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Abstract 

We propose a polynomial algorithm computing a minimum plain-text representation 
of k-mer sets, as well as an efficient near-minimum greedy heuristic. When compress-
ing read sets of large model organisms or bacterial pangenomes, with only a minor 
runtime increase, we shrink the representation by up to 59% over unitigs and 26% 
over previous work. Additionally, the number of strings is decreased by up to 97% over 
unitigs and 90% over previous work. Finally, a small representation has advantages 
in downstream applications, as it speeds up SSHash-Lite queries by up to 4.26× over 
unitigs and 2.10× over previous work.
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Background
Motivation

The field of k-mer-based methods has seen a surge of publications in the last years. 
Examples include alignment-free sequence comparison [1–3], variant calling and geno-
typing  [4–8], transcript abundance estimation  [9], metagenomic classification  [10–13], 
abundance profile inference [14], indexing of variation graphs [15, 16], estimating the sim-
ilarity between metagenomic datasets  [17], species identification  [18, 19] and sequence 
alignment to de Bruijn graphs [20–23]. All these methods are based mainly on k-mer sets, 
i.e. on the existence or non-existence of k-mers. They ignore further information like for 
example predecessor and successor relations between k-mers which are represented by 
the topology of a de Bruijn graph [24–26].

On the other hand, many classical methods such as genome assemblers  [26–35] 
and related algorithms  [36–38], are based on de Bruijn graphs and their topology. To 
increase the efficiency of these methods, the graphs are usually compacted by contract-
ing all paths where all inner nodes have in- and outdegree one. These paths are com-
monly known as unitigs, and their first usage can be traced back to  [39]. Since unitigs 
contain no branches in their inner nodes, they do not alter the topology of the graph, 

*Correspondence:   
sebastian.schmidt@helsinki.
fi; shahbaz.khan@cs.iitr.ac.in; 
alexandru.tomescu@helsinki.fi

1 Department of Computer 
Science, University of Helsinki, 
Helsinki, Finland
2 Department of Computer 
Science and Engineering, Indian 
Institute of Technology Roorkee, 
Roorkee, India
3 Faculty of Computer Science, 
Dalhousie University, Halifax, 
Canada
4 Department of Environmental 
Sciences, Informatics 
and Statistics, Ca’ Foscari 
University of Venice, Venice, Italy
5 ISTI-CNR, Pisa, Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-02968-z&domain=pdf
http://orcid.org/0000-0003-4878-2809
http://orcid.org/0000-0001-9352-0088
http://orcid.org/0000-0002-8003-9225
http://orcid.org/0000-0003-0724-7092
http://orcid.org/0000-0002-5747-8350


Page 2 of 32Schmidt et al. Genome Biology          (2023) 24:136 

and in turn enable the exact same set of analyses. There are highly engineered solutions 
available to compute a compacted de Bruijn graph by computing unitigs from any set 
of strings in memory [23] or with external memory [33, 40, 41]. Incidentally, the set of 
unitigs computed from a set of strings is also a way to store a set of k-mers without rep-
etition, and thus in reasonably small space. However, the necessity to preserve the topol-
ogy of the graph makes unitigs an inferior choice to represent k-mer sets, as the sum 
of their length is still far from optimal, and they consist of many separate strings. The 
possibility to ignore the topology for k-mer-based methods opens more leeway in their 
representation that can be exploited to reduce the resource consumption of existing and 
future bioinformatics tools.

The need for such representations becomes apparent when observing the amount 
of data available to bioinformaticians. For example, the number of complete bacterial 
genomes available in RefSeq [42] more than doubled between May 2020 and July 2021 
from around 9000  [43] to around 21,000. And with the ready availability of modern 
sequencing technologies, the amount of genomic data will increase further in the next 
years. In turn, analysing this data requires an ever growing amount of computational 
resources. But this could be relieved through a smaller representation that reduces the 
RAM usage and speeds up the analysis tools, and thereby allows to run larger pipelines 
using less computational resources. To fulfil this goal, a plain text representation would 
be the most useful: if the representation has to be decompressed before usage, then this 
likely erases the savings in RAM and/or adds additional runtime overhead. Formally, 
a plain text representation is a set of strings that contains each k-mer from the input 
strings (forward, reverse-complemented, or both) and no other k-mer. We denote such 
a set as a spectrum preserving string set (SPSS). Note that this definition is different from 
the SPSS defined by Rahman and Medvedev [44], who consider an SPSS to include the 
additional restriction that each k-mer must be present at most once. Such a plain text 
representation has the great advantage that some tools (like, e.g. Bifrost’s query  [23]) 
can use it without modification. We expect that even those tools that require modifica-
tions would not be hard to modify (like, e.g. SSHash [45] which we modified here as an 
example).

Related work

The concept of storing a set of k-mers in plain text without repeating k-mers to achieve 
a smaller and possibly simpler representation has recently been simultaneously discov-
ered and named spectrum preserving string sets [without k-mer repetition] by Rahman 
and Medvedev [44] as well as simplitigs by Břinda, Baym and Kucherov [43]. To avoid 
confusion with our redefinition of the SPSS, we call this concept simplitigs in our work. 
Both Rahman and Medvedev and Břinda, Baym and Kucherov propose an implementa-
tion that greedily joins consecutive unitigs to compute such a representation. The UST 
algorithm by Rahman and Medvedev works on the node-centric de Bruijn graph of the 
input strings and finds arbitrary paths in the graph starting from arbitrary nodes. Each 
node is visited exactly by one path, and whenever a path cannot be extended forwards 
(because a dead-end was found, or all successor nodes have been visited already), then 
a new path is started from a new random node. Before a new path is started this way, if 
any successor node of the finished path marks the start of a different path, then the two 
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paths are joined. During the traversal, the unitigs of the visited nodes are concatenated 
(without repeating the k − 1 overlapping characters) and those strings are the final out-
put. Břinda, Baym and Kucherov’s greedy algorithm to compute simplitigs (for which 
the authors provide an implementation under the name ProphAsm [43]) does not con-
struct a de Bruijn graph, but instead collects all k-mers into a hash table. Then it extends 
arbitrary k-mers both forwards and backwards arbitrarily until they cannot be extended 
anymore, without repeating any k-mers. The extended k-mers are the final output.

Both heuristics greatly reduce the number of strings (string count, SC) as well as the 
total amount of characters in the strings (cumulative length, CL) required to store a k-
mer set. The reduction in CL directly relates to a lower memory consumption for storing 
a set of strings, but also the reduction in SC is very useful. For example, when storing a 
set of strings, not only the strings need to be stored, but also some index structure tell-
ing where they start and end. This structure can be smaller if less strings exist. There 
might even be cases where by increasing CL and decreasing SC, the overall size of the 
representation of the string set (strings + index structure) can be decreased. However, 
to stay independent of any specific data structure we only optimise CL. Břinda, Baym 
and Kucherov show that both SC and CL are greatly reduced for very tangled de Bruijn 
graphs, like graphs for single large genomes with small k-mer length and pangenome 
graphs with many genomes. Additionally they show merits of using heuristic simplit-
igs in downstream applications like an improvement in run time of k-mer queries using 
BWA  [46], as well as a reduction in space required when storing heuristic simplitigs 
compressed with general-purpose compressors over storing unitigs compressed in the 
same way. Rahman and Medvedev show a significant reduction in SC and CL on various 
data sets as well, and also show a reduction in space required to store heuristic simplitigs 
over unitigs when compressed with general-purpose compressors. Khan et al. [40] also 
provide an overview of using heuristic simplitigs for various genomes, including also a 
human gut metagenome.

The authors of both papers also give a lower bound on the cumulative length of sim-
plitigs, and show that their heuristics achieve representations with a cumulative length 
very close to the lower bound for typical values of k (31 for bacterial genomes and 51 
for eukaryotic genomes). Břinda, Baym and Kucherov also experiment with lower values 
of k ( < 20 for bacterial genomes and < 30 for eukaryotic genomes) which make the de 
Bruijn graph more dense to almost complete, and show that in these cases, their heuris-
tic does not get as close to the lower bound as for larger values of k. Further, the authors 
of both papers consider whether computing minimum simplitigs without repeating 
k-mers might be NP-hard. This has recently been disproven by Schmidt and Alanko [47], 
and in fact simplitigs with minimum cumulative length can be computed in linear time 
by using a subset of the matchtig algorithm. Their algorithm constructs a bidirected arc-
centric de Bruijn graph in linear time using a suffix tree, and then Eulerises it by inserting 
breaking arcs. It then computes a bidirected Eulerian circuit in the Eulerised graph and 
breaks it at all breaking arcs. The strings spelled by the resulting walks are the optimal 
simplitigs, named Eulertigs. Specifically, they leave out all parts from the matchtigs algo-
rithm that relate to concatenating unitigs by repeating k-mers, and instead only concat-
enate consecutive unitigs in an optimal way. In line with the previous results about the 
lower bounds [43, 44], Eulertigs are only marginally smaller than the strings computed 
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by previous heuristics. All these suggest that no further progress is possible when k-mer 
repetitions are not allowed in a plain text representation.

There are already tools available that use simplitigs. The compacted de Bruijn graph 
builder cuttlefish2 [40] has an option to output simplitigs instead of maximal unitigs. A 
recent proposal for a standardised file format for k-mer sets explicitly supports simplit-
igs [48]. Also the k-mer dictionary SSHash [45] uses simplitigs to achieve a smaller rep-
resentation and to answer queries more efficiently. Here, the higher efficiency is achieved 
both by reducing the space required to store the k-mers themselves, but also due to the 
lower string count reducing the size of the index data structures on top. Further, a recent 
proposal to index genomic sequences as opposed to k-mer sets works with simplitigs 
without modification [49], and with minor extra book-keeping also for general SPSSs. In 
that work, the size of the SPSS is very minor compared to the size of the index, however, 
major components of the index may be smaller if the SPSS contains less strings, which 
can be achieved by using greedy matchtigs. Our algorithms were also integrated into 
the external-memory de Bruijn graph compactor GGCAT  [41], which was easy to do 
(source: personal communication with Andrea Cracco).

For compressing multiple k-mer sets, in [50] the authors use an algorithm similar to 
ProphAsm and UST that separates the unique k-mer content of each set from the k-mer 
content shared with other sets. For compressing k-mer sets with abundances, the plain 
text representation REINDEER  [51] uses substrings of unitigs with k-mers of similar 
abundance, called monotigs. In the wider field of finding small representations of k-mer 
sets that are not necessarily in plain text, there exists for example ESSCompress  [52], 
which uses an extended DNA alphabet to encode similar k-mers in smaller space.

Our contribution

In this paper we propose the first algorithm to find an SPSS of minimum size (CL). 
Moreover, we show that a minimum SPSS with repeated k-mers is polynomially solv-
able, based on a many-to-many min-cost path query and a min-cost perfect matching 
approach. We further propose a faster and more memory-efficient greedy heuristic to 
compute a small SPSS that skips the optimal matching step, but still produces close to 
optimal results in CL, and even better results in terms of SC.

Our experiments over references and read datasets of large model organisms and 
bacterial pangenomes show that the CL decreases by up to 26% and the SC by up to 
90% over UST or ProphAsm (on larger datasets, sometimes UST cannot be run because 
BCALM2 cannot be run, and sometimes ProphAsm cannot be run because it does not 
use external memory). Compared to unitigs, the CL decreases by up to 59% and SC by 
up to 97%. These improvements come often at just minor costs, as computing our small 
representation (which includes a run of BCALM2) takes less than twice as long than 
computing unitigs with BCALM2, and takes less than 37% longer in most cases. Even if 
the memory requirements for large read datasets increase, they stay within the limits of 
a modern server.

Finally we show that besides the smaller size of a minimum SPSS, it also has advan-
tages in downstream applications. As an example of a k-mer-based method, we query 
our compressed representation with the tools SSHash  [45] and Bifrost  [23]. These are 
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state-of-the-art tools supporting k-mer-based queries in genomic sequences, using a 
representation of a k-mer set as a set of unitigs. By simply replacing unitigs with the 
strings produced by our greedy heuristic, and without modifications to Bifrost and a 
minor modification to SSHash disabling features that require unique k-mers, we get a 
speedup of up to 4.26× over unitigs, and up to 2.10× over strings computed by UST and 
ProphAsm. We call the modified version of SSHash “SSHash-Lite”.

Results
Basic graph notation

We give detailed definitions for our notation below in the “Preliminaries” section, but give 
an intuition about the required notation for the results section here already. Note that our 
notation deviates from standard mathematical bidirected graph notations, but it is useful 
in practice as it allows to implement bidirected graphs on top of standard graph libraries. 
We assume that the reader is familiar with the general concept of de Bruijn graphs.

Our bidirected graphs are arc-centric bidirected de Bruijn graphs. Arc-centric de 
Bruijn graph means that k-mers are on the arcs, and nodes represent k − 1 overlaps 
between k-mers. We represent the bidirected graph as doubled graph, i.e. by having 
a separate forward and reverse arc for each k-mer and a separate forward and reverse 
node for each k − 1 overlap. In this graph, binodes are ordered pairs (v, v−1) of nodes 
that are reverse complements of each other, and biarcs are ordered pairs (e, e−1) of arcs 
that are reverse complements of each other. Two biarcs (e, e−1) and (f , f −1) are consecu-
tive if the normal arcs e and f are consecutive, i.e. the f leaves the node entered by e. A 
biwalk is a sequence of consecutive biarcs. If a biwalk visits a biarc, then it is considered 
to be covering both directions of the biarc. See Fig. 1a for an example.

Matchtigs as a minimum plain text representation of k‑mer sets

We introduce the matchtig algorithm that computes a character-minimum SPSS for a 
set of genomic sequences. While former heuristics (ProphAsm, UST) did not allow to 
repeat k-mers, our algorithm explicitly searches for all opportunities to reduce the char-
acter count in the SPSS by repeating k-mers. Consider for example the arc-centric de 
Bruijn graph in Fig. 2a. When representing its k-mers without repetition as in Fig. 2b, 
we need 43 characters and 7 strings. But if we allow to repeat k-mers as in Fig. 2d, we 
require only 39 characters and 5 strings. It turns out that structures similar to this 

Fig. 1  Examples of de Bruijn graphs. Binodes are surrounded by a dashed box, where self-complemental 
binodes contain only one graph node. a A de Bruijn graph of the strings TTC​TGA​ and GTC​TGT​. The colored 
and patterned lines are an arc-covering set of biwalks. b A de Bruijn graph containing two self-complemental 
nodes. The colored and patterned lines are a set of biwalks that visit each biarc exactly once. c a de Bruijn 
graph containing a self-complemental biarc. The bold colored line is a biwalk that visits each biarc exactly 
once
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example occur often enough in real genome graphs to yield significant improvements in 
both character and string count of an SPSS.

Similar to previous heuristics, our algorithm works on the compacted bidirected de 
Bruijn graph of the input sequences. However, we require an arc-centric de Bruijn graph, 
but this can be easily constructed from the node-centric variant (see the “Building a 
compacted bidirected arc-centric de Bruijn graph from a set of strings” section). In this 
graph, we find a min-cost circular biwalk that visits each biarc at least once, and that can 
jump between arbitrary nodes at a cost of k − 1 . This formulation is very similar to the 
classic Chinese postman problem  [53], formulated as follows: find a min-cost circular 
walk in a directed graph that visits each arc at least once. This similarity allows us to 
adapt a classic algorithm from Edmonds and Johnson that solves the Chinese postman 
problem [54] (the same principle was applied in [55]). They first reduce the problem to 
finding a min-cost Eulerisation via a min-cost flow formulation, and then further reduce 
that to min-cost perfect matching using a many-to-many min-cost path query between 
unbalanced nodes. In a similar work [56], the authors solve the Chinese postman prob-
lem in a bidirected de Bruijn graph by finding a min-cost Eulerisation via a min-cost flow 
formulation. As opposed to [54, 55] and us, in [56] the authors propose to solve the min-
cost flow problem directly with a min-cost flow solver. We believe this to be infeasible 
for our problem, since the arbitrary jumps between nodes require the graph in the flow 
formulation to have a number of arcs quadratic in the number of nodes.

Our resulting algorithm is polynomial but while it runs fast for large bacterial pange-
nomes, it proved practically infeasible to build the matching instance for very large 
genomes ( ≥ 500Mbp). This is because each of the min-cost paths found translates 
into roughly one edge in the matching graph, and the number of min-cost paths raises 
quadratically if the graph gets denser. Thus, our algorithm ran out of memory when 
constructing it for larger genomes, and for those where we were able to construct the 

Fig. 2  Different SPSSs computed on an arc-centric de Bruijn graph k = 5 . For simplicity, the reverse 
complements of all nodes and arcs are omitted. a The original de Bruijn graph in compacted form has 13 
unitigs with 70 total characters. b Example of simplitigs with 7 strings and 43 total characters. c Example of 
greedily approximated matchtigs with 6 strings and 40 total characters. d Example of matchtigs with 5 strings 
and 39 total characters
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matching instance, the matcher itself suffered from integer overflows, since it uses 
32-bit integers to store the instance. Hence, for practical purposes, we introduce a 
greedy heuristic to compute approximate matchtigs. This heuristic does not build the 
complete instance of the matching problem, but just greedily chooses the shortest path 
from each unbalanced node to Eulerise the graph. This reduces the amount of paths per 
node to at most one, and as a result, the heuristic uses significantly less memory, runs 
much faster, and achieves near optimal speedups when run with multiple threads (see 
Additional file 1: Supplemental figure S1). While it can in theory produce suboptimal 
results as in Fig. 2c, in practice, the size of the greedily computed strings is very close to 
that of matchtigs, and the number of strings is always smaller.

Moreover, the minimality of matchtigs allows us to exactly compare, for the first time, 
how close heuristic algorithms to compute simplitigs are to optimal SPSS (on smaller 
genomes and on bacterial pangenomes, due to the resource-intensiveness of optimal 
matchtigs).

Our implementations are available on GitHub (https://​github.​com/​algbio/​match​tigs) 
as both a library and a command line tool, both written in Rust. They support both GFA 
and fasta file formats with special optimisations for fasta files produced by BCALM2 or 
GGCAT. Additionally, our implementations support gzip-compressed input and output, 
as well as outputting an ASCII-encoded bitvector of duplicate k-mers.

Compression of model organisms

We evaluate the performance of our proposed algorithms on three model organisms: 
C. elegans, B. mori, and H. sapiens. We benchmark the algorithms on both sets of short 
reads (average length 300 for C. elegans and B. mori, and 296 for H. sapiens) and refer-
ence genomes of these organisms. On human reads, we filter the data during processing 
so that we keep only k-mers that occur at least 10 times (min abundance = 10). This 
is because with a min abundance of 1, H.  sapiens has 114 billion unique k-mers. This 
extreme k-mer count causes ProphAsm and our tool to run out of memory even with 
2TiB of RAM.

We use the metrics cumulative length (CL) and string count (SC) as in [43]. The CL 
is the total number of characters in all strings in the SPSS, and the SC is the number 
of strings. We evaluate our algorithms against the same large genomes as in [43], using 
both the reference genome and a full set of short reads of the respective species (see 
Table  1 for the results). Since UST as well as matchtigs and greedy matchtigs require 
unitigs as input, and specifically UST needs some extra information in a format only 
output by BCALM2 [33], we run BCALM2 to compute unitigs from the input strings. 
We chose k = 31 , as it is commonly used in k-mer-based methods. While for larger 
genomes, larger k are used as well, we use the value k = 31 throughout the main matter 
to allow for easier comparison between results. Furthermore, for all data sets but the C. 
elegans reference, the matchtigs algorithm ran out of the given 256GiB memory, so we 
only compute greedy matchtigs for those.

On read data sets where we keep all k-mers, our greedy heuristic achieves an improve-
ment of up to 26% CL and 82% SC over the best competitor (UST-tigs). The human read 
data set has smaller improvements, however it was processed with a min abundance of 

https://github.com/algbio/matchtigs
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10, yielding longer unitigs with less potential for compression. On reference genomes, 
the improvement in CL is smaller with up to 7%; however, the improvement in SC is 
much larger with up to 90%.

For C. elegans, where computing matchtigs is feasible as well, we observe that they 
yield no significant improvement in CL, but are even slightly worse in SC than the greedy 
heuristic. The greedy heuristic actually optimises SC more than the optimal matchtigs 
algorithm. That is because the matching instance in the optimal algorithm is built to 
optimise CL, and whenever joining two strings does not alter CL, the choice is made 
arbitrarily. On the other hand, the greedy heuristic makes as many joins as possible, as 
long as a join does not worsen the CL. This way, the greedy heuristic actually prioritises 
joining two strings even if it does not alter the CL. For more details, see the “Solving the 
min-cost integer flow formulation with min-cost matching” and “Efficient computation 

Table 1  Quality and performance of compressing model organisms

We chose k = 31 and a min abundance of 10 for H. sapiens reads and 1 for all others. The CL and SC ratios are between 
compressed strings and unitigs, and in parentheses are the ratios between our algorithm and the best competitor. B2 
means BCALM2. For time and memory, we report the total time and maximum memory required to compute the tigs from 
the respective data set. BCALM2 directly computes unitigs and ProphAsm directly computes heuristic simplitigs. UST, 
GREEDY and MATCH compute heuristic simplitigs, greedy matchtigs and matchtigs from unitigs. The number in parentheses 
behind time and memory indicates the slowdown/increase over computing just unitigs with BCALM2. All algorithms were 
run with 28 threads, except for UST which supports only one thread (the preceding run of BCALM2 was still executed with 
28 threads), and ProphAsm, which supports only one thread as well. Matchtigs are too expensive to run on all genomes 
except for the C. elegans reference, and ProphAsm takes too much time on H. sapiens reads, especially since it does not 
support minimum abundance. The lengths of the genomes are 100Mbp for C. elegans, 482Mbp for B. mori and 3.21Gbp for 
H. sapiens and the read data sets have a coverage of 64× for C. elegans, 58x for B. mori and 300× for H. sapiens. The unique 
k-mer counts of the read datasets are 1.35 billion for C. elegans, 3.66 billion for B. mori and 2.78 billion for H. sapiens

Genome Algorithm CL ratio SC ratio Time [s] Memory 
[GiB]

C. elegans (reads) B2 1.00 1.00 2402 5.54

B2+UST 0.58 0.37 3424 (1.43) 17.6 (3.18)

ProphAsm 0.55 0.34 5433 (2.26) 56.5 (10.2)

B2+GREEDY 0.45 (0.79) 0.11 (0.28) 3057 (1.27) 41.0 (7.41)

B. mori (reads) B2 1.00 1.00 6406 9.95

B2+UST 0.55 0.35 9896 (1.54) 56.2 (5.64)

ProphAsm 0.52 0.31 27,912 (4.36) 157 (15.8)

B2+GREEDY 0.41 (0.74) 0.06 (0.18) 11,793 (1.84) 123 (12.4)

H. sapiens (reads) B2 1.00 1.00 168,938 12.4

B2+UST 0.67 0.46 170,427 (1.01) 29.0 (2.34)

B2+GREEDY 0.57 (0.84) 0.22 (0.48) 209,646 (1.24) 68.5 (5.52)

C. elegans B2 1.00 1.00 52.7 0.96

B2+UST 0.92 0.34 58.6 (1.11) 0.96 (1.00)

ProphAsm 0.92 0.30 133 (2.52) 3.78 (3.94)

B2+GREEDY 0.90 (0.98) 0.06 (0.18) 59.9 (1.14) 0.96 (1.00)

B2+MATCH 0.90 (0.98) 0.07 (0.23) 380 (7.21) 1.34 (1.40)

B. mori B2 1.00 1.00 244 1.92

B2+UST 0.78 0.34 303 (1.24) 1.92 (1.00)

ProphAsm 0.76 0.28 716 (2.93) 13.8 (7.19)

B2+GREEDY 0.72 (0.92) 0.06 (0.19) 334 (1.37) 2.42 (1.26)

H. sapiens B2 1.00 1.00 1787 6.29

B2+UST 0.79 0.33 2249 (1.26) 8.80 (1.40)

ProphAsm 0.76 0.26 6677 (3.74) 130 (20.7)

B2+GREEDY 0.71 (0.91) 0.03 (0.10) 4999 (2.80) 17.3 (2.75)
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of the greedy heuristic” sections. See Additional file 1: Supplemental figure S2 for more 
quality measurements with different k-mer size and min. abundance.

We assume that the improvements correlate inversely with the average length of maxi-
mal unitigs of the data set. Our approach achieves a smaller representation by joining 
unitigs with overlapping ends, avoiding the repetition of those characters. This has a nat-
ural limit of saving at most k − 1 characters per pair of unitigs joint together, so at most 
k − 1 characters per unitig. In turn, the maximum fraction of characters saved is bound 
by k − 1 divided by the average length of unitigs. In Additional file 1: Supplemental fig-
ure S2, we have varied the k-mer size and min. abundance for our data sets to vary the 
average length of unitigs. This gives us visual evidence for a correlation between average 
unitig length and decrease in CL.

Our improvements come at often negligible costs in terms of time and memory. Even 
for read sets, the run time at most doubles compared to BCALM2 in the worst case. 
However, the memory consumption rises significantly for read sets. This is due to the 
high number of unitigs in those graphs and the distance array of Dijkstra’s algorithm, 
whose size is linear in the number of nodes and the number of threads. See Additional 
file 1: Supplemental figure S3 for more performance measurements with different k-mer 
size and min. abundance.

Compression of pangenomes

In addition to model organisms with large genomes, we evaluate our algorithms on bac-
terial pangenomes of N. gonorrhoeae, S. pneumoniae, E. coli, and Salmonella, as well as 
a human pangenome. We use the same metrics as for model organisms. For the bacte-
rial genomes, we choose k = 31 , but also for the human genome for the reasons argued 
above, and also for easier comparability of the results on the different genomes. We 
show the results in Table 2. See Additional file 1: Supplemental figure S4 for more qual-
ity measurements with different k-mer size and min. abundance, and Additional file 1: 
Supplemental figure S5 for more performance measurements with different k-mer size 
and min. abundance. In neither of them, we have included Salmonella or human, as 
they take too much time.

Our algorithms improve CL up to 19% (using greedy matchtigs) over the best competi-
tor and SC up to 70% (using greedy matchtigs). Matchtigs always achieve a slightly lower 
CL and slightly higher SC than greedy matchtigs, but the CL of greedy matchtigs is 
always at most 2% worse than that of matchtigs. We again assume that the improvements 
are correlated inversely to the average size of unitigs, as suggested by the experiments in 
Additional file 1: Supplemental figure S4. These improvements come at negligible costs, 
using at most 15% more time and 11% more memory than BCALM2 when computing 
greedy matchtigs, except for the large salmonella pangenome, which took 50% more 
memory. The higher memory consumption is due to the graph being more tangled due 
to the high number of genomes in the pangenome. For matchtigs, the time increases by 
less than a factor of three and memory by at most 12% compared to BCALM2. See Addi-
tional file 1: Supplemental figure S5 for more performance measurements with different 
k-mer size and min. abundance.
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k‑mer‑based short read queries

Matchtigs have further applications beyond merely reducing the size required to store 
a set of k-mers. Due to their smaller size and lower string count, they can make down-
stream applications more efficient. To make a concrete example, in this section we focus 
on membership queries. As already explained, each SPSS (unitigs, UST-tigs, matchtigs, 
etc.) can be considered as a (multi-) set of k-mers. Given a k-mer, a membership query is 
to verify whether the k-mer belongs to the set or not. We focus on exact queries, rather 
than approximate, i.e. if a k-mer does not belong to the set then the answer to the query 
must be “false”. Assessing the membership to the set for a string Q longer than k sym-
bols is based on the answers to its constituent k-mers: only if at least ⌊θ × (|Q| − k + 1)⌋ 
k-mers of Q belongs to the set, then Q is considered to be present in the set. The thresh-
old θ is therefore an “inclusion” rate, which we fix to 0.8 for the experiments in this 
section.

Table 2  Quality and performance of compressing pangenomes

We chose k = 31 and a min abundance of 1. The CL and SC ratios are between compressed strings and unitigs, and in 
parentheses are the ratios between our algorithm and the best competitor. B2 means BCALM2. For time and memory, we 
report the total time and maximum memory required to compute the tigs from the respective data set. BCALM2 directly 
computes unitigs and ProphAsm directly computes heuristic simplitigs. UST, GREEDY and MATCH compute heuristic 
simplitigs greedy matchtigs and matchtigs from unitigs. The number in parentheses behind time and memory indicates 
the slowdown/increase over computing just unitigs with BCALM2. All algorithms were run with 28 threads, except for UST 
which supports only one thread (the preceding run of BCALM2 was still executed with 28 threads), and ProphAsm, which 
supports only one thread as well. The N. gonorrhoeae pangenome contains 8.36 million unique k-mers, the S. pneumoniae 
pangenome contains 19.3 million unique k-mers, the E. coli pangenome contains 341 million unique k-mers, the Salmonella 
pangenome contains 657 million unique k-mers and the human pangenome contains 2.8 billion unique k-mers. Due to its 
size, ProphAsm and MATCH could not be run on the Salmonella pangenome. Also due to size, BCALM2 did not run on the 
human pangenome, hence we used Cuttlefish 2. To still be able to compare against competitors, we ran ProphAsm on the 
unitigs produced by Cuttlefish 2 (UST requires extra information from BCALM2). To let Cuttlefish 2 run faster, we have used 
the flag –unrestricted-memory. Hence, its memory consumption is a lot higher than that of BCALM2

Pangenome Algorithm CL ratio SC ratio Time [s] Memory 
[GiB]

1102× N. gonorrhoeae B2 1.00 1.00 29.1 4.25

B2+UST 0.63 0.35 31.1 (1.07) 4.25 (1.00)

ProphAsm 0.62 0.33 735 (25.3) 0.202 (0.05)

B2+GREEDY 0.57 (0.93) 0.18 (0.54) 30.2 (1.04) 4.25 (1.00)

B2+MATCH 0.57 (0.92) 0.18 (0.56) 31.1 (1.07) 4.25 (1.00)

616× S. pneumoniae B2 1.00 1.00 26.1 3.07

B2+UST 0.61 0.35 31.1 (1.19) 3.07 (1.00)

ProphAsm 0.60 0.33 445 (17.0) 0.424 (0.14)

B2+GREEDY 0.53 (0.89) 0.13 (0.41) 29.0 (1.11) 3.07 (1.00)

B2+MATCH 0.52 (0.88) 0.14 (0.44) 41.8 (1.60) 3.07 (1.00)

3682× E. coli B2 1.00 1.00 334 6.95

B2+UST 0.60 0.35 417 (1.25) 6.95 (1.00)

ProphAsm 0.59 0.32 13,339 (39.9) 7.05 (1.01)

B2+GREEDY 0.51 (0.87) 0.11 (0.33) 384 (1.15) 6.95 (1.00)

B2+MATCH 0.50 (0.85) 0.12 (0.37) 861 (2.58) 7.78 (1.12)
∼309k× Salmonella B2 1.00 1.00 82,417 12.7

B2+UST 0.57 0.36 82,841 (1.01) 12.7 (1.00)

B2+GREEDY 0.46 (0.81) 0.11 (0.30) 82,726 (1.00) 19.1 (1.50)

2505× H. sapiens CF 1.00 1.00 77,582 402

CF+ProphAsm 0.68 0.31 82,797 (1.07) 402 (1.00)

CF+GREEDY 0.63 (0.93) 0.16 (0.50) 83,507 (1.08) 402 (1.00)
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To support fast membership queries in compressed space, we build an SSHash-Lite 
dictionary over each SPSS. SSHash-Lite is a relaxation of SSHash [45, 57] in that it sup-
ports membership queries without requiring each k-mer to appear once in the under-
lying SPSS. It is available at https://​github.​com/​jermp/​sshash-​lite. In short, SSHash 
is a compressed dictionary for k-mers —  based on minimal perfect hashing  [58] and 
minimizers [59] — which, for an input SPSS without duplicates and having n (distinct) 
k-mers, assigns to each k-mer in the input a unique integer number from 0 to n− 1 by 
means of a Lookup query. The result of Lookup for any k-mer that is not contained in the 
input SPSS is −1 . Therefore, SSHash serves the same purpose of a minimal perfect hash 
function over a SPSS but it is also able to reject alien k-mers. Two variants of SSHash 
were proposed — a regular and a canonical one. The canonical variant uses some extra 
space compared to the regular one but queries are faster to answer. (For all further 
details, we point the reader to the original papers [45, 57].)

Now, to let SSHash be able to query SPSSs with possible duplicate k-mers (e.g. 
matchtigs), it was only necessary to modify the return value of the Lookup query to just 
return “true” if a k-mer if found in the dictionary rather than its unique integer identifier 
(respectively, “false” if a k-mer is not found instead of −1 ). Therefore, SSHash-Lite can be 
directly used to index and query the unitigs, UST-tigs, and matchtigs as well.

We compare the performance of SSHash-Lite when indexing unitigs, UST-tigs, 
and matchtigs in Table  3. We build the SPSSs from three datasets: a ~309k× Sal-
monella Enterica pangenome; a 300× coverage human short read dataset filtered to 
exclude k-mers with an abundance lower than 10; and a 2505× human pangenome. 
The Salmonalla pangenome was queried with 3 million random Salmonella short 
reads with lengths between 70 and 502, and an N75 of 302. The human queries for 
both the human read dataset and the human pangenome are 3 million random short 
reads (296 bases each) from the human read dataset.

We see that matchtigs improve the performance of membership queries in both space 
and time compared to unitigs and UST-tigs. While the difference is more evident when 
compared to unitigs, matchtigs also consistently outperform UST-tigs – achieving the 
lowest space usage and faster query time across almost all combinations of dataset and 
index variant (regular/canonical).

Note again that the speed up in searching time is more evident on the human reads 
dataset since it is much larger than the Salmonella pan-genome and it is generally less 
evident for the canonical index variant of SSHash-Lite because it is approximately 2× 
faster to query than the regular one. Remarkably, regular SSHash-Lite over matchtigs 
achieves 26− 59% reduction in space over unitigs while being also 4.26× faster to query 
on the human reads datasets. Compared to UST-tigs instead, matchtigs still retain 2.10× 
faster query time while improving space by up to 8% . These results were achieved on a 
typical bioinformatics compute node with many logical cores (256) and a large amount 
of RAM (2TB). In Additional file  1: Supplemental table  S2, we performed the same 
experiment on a server with focus on single-thread performance, achieving slightly 
smaller improvements.

The reduction in index space when indexing matchtigs is to be attributed to the lower 
string count and fewer nucleotides in the collection. The speedups achieved by SSHash-
Lite when indexing matchtigs instead of unitigs can be explained as follows. When 

https://github.com/jermp/sshash-lite
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querying, SSHash-Lite streams through the k-mers of the query. At the beginning, the 
tig containing the first k-mer of the query is determined using a minimal perfect hash 
function over the minimizers of the input SPSS, as well as the position of the k-mer in 
the tig. For the subsequent k-mers of the query, SSHash-Lite attempts to “extend” the 
matching of the k-mer against the identified tig by just comparing the single nucleotide 
following the previous k-mer in the tig. Extending a match in this way is extremely fast 
not only because just a single nucleotide needs to be compared but also because it is a 
very cache-friendly algorithm, dispensing random accesses to the index entirely. How-
ever, each time an extension is not possible (either because we have a mismatch or we 
have reached the end of the current tig) a “full” new search is made in the index. The 
search consists in evaluating the minimal perfect hash function and locating the k-mer 
inside another tig. Clearly, a search is much more expensive due to cache misses com-
pared to an extension. Now, using longer tigs with a lower tig count — the case for the 
matchtigs — increases the chance of extension, or equivalently, decreases the number 
of full searches in the index. Compared to UST-tig, matchtigs can be faster to query 
exactly because allowing repeated k-mers to appear in the tigs further helps in creating 

Table 3  Performance characteristics of querying different tigs with SSHash-Lite

SSHash-Lite is run with k = 31 and a k-mer-inclusion rate of 0.8. On the Salmonella pan-genome, we used a minimizer 
length of 17 for the regular index and a minimizer length of 16 for the canonical index. On the human reads, we used 
a minimizer length of 20 for the regular index and a minimizer length of 19 for the canonical index. On the human 
pangenome, we used a minimizer length of 19 for the regular index and a minimizer length of 20 for the canonical index. 
The search speedup is with respect to unitigs, and the search speedup in parentheses is with respect to the strings 
computed by UST. Index time is the end-to-end time required to build the SSHash-Lite index: it includes reading the 
collections from disk and building the data structure using external memory. Searching time is the time required to check 
which reads have at least 80% of their k-mers in the input SPSS. The number in parentheses under the genome is the k-mer 
hitrate, i.e. the fraction of k-mers from the query that are part of the queried dataset

Genome Algorithm Index time Search time Search 
speedup

Index size Size imprv.

[min] [sec] [GiB]

(a) regular SSHash-Lite
∼309k× Salmonella (0.75) unitigs 2.77 3027 1.00 1.04 1.00

UST 2.42 1491 2.03 0.71 1.48

gMatchtigs 2.60 710 4.26 (2.10) 0.65 1.60 (1.08)

Human reads (0.75) unitigs 18.9 558 1.00 4.60 1.00

UST 17.1 499 1.12 3.63 1.27

gMatchtigs 19.2 384 1.45 (1.30) 3.47 1.33 (1.05)

2505× Human (0.65) unitigs 15.1 515 1.00 3.63 1.00

ProphAsm 14.0 421 1.22 2.86 1.27

gMatchtigs 14.8 363 1.42 (1.16) 2.86 1.27 (1.00)

(b) canonical SSHash-Lite
∼309k× Salmonella (0.75) unitigs 3.94 1576 1.00 1.13 1.00

UST 3.30 961 1.64 0.78 1.44

gMatchtigs 3.71 572 2.75 (1.68) 0.74 1.52 (1.06)

Human reads (0.75) unitigs 25.0 373 1.00 5.02 1.00

UST 23.4 324 1.15 4.05 1.24

gMatchtigs 26.3 266 1.40 (1.22) 3.94 1.28 (1.03)

2505× Human (0.65) unitigs 21.3 340 1.00 4.26 1.00

ProphAsm 20.1 258 1.32 3.48 1.22

gMatchtigs 21.1 232 1.46 (1.11) 3.52 1.21 (0.99)
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opportunities for extension. Therefore, by reducing the number of full searches, we can 
reduce the overall runtime of the query.

See Additional file 1: Section 3 for a similar query experiment with the slightly older 
tool Bifrost.

Discussion
k-mer-based methods have found wide-spread use in many areas of bioinformatics over 
the past years. However, they usually rely on unitigs to represent the k-mer sets, since 
they can be computed efficiently with standard tools  [23, 33, 40, 41]. Unitigs have the 
additional property that the de Bruijn graph topology can easily be reconstructed from 
them, since they do not contain branching nodes other than on their first and last k-
mer. However, this property is not usually required by k-mer-based methods, which has 
opened the question if a smaller set of strings other than unitigs can be used to represent 
the k-mer sets. If such a representation was in plain text, it should be usable in most 
k-mer-based tools, by simply feeding it to the tool instead of unitigs.

Previous work has relaxed the unitig requirement of the representation of the k-mer 
sets to arbitrary strings without k-mer repetitions. This resulted in a smaller representa-
tion, leading to improvements in downstream applications. Additionally, previous work 
considered whether that finding an optimal representation without repeated k-mers 
is NP-hard, which was then disproven and shown to be linear-time solvable. We have 
shown that by allowing repetitions, there is a polynomial optimal algorithm that achieves 
better compression and improvements in downstream applications.

Conclusions
Our optimum algorithm compresses the representation significantly more than previous 
work. For practical purposes, we also propose a greedy heuristic that achieves near-opti-
mum results, while being suitable for practical purposes in runtime and memory. Spe-
cifically, our algorithms achieve a decrease of 26% in size and 90% in string count over 
UST. Additionally, we have shown that our greedy representation speeds up downstream 
applications, giving an example with a factor of 2.10 compared to previous compressed 
representations.

Our implementation is available as a stand-alone command-line tool and as a library. 
We hope that our efficient algorithms result in a wide-spread adoption of near-minimum 
plain-text representations of k-mer sets in k-mer-based methods, resulting in more effi-
cient bioinformatics tools.

Methods
We first give some preliminary definitions in the “Preliminaries”  section and define 
our problem in the “Problem overview” section. Note that to stay closer to our imple-
mentation, our definitions of bidirected de Bruijn graphs differ from those in e.g. [56]. 
However, the concepts are fundamentally the same. Then, in the “Building a compacted 
bidirected arc-centric de Bruijn graph from a set of strings”, “Reduction to the bidirected 
partial-coverage Chinese postman problem”, “Solving the bidirected partial-coverage 
Chinese postman problem with min-cost integer flows”, “Solving the min-cost integer 
flow formulation with min-cost matching”, and “Efficient computation of many-to-many 
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min-cost paths” sections, we describe how to compute matchtigs. The whole algorithm 
is summarised by an example in Fig. 3. For simplicity, we describe the algorithm using 
an uncompacted de Bruijn graph. However, in practice it is much more efficient to use a 
compacted de Bruijn graph, but our algorithm can be adapted easily: simply replace the 

Fig. 3  An example of the matchtigs algorithm. A The input genomic sequences. B We first build an 
arc-centric compacted de Bruijn graph (for simplicity, the reverse complements of the nodes and arcs are not 
shown). C In the graph we compute the bi-imbalances of the nodes (the difference between outdegree and 
indegree). D From each node with negative bi-imbalance we compute the min-cost paths to all reachable 
nodes with positive bi-imbalance. The costs of each arc are the amount of characters required to join two 
strings from the negative to the positive node while repeating the k-mers between the nodes. Specifically, 
the costs of an arc are |s| − (k − 1) , where |s| is the length of its label. E Using a min-cost perfect matching 
instance built from the min-cost paths, we decide which bi-imbalances should be fixed by repeating k-mers. 
The blue/tightly dashed edges are joining edges stemming from the min-cost paths. The red edges in longer 
dashes indicate that a node should stay unmatched, i.e. that fixing its bi-imbalance requires breaking arcs. 
The solution edges are highlighted in bold. There is one node in the matching problem for each binode in 
the original graph. The nodes x′ are not reverse complements of nodes x, but stem from a reduction that 
makes a copy of each node. For more details, refer to the “Solving the min-cost integer ow formulation with 
min-cost matching” section. F For each joining edge in the solution we insert a joining arc into the DBG (in 
blue, small dashes), always directed such that the overall bi-imbalance decreases. The remaining imbalance is 
removed by inserting arbitrary breaking arcs (in read, longer dashes). G We compute a biEulerian circuit in the 
balanced graph. H We break the biEulerian circuit at all breaking arcs. I We output the strings spelled by the 
broken walks
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costs of 1 for each original arc with the number of uncompacted arcs it represents. In the 
“Efficient computation of the greedy heuristic” section, we describe the greedy heuristic.

Preliminaries

We are given an alphabet Ŵ and all strings in this work have only characters in Ŵ . Fur-
ther, we are given a bijection comp : Ŵ → Ŵ . The reverse complement of a string s is 
s−1 := rev(comp∗(S)) where rev denotes the reversal of a string and comp∗ the charac-
ter-wise application of comp . For an integer k, a string of length k is called a k-mer. From 
here on, we only consider strings of lengths at least k, i.e. strings that have at least one 
k-mer as substring. We denote the prefix of length k − 1 of a k-mer s by pre(s) and its 
suffix of length k − 1 by suf(s) . The spectrum of a set of strings S is defined as the set of 
all k-mers and their reverse complements that occur in at least one string s ∈ S , formally 
speck(S) := {r ∈ Ŵk | ∃s ∈ S : r or r−1 is substring of s}.

An arc-centric de-Bruijn graph (or short de-Bruijn graph) DBGk(S) = (V, E) 
of order k of a set of strings S is defined as a standard directed graph with nodes 
V := {s | s ∈ speck−1(S)} and arcs E := {(pre(s), suf(s)) | s ∈ speck(S)} . On top of 
this, we use the following notions of bidirectedness. An ordered pair of reverse-com-
plementary nodes [v, v−1] ∈ V × V  is called a binode and an ordered pair of reverse-
complementary arcs [(a, b), (b−1, a−1)] ∈ E × E is called a biarc. Even though these 
pairs are ordered, reversing the order still represents the same binode/biarc, just in the 
other direction. A node v is called canonical if v is lexicographically smaller than v−1 , 
and an arc (a, b) is called canonical if the k-mer corresponding to (a, b) is lexicographi-
cally smaller or equal to the k-mer corresponding to (b−1, a−1) . If an arc or a node is its 
own reverse-complement (called self-complemental), then it is written as biarc [(a, b)] or 
binode [v]. See Fig. 1 for examples of different bigraphs.

Since de Bruijn graphs are defined as standard directed graphs, we use the following 
standard definitions. The set of incoming (outgoing) arcs of a node is denoted by E−(v) 
( E+(v) ), and the indegree (outdegree) is d−(v) := |E−(v)| ( d+(v) := |E+(v)| ). A walk in 
a de Bruijn graph is a sequence of adjacent arcs (followed in the forward direction) and 
a unitig is a walk in which all inner nodes (nodes with at least two incident walk-arcs) 
have exactly one incoming and one outgoing arc. The length |w| of a walk w is the length 
of the sequence of its arcs (counting repeated arcs as often as they are repeated). A 
compacted de-Bruijn graph is a de Bruijn graph in which all maximal unitigs have been 
replaced by a single arc. A circular walk is a walk that starts and ends in the same node, 
and a Eulerian circuit is a circular walk that contains each arc exactly once. A graph that 
admits a Eulerian circuit is Eulerian.

Assuming the complemental pairing of nodes and arcs defined above, we can define 
the following bidirected notions of walks and standard de Bruijn graph concepts. Biwalks 
and circular biwalks are defined equivalently to walks, except that they are sequences 
of biarcs. A biwalk w in a de Bruijn graph spells a string spell(w) of overlapping visited 
k-mers. That is, spell(w) is constructed by concatenating the string a from w’s first biarc 
[(a, b), (b−1, a−1)] (or [(a, b)]) with the last character of b of the first and all following 
biarcs. See Fig. 1 for examples of bidirected de Bruijn graphs and notable special cases.
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A bidirected graph is connected, if between each pair of distinct binodes [u,u−1] and 
[v, v−1] that are not reverse complements of each other, there is a biwalk from [u,u−1] to 
[v, v−1] or from [u,u−1] to [v−1, v] . We assume that our graph is connected, as on mul-
tiple disconnected components, our algorithm can be executed on each component, 
yielding a minimum result.

Problem overview

We are given a set of input strings I where each string has length at least k, and we want 
to compute a minimum spectrum preserving string set, defined as follows.

Definition 1

A spectrum preserving string set (or SPSS) of I is a set S of strings of length at least k such 
that speck(I) = speck(S) , i.e. both sets of strings contain the same k-mers, either directly 
or as reverse complement.

Note that our definition allows k-mers and their reverse complements to be repeated 
in the SPSS, both in the same string and in different strings. This is an important dif-
ference to the definition of an SPSS by Rahman and Medvedev [44]. Their definition is 
equivalent to simplitigs, defined by Břinda, Baym and Kucherov [43]; hence, we use the 
term simplitigs when we refer to an SPSS without k-mer repetitions in this paper. Sim-
plitigs are an SPSS such that for each present k-mer the reverse complement is only pre-
sent if the k-mer is self-complemental, and the k-mer is only present once in at most one 
string of the SPSS.

Definition 2

The size ||S|| of an SPSS S is defined as

where |s| denotes the length of string s. A minimum SPSS is an SPSS of minimum size.
On a high level, our algorithm works as follows (see also Fig. 3). 

1	 Create a bidirected de Bruijn graph from the input strings (see the “Building a com-
pacted bidirected arc-centric de Bruijn graph from a set of strings” section).

2	 Compute the bi-imbalances of each node (see the “Solving the bidirected partial-cov-
erage Chinese postman problem with min-cost integer flows” section).

3	 Compute the min-cost bipaths of length at most k − 1 from all nodes with negative 
bi-imbalance to all nodes with positive bi-imbalance (see the “Efficient computation 
of many-to-many min-cost paths” section).

4	 Solve a min-cost matching instance with costs for unmatched nodes to choose a set 
of shortest bipaths with minimum cost by reduction to min-cost perfect matching 
(see the “Solving the min-cost integer flow formulation with min-cost matching” sec-
tion).

5	 BiEulerise the graph with the set of bipaths as well as arbitrary arcs between 
unmatched nodes.

||S|| =

s∈S

|s|,
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6	 Compute a biEulerian circuit in the resulting graph (see the “Solving the bidirected 
partial-coverage Chinese postman problem with min-cost integer flows” section).

7	 Break the circuit into a set of biwalks and translate them into a set of strings, which 
is the output minimum SPSS (see the “Reduction to the bidirected partial-coverage 
Chinese postman problem” section).

Note that in our implementation, a substantial difference is that we do not build the de 
Bruijn graph ourselves, but we expect the input to be a de Bruijn graph already. For our 
experiments, we use a compacted de Bruijn graph computed with BCALM2. We moti-
vate the reasons for optimality while explaining our algorithm, but also give a formal 
proof in Additional file 1: Section 4.

Building a compacted bidirected arc‑centric de Bruijn graph from a set of strings

When building the graph we first compute unitigs from the input strings using 
BCALM2. Then we initialise an empty graph and do the following for each unitig: 

1	 We insert the unitig’s first k − 1-mer and its reverse complement as binode by insert-
ing the two nodes separately and marking them as a bidirected pair, if it does not 
already exist. The existence is tracked with a hashmap, storing the two nodes corre-
sponding to a k-mer and its reverse complement if it exists.

2	 We do the same for the last k − 1-mer of the unitig.
3	 We add a biarc between the two binodes by inserting one forward arc between the 

forward nodes of the binodes, and one reverse arc between the reverse complement 
nodes of the binodes. The forward arc is labelled with the unitig, and the reverse arc 
is labelled with its reverse complement.

To save memory, we store the unitigs in a single large array, where each character is 
encoded as two-bit number. The keys of the hashmap and the labels of the arcs are point-
ers into the array, together with a flag for the reverse complement. Nodes do not need a 
label, as their label can be inferred from any of its incident arcs’ label. Recall that in the 
description of our algorithm, we use an uncompacted graph only for simplicity.

Reduction to the bidirected partial‑coverage Chinese postman problem

We first compute the arc-centric de-Bruijn graph DBGk(I) of the given input string set 
I as described in the “Building a compacted bidirected arc-centric de Bruijn graph from 
a set of strings”  section. In DBGk(I) , an SPSS S is represented by a biarc-covering set 
of biwalks W (the reverse direction of a biarc does not need to be covered separately). 
That is a set of biwalks such that each biarc is element of at least one biwalk (see Fig. 1a). 
According to the definition of spell , the size of S is related to W as follows:

Each walk costs k − 1 characters because it contains the node a from its first biarc 
[(a, b), (b−1, a−1)] (or [(a, b)]), and it additionally costs one character per arc.

To minimise ||S||, we transform the graph as follows:

(1)||S|| =
∑

w∈W

|spell(w)| = |W|(k − 1)+
∑

w∈W

|w|.
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Definition 3

(Graph transformation) Given an arc-centric de-Bruijn graph DBGk(I) = (V ,E) , the 
transformed graph is defined as DBG′

k(I) = (V ,E′) where E′ is a multiset defined as 
E′ := E ∪ (V × V ) . In E′ , arcs from E are marked as non-breaking, and arcs from 
V × V  are marked as breaking arcs. The cost function c(e), e ∈ E′ assigns all non-
breaking arcs the costs 1 and all breaking arcs the costs k − 1.

The reverse complements of breaking arcs are breaking as well, and the same holds 
for non-breaking arcs. This means that biarcs always are either a pair of reverse com-
plemental breaking arcs, in which case we call them breaking biarcs, or a pair of reverse 
complemental non-breaking arcs, in which case we call them non-breaking biarcs. By the 
same pattern, self-complemental biarcs are defined to be breaking biarcs or non-break-
ing biarcs depending on their underlying arc. Breaking arcs have the costs k − 1 because 
each breaking arc corresponds to starting a new walk, which by Eq. 1 costs k − 1.

In the transformed graph we find a circular biwalk w∗ of minimum cost that covers at 
least all original biarcs (to cover a biarc it is enough to traverse it once in one of its direc-
tions), as well as at least one breaking biarc. The reason for having at least one break-
ing biarc is that later we break the circular original-biarc-covering biwalk at all breaking 
biarcs to get a set of strings. If there was no breaking biarc, then we would get a circular 
string. Simply breaking a circular string at an arbitrary binode or a repeated non-breaking 
biarc does not produce a minimum solution in general, because there may be multiple 
circular original-biarc-covering biwalks with minimum costs, but with different repeated 
k-mers. When breaking the walk by removing a longer sequence of repeated k-mers, the 
resulting string gets shorter, the more repeated k-mers get removed. Hence we make find-
ing an optimal breaking point part of the optimisation problem. We define such a walk as:

Definition 4

Given a transformed graph DBG′
k(I) = (V ,E) , a circular original-biarc-covering 

biwalk is a circular biwalk w such that for each non-breaking arc (a, b) ∈ E there is 
a biarc [(a, b), (b−1, a−1)] , [(b−1, a−1), (a, b)] or [(a, b)] in w. Additionally, w needs to 
contain at least one breaking biarc.

Definition 5

Given a transformed graph DBG′
k(I) and a circular original-biarc-covering walk w 

possibly consisting of biarcs [(a, b), (b−1, a−1)] and self-complemental biarcs [(a, b)]. 
The costs c(w) of w are the sum of the costs of each biarc and self-complemental biarc, 
where the costs of a biarc [(a, b), (b−1, a−1)] are c((a, b)), and the costs of a self-com-
plemental biarc [(a, b)] are c((a, b)).

This is similar to the directed Chinese postman problem (DCPP). In the DCPP, the 
task is to find a circular min-cost arc-covering walk in a directed graph. It is a clas-
sical problem, known to be solvable in O(n3)  time [60] with a flow-based algorithm, 
using e.g. [61] to compute min-cost flows. The partial coverage variant of the DCPP 
(requiring to cover only a subset of the arcs) is also known as the rural postman prob-
lem  [62]. Further, the bidirected variant of the DCPP was discussed before in  [56], 
and the authors also solved it using min-cost flow in O(n2 log2(n)) time.
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We break the resulting min-cost circular original-biarc-covering biwalk w∗ at all break-
ing arcs (hence we require it to contain at least one breaking biarc, otherwise we would 
get a circular string). The returned SPSS is minimum, because the metric optimised 
when finding w∗ matches Eq. 1.

Solving the bidirected partial‑coverage Chinese postman problem with min‑cost integer 

flows

Edmonds and Johnson [54] introduced a polynomial-time flow-based approach that is 
adaptable to solve our variant of the DCPP. They show that finding a minimum circular 
arc-covering walk in a directed graph is equivalent to finding a minimum Eulerisation of 
the graph, and then any Eulerian circuit in the Eulerised graph. A Eulerisation is a mul-
tiset of arc-copies from the graph that makes the graph Eulerian if added, either by con-
necting nodes with missing outgoing arcs directly to nodes with missing incoming arcs, 
or by connecting them via a path of multiple arcs. A minimum Eulerisation is one whose 
sum of arc costs is minimum among all such multisets. To find such a minimum cost set 
of arcs, they formulate a min-cost flow problem as an integer linear program as follows:

The variable xe is interpreted as the amount of flow through arc e, and the variable ce 
denotes the costs for assigning flow to an arc e. The costs are equivalent to the arc costs 
in the weighted graph specified by the DCPP instance. Objective (2) minimises the costs 
of inserted arcs as required. To ensure that the resulting flow can be directly translated 
into added arcs, Condition (3) ensures that the resulting flow is non-negative and inte-
gral. Lastly, Eq. (4) is the balance constraint, ensuring that the resulting flow is a valid 
Eulerisation of the graph. This constraint makes nodes with missing outgoing arcs into 
sources, and nodes with missing incoming arcs into sinks, with demands matching the 
number of missing arcs. Note that in contrast to classic flow problems, this formulation 
contains no capacity constraint. For a solution of this linear program, the corresponding 
Eulerisation contains xe copies of each arc e.

To adapt this formulation to our variant of the DCPP, we need to make modifications, 
namely:

•	 compute the costs while treating self-complemental biarcs the same as other biarcs,
•	 allow for partial coverage,
•	 force cover at least one breaking arc (one of the arcs that are not required to be covered),
•	 adjust the balance constraint for biwalks and
•	 ensure that the resulting flow is bidirected, i.e. the flow of each arc equals the flow of 

its reverse complement.

(2)min
∑

e∈E

cexe s.t.

(3)xe are non-negative integers, and

(4)∀v ∈ V :
∑

e∈E−(v)

xe −
∑

e∈E+(v)

xe = d+(v)− d−(v).
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Bidirected costs

If we would simply count the costs of each arc separately, then self-complemental biarcs 
would cost 1 for each repetition, while other biarcs would cost 2 for each repetition, 
since other biarcs consist for two arcs. To circumvent this, we only count arcs corre-
sponding to canonical k-mers in the cost function:

Partial coverage

In the partial coverage Chinese postman problem, we are additionally given a set F ⊆ E 
of arcs to be covered. In contrast to the standard DCPP, a solution walk only needs to 
cover all the arcs in F. In our case, the set F is the set of original arcs of the graph before 
Eulerisation. To solve the partial coverage Chinese postman problem we define outgo-
ing covered arcs F+(v) := F ∩ E+(v) , and incoming covered arcs F−(v) := F ∩ E−(v) 
for a node v, as well as the covered outdegree d+F (v) := |F+(v)| and the covered indegree 
d−F (v) := |F−(v)| . Then we reformulate the balance constraint as:

The resulting set of arcs is a minimum Eulerisation of the graph (V, F), and a Eulerian 
walk in this graph is equivalent to a minimum circular F-covering walk in the original 
graph.

Cover one breaking arc

Next to the partial coverage condition, we additionally require to cover at least one 
of the arcs that is not required to be covered. Since we forbid negative flows, we can 
express this as:

Bidirected balance

In contrast to Edmonds and Johnson, we are interested in a minimum circular biwalk 
that covers each original biarc. Analogue to the formulation for directed graphs, we 
make the following definitions:

Definition 6

(BiEulerian circuits and graphs) A biEulerian circuit in a bidirected graph is a bidirected 
circuit that visits each biarc exactly once. A biEulerian graph is a graph that admits a 
biEulerian circuit. A biEulerisation is a multiset of biarc-copies from the graph that 
makes a graph biEulerian if added. A minimum biEulerisation is one whose sum of arc 
costs is minimum among all biEulerisations of the same graph.

(5)min
∑

e∈E, e is canonical

cexe s.t.

∀v ∈ V :
∑

e∈E−(v)

xe −
∑

e∈E+(v)

xe = d+F (v)− d−F (v).

(6)
∑

e∈(E\F)

xe ≥ 1.
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We can compute a biEulerisation in the same way as we compute a Eulerisation, the 
only change is in the balance constraint. Observe that for a Eulerian graph, the imbal-
ance iv := d−(v)− d+(v) is zero for each node [63], because each node is entered exactly 
as often as it is exited. For binodes, the definition of the bi-imbalance biv of a binode 
[v, v−1] or [v] follows the same idea. However, in contrast to directed graphs, there are 
two special cases. These are mutually exclusive, since the labels of an arc are of length k 
and those of a node are of length k − 1 , such that only one can have even length, which is 
required to be self-complemental in DNA alphabets.

Binodes [v, v−1] ∈ V × V  with v  = v−1 may have incident self-complemental arcs 
[(v, v−1)] and/or [(v−1, v)] (see Fig. 1c for an example). If e.g. only [(v, v−1)] exists, then to 
traverse it, a biwalk needs to enter v twice. First, it needs to reach [v, v−1] via some biarc, 
and after traversing [(v, v−1)] , it needs to leave [v−1, v] via a different biarc, whose reverse 
complement enters [v, v−1] . Hence, a self-complemental biarc alters the bi-imbalance of 
a node by two. See Fig. 4 for an example of this situation. If only [(v−1, v)] exists, then 
the situation is symmetric. Therefore, for balance of [v, v−1] , the self-complemental biarc 
[(v, v−1)] requires two biarcs entering [v, v−1] and the self-complemental biarc [(v−1, v)] 
requires two biarcs leaving [v, v−1] . If both self-complemental arcs exist (e.g. both [(ATA​
,  TAT​)] and [(TAT​,  ATA​)] for a binode [ATA​,  TAT​]), then a biwalk can traverse them 
consecutively from e.g. [v, v−1] by traversing first [(v, v−1)] and then [(v−1, v)] , ending up 
in [v, v−1] again, such that the self-complemental arcs have a neutral contribution to the 
bi-imbalance. Resulting, the bi-imbalance of [v, v−1] is

where 1P is 1 if the predicate P is true and 0 otherwise.

biv = d+(v)− d−(v)+ (1(v,v−1)∈E+(v) − 1(v−1,v)∈E−(v)),

Fig. 4  Examples for self-complemental nodes and arcs. A self-complemental biarc [(ACG​, CGT​)] covered by 
a biEulerian circuit ([(GAC​, ACG​), (CGT​, GTC​)], [(ACG​, CGT​)], [(CGT​, GTG​), (CAC​, ACG​)]). The two directions of the 
bidirected circuit are drawn in blue ((GAC​, ACG​), (ACG​, CGT​), (CGT​, GTG​)) and green dotted ((CAC​, ACG​), (ACG​
, CGT​), (CGT​, GTC​)). In a, the binode [ACG​, CGT​] is balanced, hence the circuit can enter it with some biarc, 
cover the self-complemental biarc, and then leave it via some other biarc. If, like in b, there was no other biarc 
to leave [ACG​, CGT​], then the graph would not be biEulerian, as the biarc [(GAC​, ACG​), (CGT​, GTC​)] cannot be 
used twice, even if the second use is in the other direction. Visually, the blue walk cannot use (CGT​, GTC​), since 
it was already used by the green dotted walk, and the green dotted walk cannot use (GAC​, ACG​), as it was 
already used by the blue walk
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For self-complemental binodes [v] ∈ V  , there is no concept of incoming or outgoing 
biarcs, since any biarc can be used to either enter or leave [v] (see Fig. 1b for an exam-
ple). Therefore, for balance, biarcs need to be paired arbitrarily, for which to be possible 
there needs to be an even amount of biarcs. If there is an odd amount, then there is one 
unpaired biarc, hence the bi-imbalance is 1. The following condition exerts this behav-
iour (using mod as the remainder operator):

Finally, we include partial coverage to above bi-imbalance formulations by lim-
iting the incoming and outgoing arcs to F. Further, to distinguish between self-
complemental nodes and others, we denote the set of self-complemental nodes as 
S ⊆ V  and the set of binodes that are not self-complemental as T := V \ S . If self-
complemental biarcs are included in the flow, then these alter the bi-imbalance by 
two, in the same way as they do in the equation of the bi-imbalance. We encode 
this on the left side of the equation. Then we get the following modified coverage 
constraint:

Valid bidirected flow

To adapt Edmonds’ and Johnson’s formulation to biwalks, we additionally need to ensure 
that the resulting flow yields a set of biarcs, i.e. that each arc has the same flow as its 
reverse complement:

Adapted flow formulation

With the modifications above, we can adapt the formulation of Edmonds and Johnson 
to solve the bidirected partial-coverage Chinese postman problem. We define F to be 
the arcs in the original graph, and set E := V × V  . We further set ce = 1 for e ∈ F  and 
ce = k − 1 otherwise. Lastly we define S and T as above. Then we get the following modi-
fied formulation. Note that it is conceptually similar to that proposed in [56], however 
different because the basic definitions differ, and we further allow for special arcs of 
which only one needs to be covered.

biv = d+(v) mod 2.

(7)
∀v ∈ T ∶

∑

e∈E−(v)

xe
(

1 + 1e=e−1

)

−
∑

e∈E+(v)

xe
(

1 + 1e=e−1

)

= d+

F
(v) − d−

F
(v) +

(

1(v,v−1)∈F+(v) − 1(v−1,v)∈F−(v)

)

, and

(8)∀v ∈ S :



d+F (v)+
�

e∈E+(v)

xe



 mod 2 = 0.

(9)∀e ∈ E : xe = xe−1
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In this min-cost integer flow formulation of the bidirected partial-coverage Chinese 
postman problem, analogue to the formulation of Edmonds and Johnson, sources and 
sinks are nodes with missing outgoing or incoming arcs, with demands matching the 
number of missing arcs in F. Our formulation would not be solvable for practical de-
Bruijn graphs because inserting a quadratic amount of arcs into the graph is infeasible. 
However, most of the breaking arcs are not needed, since in a minimum solution they 
can only carry flow if they directly connect a source to a sink, by the following argument: 
Imagine a breaking arc that carries flow but is connected to a source or sink with at most 
one end. We can trace one unit of flow on the arc to a source and a sink, creating a path 
of flow one. By removing the flow from the path, and adding it to a breaking arc directly 
connecting the source to the sink, we get a valid flow. This flow has lower costs than the 
original, because it contains the same amount of breaking arcs, but a lower number of 
non-breaking arcs. This can be repeated until only breaking arcs that directly connect 
sources to sinks are left.

But even reducing the number of breaking arcs like this might not be enough if the 
graph contains too many sources and sinks. We therefore reduce the linear program to a 
min-cost matching instance, similar to Edmonds and Johnson.

Solving the min‑cost integer flow formulation with min‑cost matching

To solve the bidirected partial-coverage Chinese postman problem with min-cost 
matching, we observe that flow traverses the graph from a source to a sink only via min-
cost paths, since all arcs have infinite capacity. Due to the existence of the breaking arcs 
with low costs ( k − 1 ), we can further restrict the flow to use only paths of length at 
most k − 2 without affecting minimality. However, since we are also interested in a low 
number of strings in our minimum SPSS, we also allow paths of length k − 1 . We can 
precompute these min-cost paths efficiently in parallel (see “Efficient computation of 
many-to-many min-cost paths” section below). Then it remains to decide which combi-
nation of min-cost paths and breaking arcs yield a minimum solution.

To simplify this problem, observe that the pairing of sources and sinks that are con-
nected via breaking arcs does not matter. Any pairing uses the same amount of breaking 
arcs, and therefore has the same costs. It only matters that these nodes are not con-
nected by a lower-cost path that does not use any breaking arcs, and that there is at least 
one breaking arc. As a result, we can ignore breaking arcs when searching a minimum 

min
∑

e∈E, e is canonical

cexe s.t. (5)

xe are non-negative integers, and (3)
∑

e∈(E⧵F )

xe ≥ 1, and (6)

∀v ∈ T ∶
∑

e∈E−(v)

xe
(

1 + 1e=e−1

)

−
∑

e∈E+(v)

xe
(

1 + 1e=e−1

)

= d+

F
(v) − d−

F
(v) +

(

1(v,v−1)∈F+(v) − 1(v−1,v)∈F−(v)

)

, and (7)

∀v ∈ S ∶

(

d+

F
(v) +

∑

e∈E+(v)

xe

)

mod 2 = 0, and (8)

∀e ∈ E ∶ xe = xe−1 (9)
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solution, and instead introduce costs for unmatched nodes. However, we still need to 
enforce that there is at least one pair of unmatched nodes. We do this using a special 
construction described below. Note though, that there can only be unmatched nodes if 
there are unbalanced binodes, i.e. the graph was not biEulerian in the beginning. How-
ever, if the graph is biEulerian already, the whole matching step can be left out, and 
instead a biEulerian circuit with one arbitrarily inserted breaking biarc can be returned. 
So we can safely assume here that the graph contains at least one pair of unbalanced 
binodes (it cannot contain a single unbalanced binode, see e.g. [47]).

We formulate a min-cost matching problem with penalty costs for unmatched nodes, 
which can be reduced to a min-cost perfect matching problem. For the construction of 
our undirected matching graph M we define the set of sources A ⊆ T  as all nodes with 
negative bi-imbalance, and the set of sinks B ⊆ T  as all nodes with positive bi-imbal-
ance. Then we add |biv| (absolute value of the bi-imbalance of v) copies of each node 
from A, B and S to M. Further, for each min-cost path from a node a ∈ A ∪ S to a node 
b ∈ B ∪ S we add an edge (undirected arc) from each copy of a to each copy of b in M 
with costs equal to the costs of the path. We ignore self loops at nodes in S since they do 
not alter the imbalance, and nodes in A and B cannot have self loops.

Then, to fulfil Condition  (9) (valid bidirected flow) and to reduce the size of the 
matching problem, we merge all nodes and arcs with their reverse complement (the 
unmerged graph is built here to simplify our explanations, in our implementation we 
directly build the merged graph). This additionally results in self-complemental biarcs 
forming self-loops in the merged graph, thus making them not choosable by by the 
matcher. But this is correct, as self-complemental biarcs alter the bi-imbalance of a 
binode by two, and therefore they can only be chosen by matching two different copies 
of the same binode in M.

Additionally, to fulfil Condition (6) (cover one bidirected arc), we add a pair of nodes 
u, w to M. We connect u and w to each node in M (but do not add an edge between u 
and w) and assign costs 0 to all those edges. This forces u and w to be matched to other 
nodes u′,w′ , which means that when biEulerising, the bi-imbalances of u′ and w′ need to 
be fixed with at least one breaking arc.

Lastly, we assign each node other than u and w penalty costs of (k − 1)/2 for staying 
unmatched, as each pair of unmatched nodes produces costs k − 1 for using a breaking 
arc.

We reduce M to an instance of the min-cost perfect matching problem using the 
reduction described in [64]. For that we duplicate the graph, and add an edge with costs 
k − 1 between each node and its copy, but not between v and w and their respective 
copies. The costs for edges between a node and its copy are double the costs of keep-
ing a node unmatched, because by choosing such an edge causes two nodes to stay 
unmatched.

After this reduction, we use Blossom  V  [65] to compute a solution. Since all nodes 
were doubled in the reduction, we actually get two solutions that might even differ, how-
ever both of them are minimum. We arbitrarily choose one of the solutions. This gives 
us a multiset of arcs that we complete with the breaking arcs required to balance the 
unmatched nodes to create a biEulerisation of the input graph. Following the approach 
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from Edmonds and Johnson, we find a biEulerian circuit in the resulting graph which is a 
solution to the bidirected partial-coverage Chinese postman problem as required.

Note that our matching formulation only optimises CL, but does not optimise SC. It 
indirectly optimises SC because it decreases CL by joining strings, which also decreases 
SC by one each time. However, when joining two strings would not alter CL, Blossom V 
may output both variants, with joining the strings and without, while staying optimal. It 
then chooses an arbitrary option.

Efficient computation of many‑to‑many min‑cost paths

Apart from solving the matching problem, finding the min-cost paths between sources 
and sinks is the most computationally heavy part of our algorithm.

We solve it using Dijkstra’s shortest path algorithm [66] in a one-to-many variant and 
execute it in parallel for all sources. To be efficient, we create a queue with blocks of 
source nodes, and the threads process one block at a time. A good block size balances 
between threads competing for access to the queue, and threads receiving a very imbal-
anced workload. Since our min-cost paths are short (at most k − 1 arcs), in most execu-
tions of Dijkstra’s algorithm only a tiny fraction of the nodes in the graph are visited. But 
the standard variant of Dijkstra’s algorithm wastefully allocates an array for all nodes to 
store their distance from the source node (the distance array). To save space, we instead 
use a hashmap, mapping from node_index to distance from source. This turned out to be 
faster than using a distance array, even if the distance array uses an epoch system to only 
do a full reset every 232 queries. An epoch system stores a second value for each entry 
in the distance array indicating in what execution of Dijkstra’s algorithm that value is 
valid. The execution counter gets incremented each execution, and only when it wraps 
around, the distance array is reset normally. As another optimisation, we abort the exe-
cution early when Dijkstra reaches costs greater than k − 1 , since we are only interested 
in paths up to costs k − 1.

Finally, in our implementation, we do not compute the actual sequences of arcs of the 
paths. Instead of copying the path arcs when biEulerising the graph, we insert special 
dummy arcs with a length equal to the length of the path. When breaking the final biEu-
lerian circuit, if there are no breaking arcs but dummy arcs, then we break at a longest 
dummy arc to produce a minimum solution. If there are neither breaking nor dummy 
arcs, we proceed as described above. Then, when reporting the final set of strings, we 
define spell(·) to append the last ℓ characters of b when encountering a dummy biarc 
[(a, b), (b−1, a−1)] (or [(a, b)]) of length ℓ.

Efficient computation of the greedy heuristic

The greedy heuristic biEulerises the graph by greedily adding min-cost paths between 
unbalanced nodes, as opposed to choosing an optimal set via min-cost matching like our 
main algorithm. It then continues like the main algorithm, finding a biEulerian circuit, 
breaking it into walks and spelling out the strings.

To be efficient, the min-cost paths are again computed in parallel, and we apply all 
optimisations from “Efficient computation of many-to-many min-cost paths”  section. 
The parallelism however poses a problem for the greedy computation: if a binode with 
one missing incoming biarc is reached by two min-cost paths in parallel, then if both 
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threads add their respective biarcs, we would overshoot the bi-imbalance of that binode. 
To prevent that, we introduce a lock for each node, and before inserting a biarc into the 
graph we lock all (up to) four incident nodes. By locking the nodes in order of their ids 
we ensure that no deadlock can occur. Since the number of threads is many orders of 
magnitude lower than the number of nodes, we assume that threads almost never need 
to wait for each other. In addition to the parallelisation, we abort Dijkstra’s algorithm 
early when we have enough paths to fix the imbalance for the binode. This sometimes 
requires to execute Dijkstra’s algorithm again if a potential sink node was used by a dif-
ferent thread in parallel. But again, since the number of threads is many orders of mag-
nitude lower than the number of nodes, we assume that this case almost never occurs.

In practice, the greedy heuristic achieves better results in terms of SC than the opti-
mal matchtigs algorithm (see the “Results” section). This is because the greedy heu-
ristics always joins two strings if it does not alter CL, while the optimal algorithm 
does not, as explained in “Solving the min-cost integer ow formulation with min-cost 
matching” section.

Minimising string count

In the paper we studied SPSSes of minimum total length (minimum CL). In this section, 
we note that an SPSS with a minimum number of strings (minimum SC), and with no 
constraint on the total length, is also computable in polynomial time.

The high-level idea, ignoring reverse complements, is as follows. Given the arc-centric 
de Bruijn graph G, construct the directed acyclic graph G∗ of strongly connected com-
ponents (SCCs) of G. In G∗ , every SCC is a node, and we have as many arcs between two 
SCCs as there are pairs of nodes in the two SCCs with an arc between them. Clearly, all 
arcs in a single SCC are coverable by a single walk. Moreover, for two SCCs connected 
by an arc, their two covering walks can be connected via this arc into a single walk cover-
ing all arcs of both SCCs. Thus, the minimum number of walks needed to cover all arcs 
of G∗ (i.e. minimum SC SPSS) equals the minimum number of paths needed to cover all 
arcs of the acyclic graph G∗ . This is a classic problem solvable in polynomial time with 
network flows (see e.g. [67] among many).

However, such an SPSS of minimum SC very likely has a large CL, because covering an 
SCC with a single walk might repeat quadratically many arcs, and connecting the cover-
ing walks of two adjacent SCCs might additionally require to repeat many arcs to reach 
the arc between them.

Experimental evaluation

We ran our experiments on a server running Linux with two 64-core AMD EPYC 
7H12 processors with 2 logical cores per physical core, 1.96TiB RAM and an SSD. 
We downloaded the genomes of the model organisms from RefSeq  [42]: Caenorhab-
ditis elegans with accession GCF_000002985.6  [68], Bombyx mori with accession 
GCF_000151625.1  [69] and Homo sapiens with accession GCF_000001405.39  [70]. 
These are the same genomes as in [43], except that we downloaded HG38 from RefSeq 
for citability. The short reads were downloaded from the sequence read archive  [71]: 
Caenorhabditis elegans with accession SRR14447868.1  [72], Bombyx mori with 
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accession DRR064025.1  [73] and Homo sapiens with accessions SRR2052337.1 to 
SRR2052425.1 [74].

We downloaded the 1102 Neisseria gonorrhoeae genomes from [75]. We downloaded 
the 616 Streptococcus pneumoniae genomes from the sequence read archive, using the 
accession codes provided in Table 1 in  [76]. Up to here the pangenomes are retrieved 
in the same way as in  [43]. We additionally used grep to select 3682 Escherichia coli 
genomes from GenBank  [77] using the overview file ftp://​ftp.​ncbi.​nlm.​nih.​gov/​genom​
es/​genba​nk/​bacte​ria/​assem​bly_​summa​ry.​txt. The genomes are listed in Additional file 2. 
The ∼309k salmonella genome sequences were downloaded from the EnteroBase data-
base [78] in February 2022. The included filenames are in Additional file 3. The 2505x 
human pangenome is from the 1000 genomes project  [79], created by downloading a 
variant of GRCh37 from ftp://​ftp.​1000g​enomes.​ebi.​ac.​uk/​vol1/​ftp/​techn​ical/​refer​ence/​
phase2_​refer​ence_​assem​bly_​seque​nce/​hs37d5.​fa.​gz and downloading variant files for 
chromosomes 1-22 from http://​ftp.​1000g​enomes.​ebi.​ac.​uk/​vol1/​ftp/​relea​se/​20130​502/. 
We then converted chromosomes 1-22 in the reference into 2505 sequences each using 
the tool vcf2multialign published in [80].

For querying the human read dataset, we used 3 million reads randomly drawn from 
the reads used to construct the dataset. For querying the Salmonella pangenome, we 
used 3 million randomly drawn short reads from 10 read data sets from the sequence 
read archive with the accessions listed in Additional file  4. For querying the human 
pangenome, we used 3 million randomly drawn short reads from one file of the sequence 
read archive with accession SRR2052337.1. This is one of the files from the human short 
read dataset described above. For querying the E.coli pangenome (in Additional file 1: 
Section  3) we used 30 short read data sets from the sequence read archive with the 
accessions listed in Additional file 5.

We used snakemake [81] and the bioconda software repository [82] to craft our exper-
iment pipeline. The tigs were checked for correctness by checking the k-mer sets against 
unitigs. The bifrost queries in Additional file 1: Section 3 were checked for correctness 
by checking that the query results are equivalent for those with unitigs. The SSHash 
queries were not checked for correctness, as SSHash was modified by the author him-
self. Whenever we measured runtime of queries and builds for Additional file 1: Sup-
plemental figure 5 (Performance with different amounts of threads), we only let a single 
experiment run, even if the experiment used only one core. When running the other 
builds we ran multiple processes at the same time, but never using more threads than 
the processor has physical cores (thus avoiding any effects introduced by sharing logi-
cal cores). When running a tool we copied its input to the SSD, and copied the results 
back to our main network storage, to prevent the network storage’s varying workload to 
affect our runtime measurements. For experiments running on input reads or references 
as opposed to unitigs (BCALM2, ProphAsm), we copied the inputs to a RAID of HDDs 
instead, due to their large size. The copying was not part of the measurements. We made 
sure that the server is undisturbed, except that we monitored the experiment status and 
progress with htop and less. We limited each run to 256GiB of RAM per process, 
which prevented us from running matchtigs on larger inputs. Further, ProphAsm sup-
ports only k ≤ 32 , so it was not run for k larger than that.

ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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For an overview of our experiment pipeline for computing tigs, see Fig.  5. We run 
ProphAsm on the input data, as it was introduced to do  [43]. All other tools require 
unitigs to be computed first. UST specifically requires unitigs computed by BCALM2, as 
BCALM2 adds additional annotations to the fasta unitig file. Our tool matchtigs also can 
make use of these annotations to speed up the construction of the arc-centric de Bruijn 
graph. On the human pangenome, BCALM2 crashed due to the input being too large. 
Hence we used Cuttlefish 2 [40] to compute unitigs, and since UST only runs on unitigs 
computed by BCALM2, we then ran ProphAsm to compute heuristic simplitigs.

For queries, we executed Bifrost or SSHash-Lite on the different tigs. The Bifrost query 
command handles both building the index and executing the query, while SSHash-Lite 
requires to run a separate command to build the index first.

We measure runtimes and memory using the command /usr/bin/time -v. The 
runtimes are reported as wall clock time, and the memory is reported as the maximum 
resident set size.

See Section Availability of data and materials for availability of our implementation 
and experiment code, which includes all the concrete commands we have used to exe-
cute our experiments.
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