shared across eGFR measures and thus likely reflect 
kidney filtration rather than solely creatinine and cystatin C metabolism.

The genome-wide catalog can nominate new biomarkers of disease progression. 
Motivated by the two strongest PWAS associations shared for eGFRcr and eGFRcys 
and supported by colocalization, as well as the fact that the components are subunits 
of the same protein complex that is encoded on different chromosomes, we performed 
follow-up analyses in the AASK study of CKD patients for INHBB and INHBC. We 
found an increased risk for CKD progression per higher protein abundance, consistent 
with the direction suggested by PWAS. Even after comprehensive adjustment, including 
for measured GFR, two-fold higher INHBC conferred an 86% increased risk for CKD 
progression. This observation is also supported in animal models. Higher INHBB was 
found in a polycystic kidney disease mouse model compared to controls [44], and higher 
INHBC expression was found in a diabetic nephropathy rat model [45]. Further, inhibi-
tion and overexpression models of INHBB regulated renal fibrosis [46].

Finally, this study extends support for causal associations across multiple tissues and 
kidney biomarkers. The association between SNPs in MUC1  and ACR was previously 
identified [18]. We found parallel associations with eGFRcr, eGFRcys, and particularly 
BUN, augmenting support for a role of MUC1 in kidney disease. Interestingly, these 
common SNPs are distinct from the known ADTKD-associated frameshift in MUC1.

Our work confirms results from previous studies of genetic determinants of kidney 
function. Zheng et al.screened proteomic genetic instruments for effects on 223 traits, 
including eGFRcys, identifying one association supported by colocalization (CST3), and 
two that were not supported by colocalization (CST4 and CST5) [13]. We replicated 
these observations and confirmed no association between CST3 and the other markers 
of kidney filtration, suggesting that CST3 (cystatin) is a marker but not causal for kidney 
function itself. In a separate study, Matias-Garcia et al. [4] used MR methods to impli-
cate three proteins with a causal effect on eGFRcr: MIA, CA3, and CST6. We confirmed 
the effects of MIA and CA3 on eGFRcr, providing additional support by colocalization 
studies (CST6 was not available as a PWAS model). Hellwege et al. [42] identified 45 sig-
nificant genes using a kidney-specific TWAS for eGFRcr, 19 of which were supported by 
colocalization. Our study used a non-overlapping source for GWAS summary statistics 
(theirs used a smaller trans-ethnic GWAS) and replicated 15 of the 16 available in our 
TWAS screen. Finally, Doke et al. [21] identified 51 significant genes in a tubule-specific 
TWAS using an older GWAS (n = 765,348). Using an updated GWAS of kidney function 
(N> 1 million) [17], we confirmed previous findings and increased the number of signifi-
cant tubule TWAS associations for eGFRcr to 146. Overall, we identified 234 significant 
associations in the kidney cortex or tubule.

Some limitations warrant mentioning. First, TWAS and PWAS associations displayed 
genomic control lambdas > 1 (Additional file  2: Fig. S1 and S4). These inflations are 
expected and relate to the well-powered source GWAS statistics (genomic inflation fac-
tor lambda: eGFRcr 1.24, eGFRcys 1.17, BUN 1.15, ACR 1.19), which reflect the poly-
genic nature of the traits. The meta-analyses corrected for inflation on the individual 
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study level. A priori, we would expect that PWAS and TWAS would have even larger 
lambdas given the stronger demonstration of polygenicity. Reassuringly, the PWAS 
models displayed no inflation when tested based on simulated null data [11]. Second, 
the tissue-specific TWAS and PWAS models have different coverage of the genome. 
Due to varying sample sizes of tissue-specific mRNA, the number of prediction models 
ranged from 1870 (tubule) to 9388 (whole blood), and the number of protein models was 
1342. Third, we required colocalization for identification of top signals, which may have 
resulted in false negatives. Fourth, regions of extreme linkage disequilibrium and/or very 
strong associations can lead to spurious results of the conditional GCTA analysis detect-
ing many independent associations. However, many of the observations with multiple 
independent associations are biologically plausible. For the 24 associations involving a 
GWAS signal with more than seven independent associations, all except one (plasma 
MICB—eGFRcr) were either supported by other kidney traits or showed no colocaliza-
tion overall, hence limiting the risk of false positives. Fifth, we used GWAS summary 
statistics from a European-American population, limiting generalizability. We chose this 
data source to better reflect the populations underlying the TWAS and PWAS weights, 
thereby avoiding potential bias due to differences in allele frequencies. Additional studies 
are needed to combine high-quality GWAS summary statistics from more diverse popu-
lations [11]. Lastly, the sample sizes of the source GWAS ranged from 243,031 (BUN) to 
one million (eGFRcr), which limits the comparison across filtration markers due to dif-
ferent power to detect signals. We focused on the overlap of eGFRcr and eGFRcys hits 
instead of that of eGFRcr, eGFRcys, and BUN due to the significantly lower sample size 
of the BUN GWAS as well as the idea that eGFRcr and eGFRcys are estimating the same 
latent trait (kidney function).

Strengths of this study include the comprehensive scale of the screened models, cov-
ering 12,893 genes and 1342 proteins across five kidney function-related tissues (liver, 
kidney cortex, plasma, tubule, and whole blood). As the TWAS and PWAS models 
do not require GWAS trait associations in the same dataset, we were able to leverage 
summary statistics from consortia of much larger sample size, maximizing the power 
to detect associations. By anchoring to cis-based genetic models and performing addi-
tional colocalization analyses, we reduced the risk of confounding and reverse causation. 
We integrated tissue-specific TWAS and plasma PWAS findings as well as co-regulated 
neighboring genes through conditional models [11]. Furthermore, we conducted the fol-
low-up analyses for INHBC and INHBB in the AASK study that represents both a switch 
to a cohort with prevalent CKD and a cohort of African Ancestry. This strengthens the 
generalizability of our findings for these targets. Finally, we isolated potential markers 
of true kidney function rather than biomarker-specific effects using the combination of 
eGFRcr, eGFRcys, and BUN as kidney function markers and ACR as a kidney damage 
marker.

Conclusions
In summary, this study generates a catalog of putatively causal target genes, tissues, 
and proteins relevant to kidney function and damage and constitutes a comprehensive 
resource to guide follow-up studies in physiology, basic science, and clinical medicine.
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Methods
Summary statistics

Summary statistics from meta-analyses of Genome-wide Association Studies (GWAS) 
of European ancestry were obtained from the CKDGen consortium (Stanzick et al.: 
eGFRcr & eGFRcys; Wuttke et al.: BUN; Teumer et al.: ACR). [16–18]

Transcriptome‑wide association studies (TWAS)

We performed TWAS following the FUSION workflow based on weights for the 
kidney function relevant tissues from GTEx v8 (kidney cortex, liver, and whole 
blood, http://​gusev​lab.​org/​proje​cts/​fusio​n/) [6] and kidney tubule from Doke et  al. 
[21] Prediction models were based on elastic net modelling and combined with the 
accompanying European ancestry 1000 Genomes Project linkage disequilibrium 
(LD) reference (https://​data.​broad​insti​tute.​org/​alkes​group/​FUSION/​LDREF.​tar.​bz2). 
Multiple testing was accounted for by a Bonferroni adjustment for the number of 
genes modelled across tissues that overlapped at least one of the GWAS summary 
statistics datasets (P-value < 3.9 × 10−6 = 0.05 / 12,893 unique genes). Manhattan and 
Miami plots were created based on the miamiplot R package (https://​github.​com/​julie​
dwhite/​miami​plot).

Proteome‑wide association studies (PWAS)

For PWAS, we applied the same FUSION workflow based on elastic net modelling 
as for TWAS. Weights were based on the European ancestry subpopulation of the 
ARIC and combined with the accompanying European ancestry in-sample LD refer-
ence (http://nilanjanchatterjeelab.org/pwas/) [11]. Multiple testing was accounted for 
by a Bonferroni adjustment for the number of aptamers modelled that overlapped at 
least one of the GWAS summary statistics datasets (P-value < 3.7 × 10−5 = 0.05 / 1342 
unique aptamers).

Conditional independent colocalization analysis

For each of the significant associations, we performed colocalization analyses of 
independent signals [13, 15, 47]. Hence, we extracted the eQTL / pQTL and kidney 
function / damage summary statistics for the underlying genes with a 250-kb flank-
ing region [48] and identified independent associations based on approximate con-
ditional analyses by the GCTA COJO-Slct algorithm, a step-wise-forward-selection 
approach (P conditional < 5 × 10−8), using a collinearity cut-off of 0.1 [47]. The match-
ing European ancestry LD reference from the ARIC study was used [11]. If multiple 
independent SNPs were identified, summary statistics for each SNP were computed 
by conditioning on all other independent SNPs in the gene region using the GCTA 
COJO-Cond algorithm (collinearity cut-off = 0.1, same LD reference) [47]. Finally, 
approximate Bayes factors were estimated and used to compute posterior inclusion 
probabilities (PIP) of SNPs being the driving variant in the region [49]. Colocaliza-
tion analyses were conducted based on the SNP-wise PIPs for all pairwise combi-
nations of independent eQTL / pQTL associations against the independent kidney 
function / damage GWAS associations [15, 49]. For this, an adapted version of the 

http://gusevlab.org/projects/fusion/)
https://data.broadinstitute.org/alkesgroup/FUSION/LDREF.tar.bz2
https://github.com/juliedwhite/miamiplot
https://github.com/juliedwhite/miamiplot
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Giambartolomei colocalization method as implemented in the “coloc.fast” func-
tion (https://​github.​com/​tobyj​ohnson/​gtx) with default parameters and prior defini-
tions was used. If one or no independent genome-wide significant association was 
detected, marginal summary statistics were used. Colocalizations were reported if the 
PP of one common causal variant (H4 / p12) for a combination of independent asso-
ciations reached 0.8 [15]. eQTL and pQTL data was available for 1472 of the 1477 
significant TWAS / PWAS associations [11, 21, 50].

Genomic region definition and conditional analyses

To comprehensively select all TWAS and PWAS associations for comparative con-
ditional analyses, we defined genomic regions by combining overlapping association 
signals. All significant association from TWAS / PWAS across the four traits were recur-
sively merged into genomic regions if the gene region + / − 500 kb overlapped. The MHC 
region on chromosome 6 was considered as one region spanning from 25.5 to 34 Mb. 
The resulting 260 genomic regions corresponded to 398 region-trait combinations.

For each region-trait combination that was supported by at least one colocalization 
(PP > 0.8), we performed comparative conditional analyses to prioritize genes and tis-
sues. All associations in the region that were supported by colocalization and the ones 
with the minimum TWAS / PWAS p-value per tissue were included in the conditional 
analyses. We imputed the respective transcripts and proteins for individuals from 
Phase-3 1000 Genome Project (1000Genome) to estimate the cis-regulated genetic Pear-
son’s correlation coefficients [51]. Similar to the methodological foundation of GCTA 
COJO-Cond using z-scores and the cis-regulated genetic correlation of the associations 
[47], we estimated the pairwise conditional associations as described earlier [11]. This 
allowed us to study whether one transcript / protein in a certain tissue explains the asso-
ciation signal of another.

CKD progression associations of INHBB and INHBC in the AASK study

The AASK study was a trial of African Americans aged 18–70 years with hypertensive 
chronic kidney disease (mGFR 20–65  ml/min per 1.73 m2) [52]. All 705 participants 
with available proteomic profiling at baseline in the trial phase were included in our 
analysis. Protein levels were log2-transformed. All patients were treated with antihyper-
tension medication and had no diabetes at baseline. Cox proportional hazards models 
were used to relate each protein to risk of CKD progression, defined as time to ESKD or 
doubling of serum creatinine. Analyses were initially adjusted for age, sex, systolic blood 
pressure, history of cardiovascular disease, smoking (current/past/never), and HDL lev-
els; subsequent models had additional adjustment for mGFR. Statistical significance was 
determined using a Bonferroni correction (P-value < 0.05/2).

Single‑nucleus RNA sequencing

Single-nucleus RNA sequencing data for SHY3L1 and ACP1 was extracted through the 
NephGen scExplorer (https://​nephg​en.​imbi.​uni-​freib​urg.​de) from the Kidney Preci-
sion Medicine Project – Kidney Tissue Atlas (https://​atlas.​kpmp.​org/) [53]. Cells from 
patients with acute kidney injury were removed and sub cell types were combined by 
cell count weighted averages. We have complied with all ethical regulations related to 

https://github.com/tobyjohnson/gtx
https://nephgen.imbi.uni-freiburg.de
https://atlas.kpmp.org/
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this study. Human samples collected as part of the Kidney Precision Medicine Project 
(KPMP) consortium were approved as exempted by the University of Washington Insti-
tutional Review Board, and informed consent was obtained for the use of data and sam-
ples [53].

Druggability of targets

Known drugs and tractability data were annotated based on the Open Targets Platform 
(accessed 3/17/22; Additional file 1: Tab. S6) [26]. Approval status was indicated as true 
if any approved drug exists for a given gene.
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