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Abstract 

Differential composition analysis — the identification of cell types that have statistically 
significant changes in abundance between multiple experimental conditions — is one 
of the most common tasks in single cell omic data analysis. However, it remains chal-
lenging to perform differential composition analysis in the presence of flexible experi-
mental designs and uncertainty in cell type assignment. Here, we introduce a statistical 
model and an open source R package, DCATS, for differential composition analysis 
based on a beta-binomial regression framework that addresses these challenges. Our 
empirical evaluation shows that DCATS consistently maintains high sensitivity and 
specificity compared to state-of-the-art methods.

Background
Single-cell RNA sequencing (scRNA-seq) is a high-throughput sequencing technology 
that enables researchers to probe transcriptomes of a large number of individual cells, 
and allows them to characterize different cell types in a heterogeneous population. It 
plays a critical role in strengthening our understanding of various biological systems, 
including embryogenesis, the development of different diseases, and how cells react to 
environmental stimuli [1, 2]. Recently, highly multiplexed strategies have been intro-
duced to mix samples from different donors, conditions, or treatments with external 
molecular barcodes or intrinsic genetic makeups to achieve higher efficiency and lower 
batch effects [3–5]. In such multi-sample designs, analysis of the differential composi-
tion of cell types between two conditions is routinely applied.

From a scRNA-seq experiment, we can obtain the cell counts N = {n1, ..., nK } of K cell 
types by performing cell clustering, for example, with Louvain (a graph-based method) 
[6] or K-means, usually on reduced dimensions through a principal component analy-
sis. Then, the obtained cell count vector N  is conventionally used to estimate the cell 
type composition abundance µ , with the assumption that the clustering is unbiased and 
accurate. Thus, a few statistical methods can be directly applied to detect the cell types 
with differential composition abundance between conditions. Some statistical tools are 
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also developed specialized for scRNA-seq data. scCODA [7] assumes cell counts of dif-
ferent cell types follow a hierarchical Dirichlet-Multinomial distribution, which allows 
scCODA to model all cell types together. MiloR [8] evaluates differential abundance on 
smaller clusters in KNN graph, which are called “neighborhoods.” It assumes that cell 
counts follow a negative binomial distribution and uses representative cells instead of all 
cells to improve program efficiency. DAseq [9] also makes use of KNN graph and calcu-
lates multiscale differential abundance scores by counting the numbers of cells coming 
from different biological states while varying k. This multiscale differential abundance 
score is what DAseq uses to infer cell states that have differential abundance. propeller 
[10] uses an empirical Bayes framework to enable information sharing between different 
samples and chooses different statistical methods (t-test or ANOVA) based on the num-
ber of conditions. Other tools are developed to handle different challenges for different 
data types. For instance, ANCOM-BC [11] uses a linear model with sample-specific off-
set terms to handle the estimation of different sampling fractions when analyzing micro-
biome data. diffcyt [12] uses functions from the R package edgeR [13] to test differential 
abundance of cell types. It uses an overdispersed Poisson model with empirical Bayes 
methods for information sharing between different cell types. However, its implementa-
tion was specifically designed for flow cytometry data, not single cell RNA-seq data.

Nevertheless, performing differential abundance analysis on single cell RNA-seq data 
with replicates remains a statistical challenge for multiple reasons. First, multi-level vari-
ability exists due to technical and biological reasons, such as a low number of biological 
replicates or a low number of cells for minor cell types. Recently, scDC [14], a Poisson 
regression-based method, has been introduced to account for the uncertainty not only 
between replicates but also clustering by leveraging bootstrap re-sampling, preferred 
with re-clustering. However, the Poisson noise model is not able to capture the over dis-
persion. Second, misclassification during the cell clustering step may introduce both sys-
tematic bias and uncertainty. For example, subtypes of T helper cells are often confused 
with each other. A similar challenge was also noticed in meta-genomics analysis, where 
species with similar sequences are often confusedly aligned and quantified, and bias cor-
rection by reversing this bias was found beneficial for the differential abundance analysis 
[15, 16]. Regarding to challenges mentioned above, we introduced a statistical method, 
DCATS, to effectively detect the cell types with differential abundance between condi-
tions or along with continuous covariates. This algorithm is implemented as an R pack-
age named DCATS which is available at https://​github.​com/​holab-​hku/​DCATS.

Results
High‑level description of DCATS

Here, we introduce DCATS, a differential composition analysis framework to address the 
above challenges. DCATS has two key features. First, it accounts for the uncertainty in cell 
type assignment utilizing the biased similarity between cells types. The latent true cell type 
proportion is obtained by leveraging a similarity matrix between cell types via maximum 
likelihood estimation. Second, DCATS employs a beta-binomial regression model to ana-
lyze the differential cell type abundance, which models the raw cell counts rather than the 
normalized proportions and considers the dispersion between samples (Fig. 1A; “Method”). 
Specifically, we assume the corrected cell counts zs,j for cell type j given sample s follow a 

https://github.com/holab-hku/DCATS
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beta-binomial distribution. We then describe zs,j with a beta-binomial generalized linear 
model(GLM) with a logit link function for each covariate i, as follows,

where we reparameterized with the mean p̄s,j and over dispersion term φj as

As described below, the mean parameter p̄s,j is regressed to a set of covariates under dif-
ferent hypotheses and can be parameterized as

(1)
zs,j ∼Binom(ns, ps,j)

ps,j ∼Beta(αs,j ,βs,j)

(2)
αs,j =p̄s,j(1/φj − 1)

βs,j =(1− p̄s,j)(1/φj − 1).

(3)logit(p̄s,j) = w0 + w⊤cs

Fig. 1  DCATS improves composition analysis through accounting for uncertainty in classification of cell types 
in differential abundance analysis. A Illustration of the DCATS workflow. Matrices with light blue are input 
matrices, matrices with light orange are output from DCATS. First step is bias correction using a similarity 
matrix. This step is optional. The design matrix with multiple covariates is also required. DCATS supports both 
categorical and continuous covariates. Then, DCATS detects differential abundance using a beta-binomial 
generalized linear model (GLM) model, which returns the estimated coefficients and p-values. B These box 
plots illustrate the effect of cell type misclassificaiton in a theoretical simulation with Dirichlet-Multinomial 
sampling. The similarity matrix is designed to introduce misclassification errors. The proportions of cell types 
B and C are changed between conditions 1 and 2. C Area under the precision-recall curve (AUC, same below) 
values when varying p value in detecting the cell type with differential abundance
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where cs is the covariate vector for sample s, and w is the corresponding weight vector. 
The weights for covariates w and the dispersion φj are optimized to achieve maximum 
likelihood, through the aod package [17]. The p-value can be calculated with a likelihood 
ratio test by comparing the log likelihoods in both alternative and null hypotheses.

The effectiveness of the vanilla beta-binomial regression was demonstrated in [18]. 
However, the estimation of the over dispersion term in this task is often challenging due 
to the extremely low numbers of replicates (sometimes even single replicate). Therefore, 
we introduce a strategy to estimate the dispersion term for all cell types jointly, through 
a pooled beta-binomial regression in a pre-step (Method).

When analyzing scRNA-seq data, we started from the gene expression matrix of read 
or unique molecular identifier (UMI) counts. After basic pre-processing including filter-
ing cells, normalization, and integration [19, 20], several methods can be used to anno-
tate each cells, including manual annotation, supervised methods and semi-supervised 
methods [21, 22]. The input cell count matrix for DCATS can be calculated by counting 
the number of cells in each cell type.

In order to estimate the cell type similarity matrix M for the confusion during clus-
tering, we introduced two heuristic methods here. One is based on the KNN graph 
between cells by calculating the averaged frequency of cell types in each cell’s neighbors 
(Method), where the KNN graph may be pre-computed if using Seurat [23] or Scanpy 
[24] pipelines. By defining nx,j as the number of neighbors for cell x that are classified as 
cell type j, we can calculate the KNN-based similarity matrix, for example, its entry mi,j 
for similarity (misclassification) from cluster i to j as follows:

The other method is to use a prediction confusion matrix produced using 5-fold cross 
validation by a classifier on top of principle components when the KNN graph is not 
available, e.g., support vector machine as default.

Correcting misclustering through DCATS improves composition analysis

To evaluate the effects of misclustering on the composition analysis, we performed a 
theoretical simulation by generating cell counts from Dirichlet-Multinomial distribu-
tions, where the input cell type proportions were generated by adding bias to the genu-
ine cell type proportions through a transformation with the misclustering matrix, aka 
similarity matrix (Fig. 1C, Additional file 1: Fig. S1).

Here, the genuine proportions of the three cell types were [1/3, 1/3, 1/3] and [1/3, 1/2, 
1/6] in conditions 1 and 2, respectively. However, due to the high similarity between cell 
types 2 and 3, the average cell type proportions were transformed to [0.33, 0.33, 0.33] 
and [0.33, 0.40, 0.27] respectively in the two conditions, which mimicked the bias intro-
duced in the clustering. Due to the equal cell type proportion and symmetrical similarity 
matrix, all cell type proportions remained unchanged in condition 1 after the similarity-
based transformation. However, the proportion of cell type 2 and cell type 3 in condition 
2 changed due to misclassification. Notably, the difference in proportions between con-
ditions was reduced for both cell types 2 and 3, which caused false negatives due to the 
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shrunken effects. Indeed, both Fisher’s exact test and DCATS only returned moderate 
performance (area under ROC curve (AUC) = 0.721 and 0.745 on average, aggregating 
50 runs). By contrast, we found that the performance in detecting differential abundance 
was dramatically increased for both DCATS (mean AUC: 0.745 to 0.976) and Fisher’s 
exact test (mean AUC: 0.721 to 0.961; Fig. 1C) by using the cell counts corrected from 
similarity matrix by DCATS through an Expectation-Maximization algorithm. This was 
largely thanks to the improved sensitivity in both methods (Additional file 1: Fig. S2).

We further asked whether the bias correction component in DCATS could correct 
the misclassification and provide more accurate proportion estimations. We tested this 
using a single cell RNA-seq data set [25] consisting of progressive multiple sclerosis (MS) 
and relapsing-remitting disease course MS (RRMS). In this dataset, cells from 71 PBMC 
samples of 62 donors were collected for single-cell RNA sequencing and surface anti-
body staining. In total, it contains 497,705 single-cell transcriptomic (Tr) and 355,433 
surface protein (SP) profiles. The original study used defined cell types based on both Tr 
and SP profiles [25]. We treated this Tr+SP annotation as the “original” annotation with 
high reliability, as it is the most well-studied annotation [25].

To test bias correction in our study, we focused on four T-cell subtypes based on the 
Tr+SP annotated dataset, namely T06, T07, T09, and T10. Then, we identified cell clus-
ters based on transriptomic data only (Tr-only) and match each Tr-only cluster to its 
closest Tr+SP cluster. A confusion matrix can be generated between the four clusters 
defined by Tr+SP and their matching Tr-only clusters. The proportions of the four Tr-
only clusters can be calculated. Using this “empirical” confusion matrix for bias correc-
tion, DCATS corrected the proportions of the four Tr-only clusters very close to the true 
proportions (root mean square error (RMSE) from 0.1810 to 8.672× 10−5 , Additional 
file 1: Fig. S3). In most cases, the true similarity matrix or confusion matrix is unknown. 
DCATS provides two simple methods to approximate this similarity matrix, which 
improves our estimation of proportion by 44% compared to without bias correction 
(RMSE from 0.1810 to 0.1023, using KNN similarity matrix; Additional file 1: Fig. S3)

Combined with previous simulation results, our findings support the effectiveness of 
DCATS’ bias correction step in differential composition analysis.

Benchmarking DCATS with simulated data

We further benchmarked DCATS’s performance with six existing methods: Fisher’s 
exact test, scDC [14], speckle [10], diffcyt (a method primarily designed for mass 
cytometry data) [12] , milo [8] and ANCOM-BC [11]. Here, we first generated a large 
pool of single-cell transcriptomic profiles with a simulator Splatter [26] (Fig.  2A; 
Additional file 1: Fig. S4). This simulated pool was then used as the seed data and cells 
are randomly selected according to the simulated cell-type proportions (as ground 
truth; see more details in Method). Clustering was further performed on the subsets 
of simulated cells with Seurat to mimic the potential confusion introduced in the 
clustering step (the empirical confusion matrix shown in Additional file  1: Fig. S7). 
The seven methods were then performed on the cell counts obtained from the clus-
tering annotation. Uniquely, we estimated the similarity matrix between cells using a 
KNN graph by calculating the fraction of neighbors for all cells in each cell type that 
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belong to different cell types. It approximated the empirical confusion matrix well 
(Pearson’s R = 0.9987; Mean absolute error=2.977× 10−18 ; Additional file 1: Fig. S8).

We generated three types of simulation data. Among all the simulation scenarios, 
we simulated multiple samples coming from two conditions. In the first type of simu-
lation, we focused on the change of proportion. The proportion of some cell types 
increased, while the proportion of other cell types decreased. The proportion of sam-
ples coming from two conditions all summed up to 1. In the second type of simula-
tion, we designed the simulation based on different cell counts of each cell type. With 
the count of one cell type increased from condition 1 to condition 2, the proportion 
of this cell type increased, while the proportions of the rest cell types decreased. In 

Fig. 2  Evaluation of DCATS with multiple simulation datasets. A The UMAP plots of simulation data with 8 
cell types. B The true proportions of different cell types in default setting (3 replicates in each condition across 
30 runs; the 4 cell types with differential composition abundance have names started with “P”). C The boxplot 
of MCC, F1, AUC, and PRAUC of different methods in bootstrap sampling results with the default setting. D-G 
Comparing multiple methods with Splatter-simulated data by varying the number of replicates (D, E) and 
number of cell types (F, G). “bcANCOM-BC” indicates using bias corrected proportions estimated by DCATS 
as the input of ANCOM-BC [11]. The default number of cell types is 8, and the default number of replicates 
is 3. H The performance of each method in the special case. “DCATS” indicates the results of DCATS using 
total cell count as the normalization term. “dcats_autoRef” indicates using the reference group automatically 
detected by DCATS as the normalization term. “dcats_defRef” indicates using the know true reference group 
as the normalization term. I Detecting variable cell types with multiple covariates, for both categorical and 
continuous types. Data is simulated with Splatter. N.B., only DCATS and Milo support multiple covariates
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the third type of simulation, we included another two confounding covariates - age 
and gender, to test the ability of controlling covariates of different methods.

For the first type of simulation data, in a default setting with 3 replicates in each condi-
tion and 4 out of 8 cell types with differential composition abundance (Fig. 2B), we found 
that DCATS outperforms all other methods (area under ROC curve (AUC): 0.872 vs 
0.86; matthews correlation coefficient (MCC) : 0.63 vs 0.517; F1: 0.779 vs 0.714, respec-
tively for DCATS and the second-best method in each metric; Fig. 2C–G and Additional 
file 1: Table S1, 3, Additional file 1: Fig. S5–6). N.B., DCATS remains the best-performed 
method in all three metrics while the second-best method varies among the alternative 
methods. By ablating the correction of misclustering in DCATS and introducing the 
over-dispersion term in the beta-binomial regression, we observed that both bias cor-
rection and global estimation of over-dispersion contribute to the improvement of over-
all performance (Additional file 1: Table S1-2, Additional file 1: Fig. S6). When varying 
the number of replicates to 2 or 4, or the number of cell types to 10 or 12, we found that 
DCATS consistently outperforms all other methods, mostly by a large margin (Fig. 2D–
G, Additional file 1: Table S1-4, Additional file 1: Fig. S6). Unsurprisingly, the increase 
of replicates improves the performance for almost all methods, especially for DCATS, 
suggesting its capability of estimating biological variability from replicates. It is worth 
mentioning that despite Milo’s unsatisfactory performance in cell type levels, as a tool 
designed for detecting perturbation of cell states in partially overlapping neighborhoods, 
it shows its strength in differential abundance analysis at neighborhood level compared 
to DCATS and speckle. (Additional file 1: Fig. S9–10)

By comparing the results of ANCOM-BC using the observed proportion (ancombc) 
and bias-corrected proportion estimated by DCATS (bcancombc), we found that the 
bias correction step always increased the sensitivity of ANCOM-BC (Additional file 1: 
Table  S1,3). However, the specificity sometimes decreased, and this led to the overall 
similar performance of ancombc and bcancombc. While in DCATS, using bias-cor-
rected proportions led to a higher increase in sensitivity and almost no decrease in spec-
ificity (Additional file 1: Table S1,3).

Next, we conduct the second type of simulation to assess the composition effects in 
the task. The first cell type has a 20 times count increase in condition 2, while counts of 
the rest cell types remain the same. Proportions of each cell type are calculated based 
on the defined cell counts, and the simulation is done based on these cell types’ pro-
portions. With the same total count in 2 conditions, the observed cell count of the first 
cell type shows a huge increase in condition 2, while cell counts of the rest cell types 
decrease (Additional file 1: Fig. S11). We test the performance of different methods using 
this dataset. With the estimated dispersion term, this systematic decrease of proportion 
can be partially modeled by DCATS (DCATS (estPhi_emK): 0.762 vs wtoPhi_emK: 0.190 
in MCC, Fig. 2H, Additional file 1: Table S6). Thus, DCATS achieves higher MCC and F1 
compared to other methods.

To directly address the issue of cell type proportion, we investigated the performance 
of selecting certain cell types as the reference group for normalization, rather than uti-
lizing all remaining cell types (as outlined in detail in the “Method” section). Specifi-
cally, the reference cell types should exhibit no significant abundance differences with 
high confidence. In this simulation, employing three known unchanged cell types as the 
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reference group enabled DCATS to differentiate between actual abundance changes and 
spurious effects caused by other cell types (0.762 to 0.948 in MCC, 0.775 to 0.954 in F1). 
The performance of DCATS improved mainly through the increase in specificity (0.917 
to 0.986, Additional file 1: Table S6). Such improvement is also seen when using 3 refer-
ence cell types automatically recommended by DCATS (0.762 to 0.889 in MCC, 0.775 to 
0.899 in F1).

Moreover, a third simulation was performed to evaluate DCATS’s ability to account 
for additional covariates or to jointly test multiple covariates in association with com-
position abundance for each cell type. Specifically, we simulated ten replicates for each 
condition with different ages and genders. There were a total of eight cell types, of which 
four displayed differential abundance between conditions. In addition, we selected four 
cell types to exhibit confounding effects from both age and gender. Two of these cell 
types exhibit differential abundance (Additional file  1: Table  S5). Even though most 
of these seven methods are based on a linear model framework, DCATS, milo, and 
ANCOMBC are the only three methods designed with the utility to support additional 
covariates testing, while ANCOMBC only supports testing for discrete covariates. scDC, 
as a GLM based method, is in principle able to support covariates, but the interface is 
not implemented. propeller in the speckle package [10] only takes the condition infor-
mation as input but not additional covariates. diffcyt, which uses edgeR [13] for differ-
ential abundance analysis on flow cytometry data also met challenges in incorporating 
different covariates due to its highly specific analysis pipeline designed for flow cytom-
etry data. Therefore, we focus on Milo and ANCOMBC for incorporating covariates, 
while interestingly they fail to effectively control the influence of confounding covari-
ates when performing the analysis (Fig. 2I, Additional file 1: Fig. S12–13). By contrast, 
DCATS achieves improved MCC partly thanks to its capability of jointly modeling addi-
tional covariates. Indeed, DCATS shows good performance in detecting cell types with 
additional covariates for both continuous (age) and discrete (gender) variables (Fig. 2I, 
Additional file 1: Fig. S12–13).

Evaluating DCATS on experimental data sets

To further illustrate the performance of DCATS, we applied DCATS and five other 
methods (Fisher’s exact test, scDC [14], speckle [10], milo [8], and ANCOM-BC [11]) to 
three experimental datasets. As we do not have the KNN matrices required for annotat-
ing cell types in these datasets, similarity matrices are calculated by performing classifi-
cation with SVM over the original cell type annotation.

We first assessed the sensitivity of DCATS using a dataset (Angelidis2019) containing 
single-cell transcriptomic and mass spectrometry-driven proteomic data of whole lungs 
from 3-month-old mice (n = 8) and 24-month-old mice (n = 7) [27]. In this dataset, the 
authors discovered one cluster of cells with a high expression level of S and G2M cell-
cycle marker genes. This cluster contains mainly proliferating cells, thus, should show 
higher abundance in young mice. As these proliferating cells belong to T cells, type-2 
pneumocytes, and alveolar macrophages, these cell types should have higher proportions 
in young mice. Using single-cell transcriptome information, DCATS enabled the detec-
tion of type-2 pneumocytes, and alveolar macrophages, and a subtype of T cells, CD4+ 
T cells, as differentially abundant cell types (Additional file 1: Table S8). In addition, the 
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authors found a relatively increased number of ciliated cells in old mice compared to 
club cells. By deconvoluting bulk RNA sequencing data, the authors found the upregula-
tion of ciliated cell marker genes signature. The increased ratio of ciliated to club cells 
in aged mice is further validated by immunostainings of Foxj1 (ciliated cell marker) and 
CC10 (club cell marker) [27]. Using club cells as the reference group, DCATS enabled 
the detection of this ratio change ( p = 0.0053 , Additional file 1: Table S8).

We then assessed the performance of these six methods on controlling false posi-
tives by applying them to a negative control data set on PBMCs, where no cell type was 
reported to have significant proportion change between 8 lupus patients treated with 
interferon(IFN)-β and 8 control samples [4]. Here, we found that DCATS, speckle and 
ANCOM-BC both have good control of false positives, with no cell types having p < 0.1 
(Fig. 3A). Similarly, Milo also has a good control on false positives when manually setting 
its threshold to 0.2 based on prior knowledge (this threshold is used throughout all data 
sets below; Additional file 1: Table S7). On the other hand, Fisher’s exact test severely 
suffers from type I errors (4 out of 8 cell types passing a significance level at p < 0.01 ); 
scDC also returns three cell types with p < 0.1 , including B cells with p < 0.01.

The third dataset consists of 53,193 epithelial cells from mice’s small intestine and 
organoids [28]. It includes 4 control samples, 2 samples from two days after Salmo-
nella infection, 2 samples from three days after H. polygyrus infection, and 2 samples 
from ten days after H. polygyrus infection. The original study defined eight cell types 
and compared between controls and each stimulation group to identify cell types with 
differential composition abundance through a Poisson regression and Wald test [28]. 
Presumably, since the sample variability was not well considered in the Poisson regres-
sion, the authors used FDR < 1× 10−5 as the cutoff of differential abundant cell types 
between control and simulations.

We do not have the ground truth about which cell types are differentially abundant, 
but for the purpose of evaluating the accuracy of DCATS and other methods, we used 
the findings in the original study of this dataset as the “silver standard.” When re-analyz-
ing this data set, we first noticed that Fisher’s exact test captured all the reported differ-
ential abundant cell types, but also reports lots of differential abundant cell types that are 
regarded as non-differential abundant cell types by other methods in each of the com-
parison pairs (with p < 0.01 ). Similarly, scDC and milo also returns “false positives” in 
each comparing condition pair but occasionally missed reported positives. Surprisingly, 
speckle shows limited power, missing almost all hits. In contrast, DCATS displayed a 
good balance between sensitivity and specificity; it does not return any “false positive” 
(using 0.05 as the significance level) and captures most of the reported differential abun-
dant cell types when comparing the control group and H. polygyrus infection groups. 
When comparing the control groups and Salmonella infection group, we observed a sig-
nificant increase in the proportion of enterocytes, which causes proportions decrease in 
the rest of the cell types. Using the reference group detected by DCATS as the normali-
zation term was able to overcome the influence of enterocytes. The results show that 
enterocyte is the only cell type with differential abundance (Fig. 3B–D, Additional file 1: 
Table S9-10, Additional file 1: Fig. S14).

Furthermore, if we treat the results given in the paper as results of another method, 
we can use the major decisions as the highly possible conclusions. In this case, the 
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performance of each method is evaluated by their similarity with other methods. We can 
find that DCATS provides a consistent conclusion with the majority decisions of each 
cell type in different comparisons, except for the significant proportion change of Goblet 
between control and Hpoly day 10 conditions.

Application of DCATS in complex experiment designs

To demonstrate the utility of DCATS for complex designs, we selected a cohort study 
including 196 hospitalized COVID-19 patients with moderate or severe disease, cor-
responding control group, and patients in the recovering stage. Within this cohort 
study, we selected scRNA-seq data from fresh and frozen PBMC samples with known 

Fig. 3  DCATS gives accurate conclusions for two experimental datasets. “dcats_autoRef” indicates using the 
reference group automatically detected by DCATS as the normalization term. A shown is the proportion 
of each cell types in the Kang dataset [4]. cM, CD14+CD16- monocytes; ncM, CD14+CD16+ monocytes; 
DC, dendritic cells; Mkc, megakaryocytes; Th, CD4+ T cells; B, B cells; Tc, CD8+ T cells; NK, natural killer cells. 
B–D show the proportion of each cell types in the Haber dataset [28]. E, Enterocyte; TA, transit amplifying; 
TAE, TA.Early; EP, Enterocyte.Progenitor; Gob, Goblet. “P” in the first line represents existing proportions’ 
difference according to the original papers, and “N” represents no significant proportions’ difference. “P” in the 
last line represents existing proportions’ difference based on results of milo, and “N” represents no significant 
proportions’ difference. In the rest four lines, “*” represents p-values from 0.05 to 0.1, “**” represents p-values 
from 0.01 to 0.05, “***” represents p-values less than 0.01. “n.s.” means not significant
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metadata. The samples were stratified into five groups: 20 samples from the control 
group, 48 samples from the mild or moderate convalescence group, 19 samples from the 
mild or moderate progression group, 36 samples from the severe or critical convales-
cence group, and 48 samples from the severe or critical progression group [29]. In the 
original study, differential abundance analysis was performed between multiple severity 
groups.

Different from the original study, we leveraged DCATS’s capability to account for con-
founding factors, including age and gender through the GLM framework. We noticed 
both DCATS and the original study identified a few cell types with substantial propor-
tion changes (denoted in by black asterisks in Fig. 4), such as, CD8+ T cells between 
severe progression and convalescence or healthy controls. On the other hand, DCATS 
also uniquely detects several cell types that show a significant proportion difference 
(highlighted in red).

Specifically, DCATS indicates a slightly different proportions of CD8+ T cells between 
the control group and the mild/moderate progression group ( p = 0.067 ). This is con-
sistent with what another study found when analyzing high-dimensional cytometry 
data from 125 COVID-19 patients, corresponding recovered group, and healthy con-
trol group [30]. Even though the significance is moderate, the trend is strong. We also 
observed a significant difference in the proportion of monocytes between the mild/mod-
erate progression group and corresponding recovery group ( p = 0.013 ). This finding is 
consistent with a recent report from Qin and colleagues by using fluorescence-activated 
flow cytometry analysis to track the dynamic changes of monocytes in patients during 
the recovery stage from mild symptoms [31]. DCATS also shows a significant differ-
ence in proportion between the control group and the mild/moderate progression group 

Fig. 4  DCATS is able to find new cell types with differential abundance in Ren dataset [29]. Cell types’ 
proportion and conclusions on the Ren dataset given by DCATS. The significant bars in black color indicate 
that results are the same as the original paper, while the significant bars in red colors indicate newly 
discovered cell types with proportion differences
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( p = 0.024 ) as well as the mild/moderate progression group and corresponding recovery 
group ( p = 0.021 ) regarding B cells. The same influence on B cells is also described in 
the original paper with a stronger signal given by DCATS between the control group 
and the severe/critical progression group ( p = 3.10× 10−4 ) as well as the severe/criti-
cal progression group and corresponding recovery group ( p = 2.48× 10−6 ). These new 
findings show that DCATS is a powerful tool in identifying cell types with significant 
proportion changes while keeping high specificity.

Discussion
Comparing to simple statistical tests like Fisher’s exact test, DCATS preserves high sen-
sitivity while having a good performance in specificity. Through multiple simulation and 
experimental datasets, we demonstrated that DCATS has an excellent overall perfor-
mance and outperforms existing methods. Strikingly, DCATS has strong control of false 
positives but maintains a high level of power.

When benchmarking with other methods, Milo shows the unsatisfactory performance 
when we conducted the differential analysis at cell type level. This is partly because that 
Milo is designed at the neighborhood level, and there is no build-in metric to determine 
the differential abundance at cell type level, hence the proportion of neighborhoods with 
significant difference were used as a surrogate to indicate cell-type level significance. 
Despite the unsatisfactory performance for Milo, it shows its strength in detecting dif-
ferential abundance neighborhoods when compared to other methods, and is a good 
choice when we have data with continuous cell state changes.

As DCATS corrects the misclassification bias based on the similarity matrix, the esti-
mation of this matrix is an important step and can influence the performance of DCATS. 
Although, we found that KNN-based or empirical classification-based similarity matri-
ces function well in general, the estimation of this matrix may be further improved in the 
future, in the light of more benchmarking datasets with accurate cell type annotations.

Lastly, the differential abundance of cell type naturally regards relative abundance. 
Hence, choosing the reference (i.e., non-differential cell types) can potentially affect the 
analysis results. Typically, we assume that the cell type abundance change is relatively 
small, hence using all remaining cell types is our default setting and demonstrate robust 
performance in broad scenarios. On the other hand, if the compositional change is sub-
stantial, all non-differential cell types will be affected and selecting certain cell types as a 
confident reference can reduce such impact, e.g., by DCATS’s automatic recommenda-
tion. Nonetheless, such a large compositional difference is not a typical scenario to apply 
DCATS and we suggest users perform the reference cell selection with caution.

Conclusions
In this works, we introduced DCATS, in a form of beta-binomial regression, for detect-
ing cell types with differential composition abundance. With the bias correction proce-
dure based on a similarity matrix, DCATS provides a robust framework for differential 
composition analysis between conditions. As the input of DCATS is the count matrix 
which includes the number of cells in each cell type for each sample, it can deal with pre-
defined cell type annotation, and can be easily adapted to any other single cell (multi-) 
omics data. This unique feature also allows DCATS to be implemented on data with 
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self-adjusted annotation based on integration of multi-omics data or biological knowl-
edge. We demonstrated the usability of DCATS in both simulated data set and real 
world data set.

Method
Composition correction with clustering similarity matrix

From a scRNA-seq experiment, we can obtain the cell counts x = {x1, ..., xK } of K cell 
types by performing cell clustering, e.g., Louvain method [6] and K-means. If the clus-
tering is unbiased and accurate, it is natural to take the cell type composition abundance 
z proportional to the returned cell count vector n . However, due to the complex underly-
ing structure, the clustering step is often inaccurate and may be systematically biased, 
hence it is crucial to correct the bias on composition abundance introduced by cluster-
ing method. In next subsection, we demonstrate that the clustering similarity matrix M 
(or similarity matrix) can be well approximated, e.g., by KNN graph. Specifically, the ele-
ment mi,j denotes the probability of a cell c in type i assigned to type j by the clustering 
method, namely, P(Ac = j|Ic = i) = mi,j , where Ac, Ic respectively denote the clustering 
assignment and genuine identity of cell c. This also means that M could be asymmetric 
and requires 

∑K
k=1mt,k = 1 with mt,k ≥ 0 for any cell type t.

Given the above definition and a pre-defined clustering similarity matrix M, we could 
have the likelihood of unknown cell type composition vector z on observing the cell 
counts n , as follows,

which is equivalent to a multinomial distribution parametrised by an adjusted composi-
tion abundance vector ν = z ×M.

Algebraically, we could take z = M−1 × ν with inverting the similarity matrix M. 
However, this simplistic treatment does not guarantee that the solution satisfies with 
zt ≥ 0 and zt ≤ 1 for any cell type t. In practice, constraints have been introduced to 
address this optimisation problem, e.g., [15, 16], though it occasionally returns unstable 
solutions.

Here, we introduce an Expectation-Maximization (EM) algorithm to achieve a 
maximum likelihood estimate of the cell type composition z by introducing µj,i as the 
expected probability of clustered cell type j coming from the real cell type i. Though this 
auxiliary variable µj,i functions like the inverse similarity matrix M−1 , its interpretation 
and calculation are different. Here, we could interpret µj,i as the posterior probability of 
clustered cell type j coming from the real cell type i, hence can be calculated in a forward 
way (i.e., the E step) if given an estimated the true composition vector z in a previous 
step, as follows,

(4)

L(z) =P(n|z,M) =

K
∏

j=1

nj
∏

c=1

[

K
∑

i=1

P(Ic = i|z)P(Ac = j|Ic = i)
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∏
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∏
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K
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Within the EM algorithm, once we have the auxiliary variable µ , we can maximize the 
log likelihood in Eq. (4) by taking its derivative as zeros for each cell type, together with 
a Lagrange multiplier on the constraint 

∑K
k=1 zk = 1 . By solving these equations (i.e., 

M-step), we can obtain an updated z with µ calculated from a previous step.

Therefore, by alternating the E step in Eq. (5) and M step in Eq. (6), we can achieve a 
maximum likelihood estimate of corrected cell type composition vector z once the log 
likelihood stops increasing.

Estimation of clustering similarity matrix

As mentioned above, the clustering of single-cell is often inaccurate with systematic 
bias. So we introduce a similarity matrix to describe this kind of misclassification bias. 
We assume that this kind of bias comes from the similarity between different cell types 
and variety within each cell type. Thus, the conditions of samples where our single-cell 
data comes from do not influence the direction of this bias. In other words, misclassifi-
cation error introduced by the clustering process is consistent across all samples coming 
from different conditions.

Currently, DCATS supports three strategies for estimating the confusion matrix: Uni-
form, KNN and classification. Firstly, the uniform confusion matrix is defined as

where K is the number of cell types; I is an identify matrix and ǫ is the level of confusion, 
which are set to 0.05 by default. It describes an unbiased misclassification across all the 
cell types. It means that one cell from a cell type have equal chance to be assigned to rest 
other cell types.

Secondly, the KNN-based similarity matrix is estimated from the knn graph based on 
the transcriptome, e.g., provided by Seurat [23]. It calculates the proportion of neigh-
borhoods that are regarded as other cell types. In this case, DCATS corrects cell pro-
portions mainly based on the information of similarity between different cell types and 
variety within each cell types. By defining nx,j as the number of neighbors for cell x that 
are classified as cell type j, we can calculate KNN-based similarity matrix, e.g., its entry 
mi,j for similarity (misclassification) from cluster i to j as follows:

We realize in some situations, the cell clustering process might not be performed using 
the Seurat pipeline. It is also a common situation where people perform the clustering 
process based on part of the markers which they are interested in. With the development 
of technology, more information can be used for single cell clustering including spatial 

(5)µj,i = P(Ic = i|Ac = j) =
P(Ac = j|Ic = i)P(Ic = i|z)

∑K
t=1 P(Ac = j|Ic = t)P(Ic = t|z)

=
mi,jzi

∑K
t=1mt,jzt

(6)zi =

∑K
j=1 µj,inj

∑K
t=1

∑K
j=1 µj,tnj

.

(7)M
(u) = (1− ǫ(K + 1)/K )I+ ǫ/K

mi,j =

∑xi
x=1

nx,j
∑K

j=1

∑xi
x=1
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information as well as biophysical feature. In above cases, knn matrix given by the Seurat 
pipeline cannot fully capture the bias introduced through the clustering process.

Based on the above reason, we introduce the third way to estimate a similarity matrix. 
The input for estimating the similarity matrix will be a data frame containing a set of 
variables that the user believe will influence the result of the clustering process as well as 
the cell type labels for each cell. We then use 5-fold cross validation and use support vec-
tor machine as the classifier to estimate the similarity matrix.

Detecting differential composition abundance

Generalized linear model

  We assume the corrected cell counts zs,j for cell type j given sample s follow beta-
binomial distribution. We then describe zs,j with a beta-binomial generalized linear 
model(GLM) with a logit link function for each covariate i, as follows,

where we reparameterized with the mean p̄s,j and over dispersion φj as 
αs,j = p̄s,j(1/φj − 1) and βs,j = (1− p̄s,j)(1/φj − 1) . As described below, the mean 
parameter p̄s,j is regressed to a set of covariates under different hypothesis. The weights 
for covariates and φj will be optimized to achieve maximum likelihood, through the aod 
package. The p value can be calculated with a likelihood ratio test by comparing the log 
likelihoods in both alternative and null hypotheses.

Full mode and Null mode In DCATS, we allow using both “full mode” and “null mode” 
to finish the differential abundance analysis. When using null mode, we compare these 
two models:

In this case, we only consider the influence of the factor we are evaluating. When using 
full model, we compare these two models as follows,

where cs and w are respecitvely for the weight and covariate vectors for sample s. Under 
the null hypothesis, the wi will assumed to be 0. In this case, we test the differential abun-
dance of different condition controlling the influence of other confounding covariates.

Fixed overdispersion term

We found out that when the numbers of biological replicates are low, the over-dis-
persion term φ can be over-estimated. Thus, DCATS allows estimating a global over-
dispersion term across all cell types, where we assume that the over-dispersion φj 
remains the same across for any cell type j. To estimate a global dispersion term, we 
fit all cell types in one joint beta-binomial GLM by taking the design matrix as the cell 

(8)
zs,j ∼Binom(ns, ps,j)

ps,j ∼Beta(αs,j ,βs,j)

(9)
H0 : logit(p̄s,j) = w0

H1 : logit(p̄s,j) = w0 + wi × cs,i

(10)
H0 : logit(p̄s,j) = w0 + w⊤cs;wi = 0

H1 : logit(p̄s,j) = w0 + w⊤cs
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type indicators. Then, the dispersion term estimated here is treated as a global disper-
sion and will be taken as a prefixed value when performing the main round GLM for 
each cell type.

Except for the mode we used in main text (Using KNN matrix as the similarity 
matrix and fixing the overdispersion term), three other modes of DCATS are tested 
in the simulation data (Additional file 1: Fig. S2, Additional file 1: Fig. S4 , Additional 
file 1: Fig. S7–11).

•	 “wtoPhi_wtoEM” indicates using basic beta-binomial distribution without bias 
correction or fixing over-dispersion term.

•	 “wtoPhi_emK” indicates without fixing the over dispersion term Phi but clustering 
bias corrected by KNN matrix.

•	 “wtoPhi_emU” indicates without fixing the over dispersion term Phi but cluster-
ing bias corrected by uniform matrix.

•	 “estPhi_wtoEM” indicates using fixing the over dispersion term Phi but no cluster-
ing bias correction.

•	 “estPhi_emK” indicates using fixing the over dispersion term Phi and clustering 
bias corrected by KNN matrix.

•	 “estPhi_emU” indicates using fixing the over dispersion term Phi and clustering 
bias corrected by uniform matrix.

Use reference cell types for normalization

When one cell type has extreme proportion change, the proportions of the rest cell 
types will be largely influenced, which might lead to false positives of differential 
abundance testing. Using known unchanged cell types as reference groups for nor-
malization will offset the influence of massive cell types change. When using the total 
cell number as the normalization term, we have

where values in w⊤ could be zero based on different models. When using the reference 
group as the normalization term, we have

where R denotes the reference group.
We recommend using more than one cell type and more than 25% of total cells as 

the reference group to guarantee the stability of the normalization term.
DCATS also support the recommendation of the cell types used for reference. Namely, 

DCATS first calculates the p-values for each cell type. Then, it orders the cell types from 
high to low based on the p-values and provides the possible reference cell types based 
on this order. Additionally, DCATS calculates the proportion of cell counts for different 
numbers of reference cell types and suggests a recommended number.

(11)logit(E(
zs,j

ns
)) = w0 + w⊤cs

(12)logit(E(
zs,j

∑

r∈R zs,r
)) = w0 + w⊤cs
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Theoretical simulation

The input of DCATS is combined with two parts. The cell count matrix Ci denotes num-
bers of cells we observe for each cell type in each sample coming from same condition i. 
For each analysis, DCATS can only compare cell count matrices coming from two condi-
tion. Another part is the similarity matrix M we describe above.

We first simulated two count matrices C1,C2 directly to demonstrate that introducing 
the similarity matrix to correct the unknown cell type composition vector µ is impor-
tant for the differential composition analysis. The numbers of replicates for condition 
1 and condition 2 were 2 and 3 respectively. The total cell numbers were 2000 for each 
sample in both condition. We defined the genuine proportions of the three cells types 
were [1/3, 1/3, 1/3] and [1/3, 1/2, 1/6] in conditions 1 and 2, respectively. Using genuine 
proportions times 70 as concentration parameters, we generated the unknown cell type 
composition vector of condition 1 and condition 2 from Dirichlet distribution. For each 
sample, the total cell number 2000 and µi were used to generate a cell count vector from 
multinomial distribution. Based on the similarity matrix we designed (Fig. 1B), the mis-
classification errors were introduced by reassigning cells into different cell types.

Next, we tried to demonstrate the effectiveness of the bias correction step. We first 
used DCATS and Fisher’s exact test to perform the differential composition analysis. 
We then used the similarity matrix we designed to correct the miscalssification error 
we introduced. In this case, we used the true similarity matrix to do this bias correc-
tion process. For each simulation, we repeated the above process 50 times and calcu-
late MCC, sensitivity and specificity. Overall, we got 50 Matthews correlation coefficient 
(MCC), sensitivity and specificity for 50 simulation.

Simulation with single‑cell RNA gene count matrices

When analyzing single cell RNA sequencing (scRNA-seq) data, we always start from 
gene expression matrix. Here, we designed a simulation process to mimic the process 
from getting gene expression matrix to analyzing differential compositions. We first used 
splatter [26] to generate a large cell pool including different cell types. We then gener-
ated a proportion vector p(i)s  for each sample s from condition i following a Dirichlet dis-
tribution. Defined genuine proportions were used as concentration parameters. Given a 
total cell number, a cell count vector µ(i)

s  was generated from multinomial distribution.
In a default setting, each condition contained 3 replicates, and 4 out of 8 cells types 

with differential composition abundance. The genuine proportion was [0.1, 0.1, 0.1, 0.1, 
0.1, 0.1, 0.2, 0.2] in condition 1 and [0.05, 0.15, 0.1, 0.1, 0.1, 0.2, 0.2, 0.1] in condition 2. 
For each sample, the total cell number was 3000. We also changed the number of rep-
licates to 2 and 4, and the number of cell types to 10 and 12. When the number of cell 
types equalled to 10, the genuine proportions were [0.05, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1, 0.05, 
0.2, 0.15] and [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] in condition 1 and condition 2, 
respectively. When the number of cell types was 12, the bass proportions were [0.1, 0.1, 
0.1, 0.1, 0.05, 0.05, 0.05, 0.15, 0.05, 0.05, 0.1, 0.1] and [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 
0.05, 0.05, 0.05, 0.05].

Based on the cell count vector µ(i)
s  , we randomly selected cells as well as their gene 

expression profiles. We can therefore got a gene expression matrix for each sample. 
Then, we used Seurat [23] pipeline to do the pre-processing as well as the clustering 
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process. The cluster annotation of each cell was treated as input for the downstream 
analysis. We compared DCATS with other five tests designed for differential composi-
tion analysis which are Fisher’s exact test, scDC [14], diffcyt [12], milo [8], and speckle 
[10] (Additional file 1: Fig. S1).

As milo aims to detect cell stage perturbations based on k-nearest neighbor graphs but 
not cell type levels, we also did the differential abundance testing on the neighborhoods 
level by assuming all the neighborhoods were influenced by condition if that cell types 
have differential proportions. In this case, we only considered neighborhoods having 
more than 80% of cells coming from one cell type and used neighborhoods detected by 
milo for testing using Fisher’s exact test, speckle [10] and DCATS. For each scenario, we 
pooled the results coming from 30 times simulations together to calculate the F1 score, 
MCC, AUC and area under the precision-recall curve (PRAUC). The confidence interval 
of F1 score, MCC, AUC and PRAUC were calculated by bootstrapping the testing results 
50 times.

Adding other confounding covariates

To demonstrate that DCATS can control the influence of confounding covariates, we 
designed a simulation with eight cell types. First four of them had different proportions 
in different conditions, and rest four of them had same proportions in different condi-
tions. We also added two confounding covariates, age and gender which influenced the 
proportions of four among eight cell types. Using 15 years old as the baseline, one year 
increase in age led to 0.05 decrease of concentration parameters in cell type 1 and cell 
type 5. It also led to 0.05 increase of concentration parameters in cell type 2 and cell type 
6. Comparing to female, male had 2 increase of concentration parameters in cell type 2 
and 6, 2 decrease in cell type 1 and cell type 5. (Additional file 1: Table S5) The gender for 
each sample was randomly selected from female or male. The age was randomly select 
from 15 to 45. The influence of condition, age and gender was additive and result in the 
final proportion of each cell types in each biological replicate. Overall, we had 10 bio-
logical replicates in each condition with different ages and genders. We simulated pro-
portions based on the true designed proportions from a Dirichlet distribution and cell 
numbers based on the simulated proportions from the multinomial distribution. Based 
on the simulated cell counts, we simulated gene expression matrices and did the differ-
ential abundance analysis as described previously.

Simulation starting from cell counts differences

To demonstrate that DCATS can handle spurious effects arising from compositionality 
characteristics — namely, when the proportion of one cell type increases, the propor-
tions of the remaining cell types decrease — we conducted a simulation scenario where 
one cell type had differential abundance with increased counts, while the remaining cell 
types had the same counts. In this case, the remaining cell types had lower proportions 
than the original composition, but these proportion differences were merely side effects 
and should not be detected as differential abundance.

We simulated eight cell types with count units [1, 4, 4, 4, 4, 4, 4, 4] in condition 1 and 
[20, 4, 4, 4, 4, 4, 4, 4] in condition 2. The first cell type had a 20-fold count increase 
in condition 2, while the remaining cell types remained the same. We calculated the 
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proportions of each cell type and used these proportions for the simulation. The pro-
portion of each cell type in condition 1 was [0.034, 0.138, 0.138, 0.138, 0.138, 0.138, 
0.138, 0.138], while the proportion of each cell type in condition 2 was [0.417, 0.083, 
0.083, 0.083, 0.083, 0.083, 0.083, 0.083]. We simulated three replicates for each condi-
tion. When the total count remained at 3000 in both condition 1 and condition 2, the 
observed cell count of the first cell type showed a huge increase in condition 2, while 
the cell counts of the remaining cell types decreased (Additional file 1: Fig. S11). The cell 
selection and testing procedures were the same as in the above section of simulating cell 
counts matrices.

Methods for benchmark

Fisher’s exact test

As Fisher’s exact test does not support multiple replicates, we added the cell counts 
numbers of all replicates in each condition and tested based on the sum of cell counts.

diffcyt

diffcyt [12] is a package designed for differential discovery analyses in high-dimensional 
cytometry data. In order to adopt it to analyze scRNA-seq data. We first create data 
template using random generated flowset data, then replaced it with meta-data of data 
we simulate. We used default for the rest setting.

ANCOMBC

ANCOMBC [11] is designed for differential abundance analysis for microbiome data. 
We use the count matrix and design matrix to create TreeSummarizedExperiment 
objects [32]. These objects are used as input for ANCOMBC. Rest parameters are set 
as default. The count matrices we used include the count matrix calculated from Seu-
rat clustering results (ancombc), and the bias-corrected count matrices calculated from 
DCATS (bcancombc).

milo

milo [8] aims to detect cell state changes in neighborhoods level, while both our simu-
lated data and real-world data only have ground truth in cell type level. Thus, we linked 
neighborhoods with cell type based on the majority cell in that neighborhoods as what 
milo’s authors did in the milo paper [8]. We first used FDR<0.1 as threshold to define 
whether one neighborhood has cell state changes, and calculated how many more neigh-
borhoods one condition has dominant size comparing to the other condition as well as 
the proportion of this difference among all neighborhoods that belong to that cell type. 
This proportion is regarded as perturbation level. Inferring from the Kang dataset [4] 
which works as the negative control, we defined that one cell type shows significant pro-
portion changes when the perturbation level is larger than 20%. Due to the less variety 
of simulated data, this threshold is setted to be 0 in simulated data in order to get better 
performance of milo.
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speckle and scDC

For speckle [10] and scDC [14], we used default setting and standard pipeline as 
described in the github page/tutorials of these two tools.

Supplementary information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​023-​02980-3.

Additional file 1. Supplementary Table S1-S10 and Supplementary Figures S1-S14. Additional file 1 contains Sup-
plementary Figures and Supplementary Tables.

Additional file 2. Review history.

Acknowledgements
We thank members in Ho lab, Huang lab from the University of Hong Kong, and Xuegong Zhang lab from Tsinghua 
University, especially Aaron Kwok, Weizhong Zheng, Ken Yu, and Junyi Chen, for fruitful discussions.

Review history
The review history is available as Additional file 2.

Peer review information
Andrew Cosgrove and Anahita Bishop were the primary editors of this article and managed its editorial process and peer 
review in collaboration with the rest of the editorial team.

Authors’ contributions
YH and JWKH conceived the ideas and designed the study. XL developed the method, implemented the R package, 
and performed all the experiments. CC supported the initial development of the method, collected some data, and 
supported evaluation. KM performed some simulation experiments and analysis. XL, YH, and JWKH wrote the paper. All 
authors read and approved the final version of the manuscript.

Funding
This work was supported by AIR@InnoHK administered by Innovation and Technology Commission.

Availability of data and materials
All datasets used in the paper are previously published and can be found in NCBI GEO database: GSE96583 [4], GSE92332 
[28], and GSE158055 [29].
 This algorithm is implemented as an R package named DCATS which is available at Github [33] under the MIT license. 
The codes for simulation and analysis are avalible in Github [34]. The source code used in this paper is deposited in 
Zenodo with DOI: 10.5281/zenodo.7969592 [35].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors have approved the manuscript for submission.

Competing interests
The authors declare that they have no competing interests.

Received: 21 March 2022   Accepted: 7 June 2023

References
	1.	 Paik DT, Cho S, Tian L, Chang HY, Wu JC. Single-cell RNA sequencing in cardiovascular development, disease and 

medicine. Nat Rev Cardiol. 2020;17(8):457–73.
	2.	 Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 

2018;14(8):479–92.
	3.	 Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, Mauck WM, et al. Cell Hashing with barcoded antibodies 

enables multiplexing and doublet detection for single cell genomics. Genome Biol. 2018;19(1):1–12.
	4.	 Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, et al. Multiplexed droplet single-cell RNA-

sequencing using natural genetic variation. GSE96583. Gene Expression Omnibus. 2017. https://​www.​ncbi.​nlm.​nih.​
gov/​geo/​query/​acc.​cgi?​acc=​GSE96​583.

	5.	 Huang Y, McCarthy DJ, Stegle O. Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without geno-
type reference. Genome Biol. 2019;20(1):1–12.

	6.	 Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech 
Theory Exp. 2008;2008(10):P10008.

https://doi.org/10.1186/s13059-023-02980-3
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96583
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96583


Page 21 of 21Lin et al. Genome Biology          (2023) 24:151 	

	7.	 Büttner M, Ostner J, Müller C, Theis F, Schubert B. scCODA is a Bayesian model for compositional single-cell data 
analysis. Nat Commun. 2021;12(1):1–10.

	8.	 Dann E, Henderson NC, Teichmann SA, Morgan MD, Marioni JC. Differential abundance testing on single-cell data 
using k-nearest neighbor graphs. Nat Biotechnol. 2021;40(2):1–9.

	9.	 Zhao J, Jaffe A, Li H, Lindenbaum O, Sefik E, Jackson R, et al. Detection of differentially abundant cell subpopulations 
in scRNA-seq data. Proc Natl Acad Sci. 2021;118(22):e2100293118.

	10.	 Phipson B, Sim CB, Porrello ER, Hewitt AW, Powell J, Oshlack A. propeller: testing for differences in cell type propor-
tions in single cell data. Bioinformatics. 2022;38(20):4720–6.

	11.	 Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11(1):1–11.
	12.	 Weber LM, Nowicka M, Soneson C, Robinson MD. diffcyt: Differential discovery in high-dimensional cytometry via 

high-resolution clustering. Commun Biol. 2019;2(1):1–11.
	13.	 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital 

gene expression data. Bioinformatics. 2010;26(1):139–40.
	14.	 Cao Y, Lin Y, Ormerod JT, Yang P, Yang JY, Lo KK. scDC: single cell differential composition analysis. BMC Bioinformat-

ics. 2019;20(19):1–12.
	15.	 Fischer M, Strauch B, Renard BY. Abundance estimation and differential testing on strain level in metagenomics 

data. Bioinformatics. 2017;33(14):i124–32.
	16.	 Lindner MS, Renard BY. Metagenomic abundance estimation and diagnostic testing on species level. Nucleic Acids 

Res. 2013;41(1):e10–e10.
	17.	 Lesnoff M, Lancelot R. aod: Analysis of Overdispersed Data. 2012. R package version 1.3.2. https://​cran.r-​proje​ct.​org/​

packa​ge=​aod. Accessed 16 Mar 2020.
	18.	 Schafflick D, Xu CA, Hartlehnert M, Cole M, Schulte-Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis 

of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11(1):1–14.
	19.	 Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 

2019;15(6):e8746.
	20.	 Andrews TS, Kiselev VY, McCarthy D, Hemberg M. Tutorial: guidelines for the computational analysis of single-cell 

RNA sequencing data. Nat Protocol. 2021;16(1):1–9.
	21.	 Pasquini G, Arias JER, Schäfer P, Busskamp V. Automated methods for cell type annotation on scRNA-seq data. Com-

put Struct Biotechnol J. 2021;19:961-9.
	22.	 Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJ, et al. A comparison of automatic cell identification 

methods for single-cell RNA sequencing data. Genome Biol. 2019;20(1):1–19.
	23.	 Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM III, et al. Comprehensive integration of single-cell 

data. Cell. 2019;177(7):1888–902.
	24.	 Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 

2018;19(1):1–5.
	25.	 Kaufmann M, Evans H, Schaupp AL, Engler JB, Kaur G, Willing A, et al. Identifying CNS-colonizing T cells as potential 

therapeutic targets to prevent progression of multiple sclerosis. Med. 2021;2(3):296–312.
	26.	 Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 

2017;18(1):1–15.
	27.	 Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, et al. An atlas of the aging lung mapped by 

single cell transcriptomics and deep tissue proteomics. Nat Commun. 2019;10(1):1–17.
	28.	 Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, et al. A single-cell survey of the small intestinal epithe-

lium. GSE92332. Gene Expression Omnibus. 2017. https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE92​332.
	29.	 Ren X, Wen W, Fan X, Hou W, Su B, Cai P, et al. COVID-19 immune features revealed by a large-scale single-cell tran-

scriptome atlas. GSE158055. Gene Expression Omnibus. 2021. https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​
acc=​GSE15​8055.

	30.	 Mann ER, Menon M, Knight SB, Konkel JE, Jagger C, Shaw TN, et al. Longitudinal immune profiling reveals key 
myeloid signatures associated with COVID-19. Sci Immunol. 2020;5(51).

	31.	 Qin S, Jiang Y, Wei X, Liu X, Guan J, Chen Y, et al. Dynamic changes in monocytes subsets in COVID-19 patients. Hum 
Immunol. 2021;82(3):170–6.

	32.	 Huang R, Soneson C, Ernst FG, Rue-Albrecht KC, Yu G, Hicks SC, et al. TreeSummarizedExperiment: a S4 class for data 
with hierarchical structure. F1000Research. 2020;9:1246.

	33.	 Lin X, Chau C, Ma K, Huang Y, W K Ho J. DCTAS: differential composition analysis for flexible single-cell experimental 
designs. 2023. https://​github.​com/​holab-​hku/​DCATS/​tree/​master. Accessed 21 Apr 2023.

	34.	 Lin X, Chau C, Ma K, Huang Y, W K Ho J. DCTAS analysis. 2023. https://​github.​com/​linxy​29/​DCATS_​anlys​is. Accessed 6 
Mar 2023.

	35.	 Lin X, Chau C, Kun M, Huang Y, Ho JWK. DCATS: differential composition analysis for flexible single-cell experimental 
designs. Zenodo. 2023. https://​doi.​org/​10.​5281/​zenodo.​79695​92.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://cran.r-project.org/package=aod
https://cran.r-project.org/package=aod
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92332
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158055
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158055
https://github.com/holab-hku/DCATS/tree/master
https://github.com/linxy29/DCATS_anlysis
https://doi.org/10.5281/zenodo.7969592

	DCATS: differential composition analysis for flexible single-cell experimental designs
	Abstract 
	Background
	Results
	High-level description of DCATS
	Correcting misclustering through DCATS improves composition analysis
	Benchmarking DCATS with simulated data
	Evaluating DCATS on experimental data sets
	Application of DCATS in complex experiment designs

	Discussion
	Conclusions
	Method
	Composition correction with clustering similarity matrix
	Estimation of clustering similarity matrix
	Detecting differential composition abundance
	Generalized linear model
	Fixed overdispersion term

	Use reference cell types for normalization
	Theoretical simulation
	Simulation with single-cell RNA gene count matrices
	Adding other confounding covariates
	Simulation starting from cell counts differences
	Methods for benchmark
	Fisher’s exact test
	diffcyt
	ANCOMBC
	milo
	speckle and scDC


	Anchor 29
	Acknowledgements
	References


