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Abstract 

Computational methods represent the lifeblood of modern molecular biology. Bench‑
marking is important for all methods, but with a focus here on computational meth‑
ods, benchmarking is critical to dissect important steps of analysis pipelines, formally 
assess performance across common situations as well as edge cases, and ultimately 
guide users on what tools to use. Benchmarking can also be important for community 
building and advancing methods in a principled way. We conducted a meta-analysis 
of recent single-cell benchmarks to summarize the scope, extensibility, and neutrality, 
as well as technical features and whether best practices in open data and reproducible 
research were followed. The results highlight that while benchmarks often make code 
available and are in principle reproducible, they remain difficult to extend, for example, 
as new methods and new ways to assess methods emerge. In addition, embracing 
containerization and workflow systems would enhance reusability of intermediate 
benchmarking results, thus also driving wider adoption.

Background
Given the rapid development and uptake of new technologies in biology (e.g. high-
throughput DNA sequencing, single-cell assays and imaging technologies), meth-
odologists are presented with nearly unlimited opportunities to apply or develop 
computational tools to process, model, and interpret large-scale datasets across a wide 
range of applications. Unsurprisingly, the data explosion [1, 2] is mirrored by a massive 
increase in the number of computational methods; for example, at time of writing, 1318 
are listed in a database of tools for the analysis of single-cell RNA-seq data [3, 4] and 
more than 370 tools are listed for the analysis of spatial omics data [5]. This imposes 
challenges for determining what tools to use for discovery [6]. In particular, researchers 
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often need to convince themselves that they develop or use performant tools in their 
research, and a typical approach is via formal benchmarks. Benchmarks can be decom-
posed into five steps: (1) formulating a computational task (or subtask) that will be inves-
tigated (e.g. calling differentially expressed genes); (2) collecting reference datasets by 
either generating (realistic) synthetic datasets or using ground truth derived from exper-
imental data; (3) defining performance criteria (e.g. sensitivity, specificity); (4) evaluating 
a representative set of methods via a set of performance criteria across multiple refer-
ence datasets; and (5) formulating conclusions and guidelines.

In terms of developing and disseminating new methods, the minimum requirement of 
quality is usually that the new approach provides a benefit against existing approaches. 
However, the current standard allows developers to be their own “judge, jury and execu-
tioner” [7], giving them some freedom to choose the settings and the evaluations used 
in the benchmark. There is a notable tension here, since methodologists that want to 
develop high-quality novel approaches may also be under pressure to publish [8]. One 
can argue that the risk of biases and over-optimistic evaluations of new approaches is 
minimized by the standard scientific review process; however this is also known to have 
its challenges [9]. Ultimately, it is almost a foregone conclusion that a newly proposed 
method will report comparatively strong performance [7, 10]. Thus, claims from indi-
vidual method development papers need to be scrutinized, preferably from a neutral 
(i.e. independent) standpoint [11, 12]. Neutral benchmarking appears to be a popular 
approach, since over 60 benchmarks have been conducted for single-cell data analysis 
alone (see below and Additional file 1). But even if done neutrally, the community may 
still want a mechanism to challenge, extend, or personalize the assessments (e.g. update/
add reference datasets, run methods with alternative parameters, use different metrics, 
rank methods differently).

Neutral benchmarking shares common ground with community “challenges” for con-
solidating the state-of-the-art. In some subfields of computational biology, there is a long 
history of such challenges, such as the biannual CASP (Critical Assessment of Structure 
Prediction) [13] and DREAM (Dialogue on Reverse Engineering Assessment and Meth-
ods) challenges [14], where participants are invited to propose solutions to a predefined 
problem. The challenge model is growing in success, including leaderboards that give 
real-time feedback, but these can sometimes reinforce a narrow view of performance 
(e.g. a single measure of performance on a single dataset [15]. In addition, for a challenge 
to be conceptualized in the first place, the community needs to formalize and frame 
existing problems, have access to suitable reference datasets, gather indications that the 
challenge can be solved, and only then assess if current technologies and methods would 
be able to solve it. This necessarily requires some common ground and knowledge in the 
field, which is often gained by neutral benchmarking studies. Although community chal-
lenges engage communities and innovation, they are typically time-gated in their scope, 
whereas one could also imagine benchmarking as a continuous process where challenges 
are integrated into the subfield’s trajectory. Initiatives in this direction include Open-
EBench [16], which provides a computing platform and infrastructure for benchmarking 
events, and’Open Problems in Single Cell Analysis’, which is focused on formalizing (sin-
gle-cell data analysis) tasks to foster innovation in method development while providing 
infrastructure and datasets such that new methods can be tested [17, 18].
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There are several obstacles related to running and using the results of benchmarks. In 
fast-moving subfields, benchmark results become rapidly out-of-date and, in some cases, 
competing methods never get directly compared because they are developed simulta-
neously. Current benchmarks are always a snapshot in time, while tool development 
is continuous. There are common components of most benchmarks, such as reference 
datasets, a set of methods and metrics to score their performance, but there are typically 
no pervasive standards for the system or strategy of benchmarking in computational 
biology, except for those predefined by challenges. This lack of standards can, for exam-
ple, lead to different rankings of the same methods for the same task [19–21]. Similarly, 
shortcomings of existing performance metrics may be discovered subsequent to earlier 
benchmarks [22]. Another area in which benchmarks underdeliver is the interpretation 
of performance results. Benchmark authors (or challenge organizers) generally get to 
make all the decisions about how the performance evaluation is conducted (e.g. how a 
ranking is determined, given multiple criteria).

Altogether, it remains an open question whether computational biology has reached 
a benchmarking optimum, achieving fair comparisons in a timely, independent, and 
continuous manner, while also keeping the barrier low enough for colleagues, including 
those in adjacent fields, to participate. In this report, we review current benchmarking 
practices in a subfield of genome biology (single-cell data analysis) to get an understand-
ing of where the current state-of-the-art is, and based on our findings, we postulate what 
elements of benchmarking would be considered desirable for the future.

State‑of‑the‑art in benchmarking

To understand the current state of practice in benchmarking studies in computational 
biology, we crowdsourced a list of single-cell method benchmarks (studies were selected 
by the project team from the period of 2018–2021 as exhaustively as possible on the 
basis of having at least a preprint posted, and involving the comparison of computational 
methods for some form of single-cell data, and not a primary method publication; see 
Additional file 1 for the list of studies). We then designed a questionnaire to query vari-
ous attributes of a benchmark study (see Methods, Additional file 2) and crowdsourced 
the review of these benchmarks. We focused on single-cell methods because it is an 
active area of methodological research, with an acute method explosion [3, 4], and a 
large number of benchmarks have been conducted. The list of questions asked for each 
benchmark includes both factual (e.g. “Whether synthetic data is available”) and opinion 
(e.g. “Degree to which authors are neutral”) assessments. Overall, we queried the scope, 
extensibility, neutrality, open science, and technical features of each benchmark. We 
required that at least two reviewers answer the questionnaire for each benchmark, and 
in the case of large discrepancies between responses (disagreement in a factual question 
or large difference in opinion), results were consolidated manually by a third reviewer 
(see Additional file 1 for consolidated responses, Additional file 3 for original responses). 
Questions were organized into two topics: (1) overall design of the benchmark and (2) 
code and data availability and technical aspects.
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Overall design of benchmarks

The overall design of the 62 surveyed single-cell benchmarks, including the num-
ber of datasets, methods, or criteria used for the comparison or the neutrality of 
the authors, was assessed. The number of benchmark datasets varied greatly, with 
2 benchmarks using only 1 dataset and 1 benchmark using thousands of simulated 
datasets (median = 8). Likewise, the number of methods evaluated varied from 2 to 88 
(median = 9) for the chosen task. Finally, the number of evaluation criteria, defined 
here as numerical metrics to compare method results against a ground truth, varied 
from 1 to 18 (median = 4), showing that current benchmarks tend to include more 
methods and datasets than evaluation criteria (Fig.  1A). The range of analysis tasks 
covered by benchmarks mirrors quite well the range of tools available [3, 4]. A nota-
ble exception is the category of visualization tasks, accounting for 40% of the avail-
able tools but formally benchmarked only once (Fig. 1B). Seventy-two percent of the 
manuscripts were first released as preprints and 66% tested only default parameters 
(Fig.  1C). We also enquired about the neutrality of the authors, defined as whether 
the authors of the benchmark were involved in one or several of the methods evalu-
ated. For more than 60% of the benchmarks, the authors were completely independ-
ent of the evaluated methods (Fig. 1D); neutrality is a desired attribute, although not 
absolutely required. More than 75% of benchmarks also assessed secondary measures 
(Additional file 4 Figure S1), such as runtime, memory usage, and scalability.

Fig. 1  Overall design of 62 single-cell method benchmarks. Overview of crowdsourced meta-analysis across 
surveyed benchmarks. A Numbers of entities (datasets, methods, metrics) present in each benchmark (each 
dot is a benchmark). Jitter is added to the X-axis. B Data analysis tasks. C Percentages of benchmarks that 
were first posted as preprint or whether benchmarks explored parameter space beyond default settings. D 
Reviewer’s opinions on the neutrality (whether the benchmark authors were involved in methods evaluated). 
Jitter is added to the X-axis and Y-axis of the scores



Page 5 of 11Sonrel et al. Genome Biology          (2023) 24:119 	

Code/data availability, reproducibility, and technical aspects

Also important for the uptake of benchmarking results is the open science and repro-
ducibility practices of the studies. Thus, the second group of questions related to the 
availability of data, code, and results as well as technical aspects. Figure  2A gives an 
overview of the availability of the different levels of data for benchmarking studies, high-
lighting that input (often ground-truth-including) data is frequently available (97% of 
studies). However, intermediate results, including outputs of methods run on datasets 
and performance results were only sparsely available at 19% and 29%, respectively. For 
studies that generated simulated data, less than half (19/46 articles) made their synthetic 
data available. Only 10% of benchmarks provided performance results in an explorable 
format. On the technical side, most benchmarks reported software versions of the meth-
ods being evaluated (68%), although provenance tracking (tracking of inputs, outputs, 
parameters, software versions, etc.) was not explicitly used. Another aspect of repro-
ducible practice is related to workflow tools that are used to orchestrate the datasets 
through methods and metrics. Although their use in computational biology is increas-
ing [23], we observed that less than 25% of the surveyed benchmarks used any form of 
them (see Fig. 2B). In a similar vein, containerization of software environments is quite 
mature in computational biology [24] but is rarely utilized in benchmarking (8% of stud-
ies). Concerning the methods that are compared, R and Python remain the dominant 
programming languages for single-cell methods, mirroring the summaries in the scrna-
tools database [4]; see also Additional file 4 Figure S1.

Fig. 2  Code/data availability, reproducibility and technical aspects of 62 single-cell method benchmarks. 
A Each column of the heatmap represents a benchmark study and each row represents a factual question; 
responses are represented by colours (Yes: blue; Partially: orange; Not Applicable: white; No: red). Not 
Applicable corresponds to benchmarks that did not use simulated data (synthetic data is available row) 
and to a benchmark that evaluated secondary measures only (performance results available row). "results 
available" refers to computational methods run on datasets; "performance results" refers to the results that 
are compared to a ground truth. B Type of workflow system used (benchmarks with no workflow used 
or no code available are represented in red, otherwise grey). C Reviewer’s opinions on the availability 
and extensibility of benchmarking code. Jitter is added to the X-axis and Y-axis of the scores. D Licence 
specification across benchmarking studies (benchmarks without licences or no code available are 
represented in red, otherwise grey)
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We next scored the degree to which code is available on a scale of 1 to 5 (Fig.  2C) 
where 1 means ‘not at all’ and 5 means ‘completely’. For over 75% of the benchmarks, 
code was fully or partially available, such as in a GitHub repository, although there are 
clearly different levels of completeness and description. We also gathered opinions on 
how extensible the available code is (e.g. how easy it is to incorporate an additional data-
set, method or evaluation criterion; see Fig. 2C); among the 47 studies sharing code, only 
two studies received a high score for extensibility.

Explicit code licencing is somewhat sporadic for benchmark studies (Fig. 2D); of the 47 
studies that made code available, 19 (40%) did not specify a licence. This can become an 
important consideration when re-using (public but licenced) code for building data anal-
ysis pipelines or extending benchmarks. Of those benchmarks that specified a licence, 
the free software MIT and GPLv3 appeared to be the dominant ones.

Taken together, our meta-analysis shows that most benchmarks results are at least in 
principle reproducible, since code and input data are shared. However, a fully repro-
ducible analysis would also require information about the software environment (e.g. 
operating system, libraries, packages) or an available container, which are sometimes 
documented, but often not readily available in the benchmarks that we evaluated. Thus, 
a significant amount of redundant work would be required to re-establish or extend the 
vast majority of surveyed benchmarks.

Conclusions
Benchmarking of omics tools has evolved to become standard practice and remains a 
crucial part of the development cycle of computational methods. However, the current 
standard of benchmarking still leaves considerable room for improvement. For exam-
ple, benchmarks can become out-of-date rapidly, especially in fast-moving subfields 
such as genomic data analysis. A better standard would involve updating and running 
benchmarking continuously as new methods emerge and, importantly, as better metrics 
become apparent. The computational biology community has for a long time been liberal 
about making code available [25], mirroring the genomics community in making data 
available [26], but the current standard in benchmarking is often not much more than 
a code dump, i.e. a minimal record of what was done. Ideally, methodologists get access 
to not only code and input data but also full software environments as well as modular 
workflow systems to orchestrate the running of methods on datasets and evaluations of 
results against a ground truth. Ultimately, many of the components that form a bench-
mark (datasets, methods, evaluation metrics) could be potentially re-used (e.g. ground 
truth datasets re-purposed for a different computational task). What is lacking right now 
is a general interoperability between components. Across current benchmarks, there is 
(typically) no mechanism to add new methods, datasets, or metrics, which is an impor-
tant consideration, since we want to update and push the state-of-the-art for developers, 
researchers and consumers of our methods.

Seamless and eternal extensibility or reproducibility can be challenging to establish 
and maintain indefinitely, especially for single research groups and because software 
toolchains used in computational biology are constantly in flux. The complete absence 
of provenance tracking also highlights that the intermediate results of a benchmark are 
not currently being directly reused. For example, if a developer wanted to evaluate their 
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method within the context of an existing benchmark, they would only have access to 
the bare minimum (usually just the reference datasets and some code); nonetheless, they 
are expected to re-run all previous methods essentially reconstructing the benchmark 
from scratch. This signals an opportunity to make intermediate results available in a sys-
tematic way, and use provenance tracking more broadly, whereby the results of methods 
run on datasets are recorded (as well as metric calculations comparing the results to the 
ground truth), together with the relevant parameters, such that method developers need 
only to re-execute relevant new components of a workflow. Reusability and extensibility 
of benchmarks would not only benefit users but also increase the visibility of published 
benchmarks, not simply a static and dated view of the field. A related point is software 
environments, since an ongoing challenge in computational biology is to onboard new 
methods across diverse computing systems, due to possibly different library require-
ments (e.g. Python version or Bioconductor release) of each software tool. Here, con-
tainerization [24] represents a currently untapped opportunity to systematize this for 
research pipelines as well as benchmarking studies.

Another area where users (data analysts, method developers) could directly interact 
with the benchmark data products is in the interpretation of performance. With access 
to the various assessment criteria, ranking strategies could be established that are tai-
lored to specific use cases and experimental settings, instead of that chosen in advance 
by the benchmarking team.

Despite the considerable time and effort required to set up a serious benchmark (e.g. 
collecting and standardizing datasets with ground truth, installing and onboarding 
methods, defining and running metrics), it is still most common to build a benchmark 
from scratch instead of extending existing benchmarks. To put in context, the single-cell 
community has developed over 80 methods to infer trajectories and over 40 methods to 
call differentially expressed genes [4], but there are seemingly few systems to orchestrate 
(create, extend, and run) neutral benchmarks. The burden of implementing extensible 
and continuously updated benchmarks does not necessarily need to be on the side of 
the benchmarker alone, since most benchmarks employ a similar structure (e.g. datasets, 
methods, metrics) and could use a general benchmarking orchestration system.

Although here we have focused on stand-alone benchmarks, every method devel-
oper is obligated to compare their approach to existing ones and also here a system-
atic approach has the potential to achieve considerable efficiency. Method developers 
could use an established (vetted) benchmark to evaluate their method, while introducing 
considerable time savings, avoiding some of the problems of self-assessment [10], and 
increasing transparency while preserving the value of benchmarks for end users.

The future of benchmarking

Besides having a modern technical implementation to organize benchmarks, it will be 
important that the community populates the system with high-quality tests of meth-
ods and finds strategies to constantly re-monitor the suitability of such tests, in a both 
systematic and community-informed way. However, several questions remain, such as 
who is responsible for the cost of computation, how to decide on the composition of 
high-quality tests of methods, and how to best combine performance metrics to rank 
methods.
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In this article, we identified several bottlenecks in current benchmarking policies, 
mainly related to reproducibility, extensibility, and achieving access to useful content. 
Taken together, to achieve a more transparent and impactful methods assessment eco-
system, we suggest that systematization of benchmarks through containerization, work-
flow tools, and provenance tracking with access to the full results of a benchmark would 
be required. A comprehensive list of issues and recommendations for benchmarking 
identified in this article is available in Table  1, but other guidelines were already cov-
ered by others [11, 12, 27, 28]. Notably, a set of principles to achieve higher quality and 
sustainability, FAIRsoft, was recently developed for research software [29], coupled 
with a scoring system scheme that allows a more objective assessment and evaluation 
of FAIR (Findable, Accessible, Interoperable, Reusable) principles; this strategy could 
also be applied to benchmarks. Our recommendations also echo a recent call to eval-
uate computational methods using a common platform [30]. Several initiatives are in 
motion here, such as ‘Open Problems in Single-Cell Analysis’ and OpenEBench [16, 17], 
and other tools may emerge for achieving this desired interoperability. We believe that if 
benchmark authors and method developers start embracing these tools, future bench-
marks will have an enduring impact in guiding computational methods towards a more 
structured and comprehensive science.

Methods
To perform the survey, we first gathered a list of published benchmarks in the field of 
single-cell data analysis. The list was crowdsourced by the project team using search 
engines, literature searches, and our own benchmarks, as well as a call on Twitter. 
Selected benchmarks had to have at least a preprint published and should not showcase 
a new computational method. Sixty-two benchmarks covering 19 analysis tasks were 
gathered and used for the rest of the analysis (see Additional file 1 for the list of studies).

A questionnaire was designed before the collection of data to evaluate different aspects 
of the benchmarks, grouped into ‘General information’, ‘Code/data availability’, and ‘Tech-
nical aspects’ (see Additional file  2). The latter two categories were merged into ‘Code, 
data availability and technical aspects’ in the manuscript for more clarity and because they 
were regrouping information from a similar aspect. The questions covered both factual 
and opinion assessments. The factual questions could be numerical (“Number of methods 
evaluated”), categorical (“Type of workflow used”), or semi-open (e.g.: answers to “What 
secondary measures were assessed?” could be of “Code quality”, “Installation” or a free 
answer to specify). All reviewers are students, postdocs, or group leaders actively involved 
in computational biology methods development. Several of the reviewed benchmarks were 
performed by our research group; however, to ensure neutrality, we allocated reviewers to 
be someone that was not directly involved. Except for this constraint, the reviewers could 
freely assign themselves to any benchmarks that corresponded to their own domain of 
expertise or interest. Each benchmark was reviewed at least twice by two reviewers (see 
Additional file 3 for original responses). Some questions received a high level of concord-
ance among the two reviews (example, “Type of workflow system used” and “Whether 
input data used by the methods is available”) while some received a lower level of concord-
ance (“Degree to which code to re-run benchmark is extensible”, “What secondary meas-
ures were assessed?”). To resolve discrepancies, we employed a third reviewer to harmonize 
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one or several questions across all benchmarks. Most discrepancies came about from unan-
swered questions, adding text to numerical answers, or simple errors (e.g. missing that a 
code repository was made available). A small number of discrepancies arose from underes-
timations due to relevant information being missed during one of the reviews (e.g. “Degree 
to which authors are neutral”, where some reviewers missed an author’s contribution to 
one of the evaluated methods), while other harmonizations required a re-analysis of the 
answers and a discussion with individual reviewers (e.g. “Degree to which code to re-run 
benchmarks is extendible”). The analysis presented in this manuscript was performed on 
the harmonized answers.
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Table 1  List of guidelines discussed in the article and their benefit for the community

Scope Main areas of 
improvement

Suggestions Outcomes

1. Extensibility Poor extensibility of 
benchmarks (addition of 
new components such as 
methods or metrics)

Manage code with workflow 
management systems (see 
above), improve documenta‑
tion, organize code to allow 
addition of new components 
(increase modularity)

Increased potential for code 
reuse by method developers and 
overall research article quality. 
Reduced effort required for future 
benchmarks with the same 
scope. Ultimately, improved com‑
parison of results across studies

2. Output avail‑
ability

Intermediate and final 
benchmarking outputs are 
often not made public or 
are not explorable

Provide (intermediate) 
outputs in a suitable format 
as supplementary material or 
make the available code com‑
plete enough to fully regener‑
ate intermediate results

Easier access to information for 
readers (specific case-studies). 
Outputs can be reused for other 
comparison studies

3. Parameters Most evaluated methods are 
run with default settings

Evaluate the sensitivity of 
the methods when param‑
eters need fine-tuning

Users will be more aware of the 
critical parameters to set when 
fine-tuning is necessary

4. Workflow 
management 
and containers

Workflow management 
systems and containers are 
scarcely used

Encourage the training 
of these tools in scientific 
workshops and undergradu‑
ate courses

Improved reproducibility of bench‑
marks and increased chance that 
they will be reused or extended, 
thus improving their visibility

5. Code licences Licences are seldom 
defined, making any code 
reuse unclear

Define a licence based on 
the scope of the research 
and potential commercial 
distribution

Increased reuse of code and 
decreased chance of (un)inten‑
tional misuses of intellectual 
property

https://doi.org/10.1186/s13059-023-02962-5
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