
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Ahmed et al. Genome Biology          (2023) 24:122  
https://doi.org/10.1186/s13059-023-02958-1

Genome Biology

SPUMONI 2: improved classification using 
a pangenome index of minimizer digests
Omar Y. Ahmed1*, Massimiliano Rossi2, Travis Gagie3, Christina Boucher2 and Ben Langmead1    

Abstract 

Genomics analyses use large reference sequence collections, like pangenomes or 
taxonomic databases. SPUMONI 2 is an efficient tool for sequence classification of 
both short and long reads. It performs multi-class classification using a novel sampled 
document array. By incorporating minimizers, SPUMONI 2’s index is 65 times smaller 
than minimap2’s for a mock community pangenome. SPUMONI 2 achieves a speed 
improvement of 3-fold compared to SPUMONI and 15-fold compared to minimap2. 
We show SPUMONI 2 achieves an advantageous mix of accuracy and efficiency in 
practical scenarios such as adaptive sampling, contamination detection and multi-class 
metagenomics classification.
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Background
Read classification is a component of many sequencing data analyses, such as taxonomic 
classification [1–3], host sequence depletion [4, 5], and adaptive sampling of nanopore 
reads [6, 7]. Databases holding reference sequences are growing rapidly [8, 9], enabling 
pangenomic methods that use a collection of related genomes as the reference, rather 
than a single genome. We previously described SPUMONI [10], a method for rapid 
binary classification of nanopore reads against a pangenome reference. SPUMONI 
builds on the r-index [11, 12], a compressed index that grows with the amount of dis-
tinct sequence in the reference pangenome. It uses the MONI algorithm [13] to com-
pute matching statistics (defined below) as input to its classification decision. Though 
SPUMONI was faster and used less memory than a minimap2-based approach, we 
since sought ways to extend its functionality to (a) analyze short as well as long reads, 
(b) perform multi-class as well as binary classification, and (c) scale efficiently to larger 
pangenomes.

We present SPUMONI 2, which uses a minimizer scheme to digest and reduce both 
the pangenome reference and the input reads. By changing the alphabet to consist of all 
possible minimizers, rather than all possible bases, SPUMONI 2 queries are faster than 
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SPUMONI’s. Moreover, the approach of SPUMONI 2 works in any situation where a 
read that truly originates from the reference pangenome yields longer exact substring 
matches than a read that does not. SPUMONI 2 works with long or short reads and does 
not require the user to have foreknowledge of what k-mer length is capable of distin-
guishing true from false hits.

Both SPUMONI and SPUMONI 2 build upon the MONI algorithm  [13] for com-
puting matching statistics. The matching statistics of a pattern string with respect to a 
collection of reference strings is an array storing the length of the longest prefix of the 
pattern’s ith suffix that occurs in the reference. For faster queries, SPUMONI 1 and 2 
compute an approximation of matching statistics called pseudomatching lengths (PMLs). 
See the “Methods” section for formal definitions.

Minimizers [14] are a form of locality-sensitive hashing, applied to windows of a 
string. A minimizer scheme defines a small window size (k) and a large window size (w); 
within each length-w window, the constituent k-mer with the minimal hash value is cho-
sen as the minimizer. They have been used to create small genomic and pangenomic 
indexes [1, 5]. In some settings, minimizers are used to digest a long sequence, replacing 
it with a concatenation of its minimizers (with equal-minimizer runs collapsed). This 
can, for instance, reduce the size of assembly graph representations [15, 16].

SPUMONI 2 first creates a minimizer digest with configurable small (k) and large (w) 
window sizes, then builds the r-index over the digest. When indexing the digest, SPU-
MONI 2 considers the alphabet to consist of all possible choices of minimizer (i.e., all 
possible k-mers) [15, 16]. That is, it uses a minimizer alphabet rather than a DNA alpha-
bet. This poses no problem to the r-index, which can adapt to any discrete alphabet. This 
combined strategy of indexing the minimizer digest and using a minimizer alphabet (see 
Fig. 1), has the effect of reducing index size, memory footprint, and query time.

Finally, SPUMONI 2 includes a new sampled document array structure, allowing for 
multi-class classification by relating the runs in the r-index to a representative document 
in the input collection. The user provides a list of genomes along with a class assign-
ment for each at construction time. The sampled document array is small — growing 
linearly with the size of the index — but allows the user to infer class membership during 

Fig. 1  a Shows the procedure used by SPUMONI 2 to digest a reference into a smaller reference of 
concatenated minimizers. In practice, SPUMONI 2 would also include the reverse complement of each 
sequence prior to applying the minimizer scheme. b After generating this minimizer digest which is typically 
smaller than the original reference, SPUMONI 2 builds an r-index over the minimizer digest which in turns 
leads to a smaller index
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the computation of matching statistics. Though the sparsity of the structure adds uncer-
tainty to these assignments, this can be compensated for by aggregating assignments 
along the read.

In short, SPUMONI 2 is a new method and software tool that creates small 
pangenomic indexes from large collections of genomes. SPUMONI 2 combines the com-
pression of the r-index and the adjustable sparsity of minimizers to greatly reduce the 
index size; for example, indexing 10 human genome sequences along with their reverse 
complements in 4.2 GB. The classification test used by SPUMONI 2 yields high binary 
classification accuracy on both short and long reads. Additionally, SPUMONI 2 enables 
multi-class classification through a new sampled document array structure that scales 
linearly with the amount of distinct sequence. Finally, when comparing SPUMONI 2 to a 
minimap2-based approach for ONT adaptive sampling in a mock community scenario, 
SPUMONI 2 is 15 times faster using an index more than 68 times smaller.

Results
Method overview

Like SPUMONI, SPUMONI 2 classifies reads according to the lengths of the matching 
statistics (MSs) computed with respect to an index of reference sequences. In particular, 
SPUMONI 2 computes an empirical distribution of “null” matching statistics at index 
construction time, identifying the longest null MS occurring at least a certain number 
[five] of times. SPUMONI 2 divides the read into non-overlapping windows of 150 sym-
bols each, starting at the left-end of the read, and classifies the read as “present” in the 
database if a majority of the windows have a maximum MS longer than the null thresh-
old. As with SPUMONI, SPUMONI 2’s default mode actually computes pseudomatch-
ing lengths (PMLs), a fast approximation of matching statistics (MSs) that have similar 
discriminatory power. Further details are given in “Methods” section.

Minimizer digestion

To assess the impact of minimizer digestion, we measured the size of the SPUMONI 
2 index when indexing a collection of Eschericha coli strains using two minimizer 
schemes and two alphabets. We chose to index 500 E. coli strains from the RefSeq 
database [17].1 A minimizer scheme is parameterized by a short window size (k) and 
a long window size (w). We assessed the (k, w)-pairs of (4, 8) and (4, 16). The pair 
(4,  8) was chosen to yield a digested index with a similar size (r) compared to the 
undigested index. The pair (4, 16) was chosen to allow us to measure the impact of 
minimizer sparsity on index size. We assessed two choices of alphabet: a minimizer 
alphabet, where each possible 4-mer is a distinct alphabet symbol (with k=4, there 
are 256 possible k-mers which can be encoded in a 8-bit character), and a typical 
DNA alphabet with 4 nucleotide symbols. The digested reference was obtained by 
scanning the reference sequence, computing the minimizers, collapsing equal-min-
imizer runs, then concatenating the minimizers, either leaving them in the original 
DNA alphabet or converting them to the minimizer alphabet in the process (Fig. 1). 

1  We give the accessions numbers in the supplemental data.
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We measured both the length of the digested reference (n) and the number of runs 
in its Burrows-Wheeler Transform (r), which is the main determinant of index size.

We observed that the compressed indexes of the digested sequences continued 
to have large compression ratio (n/r), indicating that compressed indexing is still 
effective on minimizer-digested strings (Table 1). In the case of the (4, 8) minimizer 
scheme, the value of n after digestion was greater than than the n before digestion 
(6.78 versus 5.13 billion), but digestion had little effect on r (64.4 after digestion ver-
sus 65.2 million before). Consistent with expectations, index size was smaller for 
sparser minimizer schemes.

As seen in Fig.  2a, SPUMONI 2’s index decreased in size as w increased. Also, 
query speed-up was nearly always greater than 1 (i.e., faster than the original index) 
and also increased with w, though with some variability. The minimizer-alphabet 
indexes (green) always outperformed DNA-alphabet indexes (red) with respect to 
both index size and speed-up.

Table 1  SPUMONI index measurements when built over 500 E. coli strains (total size 2.5 GB) using 
different minimizer schemes and alphabets. Both minimizer schemes used a small window size (k) of 
4. The forward and reverse complement for each E. coli genome was included in the index

w No digestion w = 8  w = 16  

 Alphabet Minimizer DNA Minimizer DNA

n 5.13 billion 1.61 billion 6.78 billion 663 million 2.85 billion

r 65.2 million 31.8 million 64.4 million 17.5 million 35.1 million

n/r 78.753 50.603 105.35 37.888 81.251

Index size 232 MB 142 MB 227 MB 73 MB 124 MB

Fig. 2  a Shows the relative size of the minimizer-based SPUMONI indexes across a range of large window 
sizes compared to the index size when indexing the full FASTA file. The dataset indexed is a set of 500 
Escherichia coli genomes, and the small window size was kept at 4. b Shows the speed-up achieved when 
using the minimizer-based indexes to query 1 million short E. coli reads [18] against our index compared to 
querying against an index over the full FASTA file
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Efficient short and long‑read binary classification

To assess how minimizer digestion impacts classification accuracy, we ran SPUMONI 
2 with various large window sizes (w), using either DNA or minimizer alphabets. We 
found that the minimizer alphabet allowed SPUMONI 2 to attain high accuracy — as 
high as the highest accuracy achieved by the DNA alphabet — while yielding a smaller 
index (Fig. 3). While accuracy decreased as the minimizer scheme became sparser (i.e., 
moving from right to left on the plot), the decrease was less drastic for long reads com-
pared to short reads. For both short and long reads, we setting w to a value between 10 
and 12 decreased index size with only a minor impact on accuracy. Given these results, 
we set SPUMONI 2’s default minimizer scheme to use w = 11 , which will be used in 
future results.

Adaptive sampling classification using SPUMONI 2

As a more challenging test case for minimizer digestion, we assessed SPUMONI 2’s clas-
sification accuracy in an adaptive sampling setting. More specifically, we replicated the 
mock-community simulation experiment from the original SPUMONI study [10]. We 
compared SPUMONI to a minimap2-based approach similar to Readfish [7]. Classifica-
tion tools were run on four “batches” consisting of non-overlapping windows of 180 bp 
from the reads, starting from the read’s left end. Once the tool can make a classification 
decision, typically after examining the first or second batch, we record the decision and 
assess accuracy. Experimental details are given in the “Methods” section.

SPUMONI 2 was able to index both pangenomic databases in about half the space 
as SPUMONI 1, and achieved a 2-fold speed-up with respect to classification time 
(Table 2). Because we also measured performance of SPUMONI 2 with minimizer diges-
tion disabled (labeled SPUMONI 2a), we can conclude that these improvements were 
due to minimizer digestion. Compared to minimap2 on the Mock Community dataset, 

Fig. 3  Shows SPUMONI’s binary classification accuracy for indexes of different sizes using different minimizer 
types. The index was built over 500 Escherichia coli genomes and used minimizer schemes where the large 
window size ranged from every integer value from 8 to 24. The read set consisted of simulated ONT (mean 
length = 9000 bp, 95% accuracy) [19] and Illumina reads (150 bp, 99% accuracy) [18] from E. coli and Human. 
The goal was to classify whether the read was from E. coli or Human
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SPUMONI 2 was about 15 times faster with an index more than 68 times smaller (0.74 
GB versus 50.9 GB). On the Human Microbiome dataset, the SPUMONI 2’s index was 
about 15 times smaller than minimap2’s, and SPUMONI 2 was about 4 times faster at 
classification. The SPUMONI 2 pangenome index comprising of 10 human genome 
sequences and their reverse complements fit in about 4.2 GB.

Contamination detection in assemblies

We expected that SPUMONI 2 would be able to quickly scan for the presence of con-
taminants in human genome assemblies. NCBI, which curates the GenBank and Ref-
Seq databases, uses a series of filtering protocols to identify contamination, e.g., by using 
BLAST  [20] to align contigs against common contaminants like Eschericha coli and 
yeast.

We built the SPUMONI 2 index over a pangenome of Eschericha coli and yeast 
genomes (Additional file  1: Table  S1). The SPUMONI 2 index was 104 MB, 24 times 
smaller than the total size of the input FASTA files (2.5 GB). We used the contigs from 
human assemblies as input to SPUMONI 2 to identify contigs with long pseudomatch-
ing lengths (PMLs) with respect to the contaminant pangenome. SPUMONI 2 found 
four contigs in one human assembly [21] where the 25th percentile of the PML distri-
bution was 2 or greater (Fig. 4a). When comparing these four to all the other contigs, 
we observed a stark difference in distribution of PMLs. Figure 4b uses minimap2 align-
ments to confirm that these contigs have large substrings matching with high identity to 
the contaminant database. These were reported to the authors of the assembly [21], who 
verified these findings and removed the contigs from the v2.0 assembly as of December 
17, 2021.

Table 2  Adaptive sampling simulation using SPUMONI 1, SPUMONI 2 and minimap2. SPUMONI 
1 indexes the full input database, while SPUMONI 2 indexes the minimizer-digested sequences of 
the database using the minimizer alphabet. The “SPUMONI 2 a” gives measurements for SPUMONI 2 
with minimizer digestion disabled. Batches of 180 bp (0.4s) of data are delivered in each batch, and 
the goal is to decide whether to eject the read or not. Four batches were considered in the analysis 
which corresponds to 720 bp. The mock community dataset of ONT reads (SRX7711546) consists 
of reads from 7 microbial species and 1 yeast species. The goal is to retain the yeast reads and eject 
the microbial reads. For the human microbiome study, bacterial reads from the microbiome were 
obtained the following SRA accession (SRX6602475) and human reads were simulated [19] from the 
CHM13 reference

a Running SPUMONI 2 without minimizer digestion (i.e., similar to SPUMONI 1 but using new classification approach)

Scenario Mock community Human microbiome

Goal Retain yeast, eject microbial Retain microbial, eject human

Index 
database

7 microbial species (n =5867 genomes) Human (n =10 genomes)

Tool SPUMONI 1 SPUMONI 2a SPUMONI 2 minimap2 SPUMONI 1 SPUMONI 2a SPUMONI 2 minimap2

Sensitivity 97.38 97.62 95.32 97.90 99.24 95.07 97.08 99.56

Specificity 90.77 97.38 97.06 97.85 94.30 99.97 99.12 99.97

Index size 1.54 GB 1.54 GB 0.74 GB 50.9 GB 10.2 GB 10.2 GB 4.21 GB 65.5 GB

Peak 
memory

1.62 GB 1.62 GB 0.80 GB 8.40 GB 11.0 GB 11.0 GB 4.56 GB 9.99 GB

Time (s) 367.39 362.89 193.53 2957.56 1628.7 1747.12 732.63 3070.0
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We compared SPUMONI 2’s speed to that of BLAST+, which is used by NCBI for 
assembly filtering. SPUMONI 2 was 4.3 times faster while identifying the same suspi-
cious contigs (Additional file 1: Table S3).

Small multi‑class classification using the sampled document array

We assessed SPUMONI 2’s sampled document array in a multi-class classification set-
ting. As SPUMONI 2 computes matching statistics at each position of the read, it que-
ries the sampled document array to obtain a class label for one document (sequence) 
containing the current match. The process involves uncertainty, since the particular 
class reported by the sampled document array may be just one among many that contain 
the match (see the “Sampled document array” section in the methods for details). We 
hypothesized that, by aggregating the classes reported over the course of all the steps of 
the algorithm, we can infer the correct class of origin.

We used SPUMONI 2 to construct a pangenomic index over all of the genomes in 
RefSeq for eight different microbial species (details in Additional file 1: Table S2). We 
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observed that the sampled document array increased the size of the index from 793 
MB to 920 MB, a 16% increase.

Figure  5 shows that when querying simulated Illumina reads  [18] from eight dif-
ferent microbial species against a pangenomic database, we find that between 80.7 
and 88.0% of the classes reported by the sampled document array at the read level 
match the true class of origin. For long ONT reads, we see a similar pattern where the 
true class is in the majority, ranging from 53.8 to 66.3% of the labels across the eight 
classes (Additional file 1: Fig. S1).

When queried with randomly-generated reads consisting of independent and uni-
form draws from the DNA alphabet, no class label exceeded 28.2% frequency for 
short reads (Fig.  5). We observed a tendency for some classes to be reported more 
often than others (e.g.,  E. coli), likely because of differences in the total number of 
indexed bases of each class (Additional file 1: Table S2).

Discussion
SPUMONI 2 is a read classification tool optimized for classifying both short and long 
reads against a pangenomic database. By combining minimizer digestion with the 
r-index, SPUMONI 2 compresses the pangenome more efficiently than SPUMONI, 
allowing it to handle larger databases. Compared to minimap2, SPUMONI 2’s index is 
far smaller (1/68th of minimap2’s in the case of our mock community experiment) and 
it performs classification up to 15 times faster. While SPUMONI 2’s computational 
efficiency comes at the expense of some classification accuracy, this can be a favorable 
trade in  situations where the pangenome is very large (e.g., minimap2’s index of 10 
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human genome assemblies is over 50 GB) or where reaction time is important, e.g., 
in an adaptive sampling setting where the algorithm has to keep up with DNA strings 
moving through many hundreds of pores simultaneously.

SPUMONI 2 includes a novel sampled document array structure whose space usage 
achieves the same O(r) bound as the overall r-index. This allows our matching-statistics-
based classification method to work in multi-class classification settings, expanding its 
applicability to metagenomics classification.

While the sampled document array was effective in the long-read classification scenario 
studied here, it is limited by the fact that it records only one “document” (class) per r-index 
run boundary. A more general approach would additionally allow us to query all classes 
containing the current match, not just the class corresponding to the run boundary. Such 
approaches exist for uncompressed indexes, but more work is needed to adapt these to 
work in compressed space and time. This will be particularly important for short-read clas-
sification, where we cannot aggregate as many document array queries.

Since classification decisions are ultimately influenced by the particular choice of hash 
function, certain sequences might be systematically more or less likely to be represented in 
the digest. While we do not expect this to favor any particular biologically meaningful class 
of sequence, any potential bias could be addressed by choosing many hash functions with 
random inputs and repeating the analysis.

A related point can be made about how the minimizer scheme deals with tandem repeats. 
When the repeated unit is repeated perfectly and is small compared to the large window 
size, the minimizer sequence will remain the same over the entire span of the repeat. Our 
method will compress the consecutive string of equal minimizers to a single minimizer, los-
ing any notion of the tandem repeat’s length. In the future, it will be important to study 
alternatives to our compression scheme that are able to retain more information about tan-
dem repeats and their lengths.

Finally, we demonstrated a novel application of SPUMONI 2 to detecting contaminants 
in genome assemblies. This represents another application where, as reference databases 
continue to grow, SPUMONI 2 will be well positioned to leverage the additional assem-
blies with minimal impact to index size or classification speed. On the other hand, larger 
genomic databases have been shown to affect k-mer based approaches due to decreasing 
levels of k-mer specificity [22].

Conclusion
We present SPUMONI 2 as an efficient tool for sequence classification for both short and 
long reads with respect to large reference collections. Its usage of minimizers along with 
the r-index yields better compression compared to SPUMONI as well as contributing to a 
3-fold speedup. In addition, it incorporates a novel data-structure called the sampled docu-
ment array that enables efficient multi-class classification of reads against pangenomes. We 
have shown a series of biological analyses such as adaptive sampling, contamination detec-
tion and multi-class metagenomics classification where SPUMONI 2 provides a strong bal-
ance between accuracy and efficiency. In conclusion, SPUMONI 2 is an efficient solution 
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for read classification with respect to large genomic databases with a wide array of potential 
applications.

Methods
Compressed indexes

Given a text T[1..n] of length n, the Burrows-Wheeler transform (BWT)  [23] is a 
reversible permutation of T’s characters such that BWT[i] is the character preceding 
the ith lexicographical suffix of T. The BWT of a repetitive text will have long runs 
of the same character. The symbol r denotes the number of maximal same-character 
runs in the BWT.

The r-index [24] is a compressed index consisting of the run-length encoded BWT, 
plus auxiliary structures enabling rapid queries for counting the number of times a 
substring occurs in T, as well as for locating all offsets in T where a substring occurs. 
Only O(r) space is needed overall. More details can be found in the study of Gagie 
et al [11].

Matching statistics and MONI

The matching statistics array MS[1..m] is defined for a pattern P[1..m] with respect 
to a text T[1..n]. The element MS[i] equals the length of the longest prefix of P’s ith 
suffix that occurs in T. Using the r-index, Bannai et al. [25] proposed a two-pass algo-
rithm for computing MS using an additional “thresholds” structure. The algorithm’s 
first pass iterates over P from right to left, attempting to use the LF mapping at each 
step to extend the match to the left by one character. If the algorithm reaches a row j 
and finds that match cannot be extended because the next character of P mismatches 
BWT[j] , the algorithm skips (“jumps”) either up or down to the next BWT run that 
does start with the next character of P. The direction of the jump is determined by the 
threshold, which indicates whether jumping up or down yields a longer match. Given 
the steps taken through the BWT in the first pass of the algorithm, the second pass 
uses a random-access data-structure over T to compute the exact matching statistic 
lengths for MS . More details can be found in the study of Rossi et al [13].

Pseudomatching lengths and SPUMONI

Pseudomatching lengths (PMLs) were proposed in the SPUMONI study as being a 
quantity similar to matching statistics but more efficient to compute. SPUMONI’s com-
putation of PMLs does not require the second pass of the algorithm described above. 
Instead, each step of the first pass that successfully extends the match using the LF map-
ping causes a length variable to be incremented by one. When the algorithm reaches a 
step where it cannot proceed using the LF mapping and has to jump instead, the length 
variable is reset to 0. The values taken by this variable at each step constitutes the vec-
tor of PMLs ( PML ). The PML values are upper-bounded by the MS values, but we have 
shown that they are similarly useful for classification of sequences [10].

The SPUMONI index consists chiefly of the r-index (omitting the sampled suffix 
array) and the thresholds. These structures allow SPUMONI to compute PML in O(r) 
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space. Because the r-index component does not need to include the sampled suffix 
array, SPUMONI’s disk and memory footprint can be substantially smaller than that 
of the MONI algorithm described in the previous subsection.

Minimizer digestion

SPUMONI 2 computes minimizers by applying a hash function to all k-mers in a larger 
window of size w, w > k . The k-mer with minimal hash value is the minimzer. If the 
minimizers found in two or more consecutive steps are identical, they are compressed to 
a single copy of the minimizer. SPUMONI 2 uses the RollingHasher object provided by 
the Bonsai C++ library [26].

These minimizer sequences are then indexed by using the r-index [11] to build a run-
length encoded BWT and thresholds data-structure.

Read classification

The previous SPUMONI method classified reads by accumulating an empirical distribu-
tion of positive PMLs (with respect to the reference), and another of null PMLs (with 
respect to the reverse of the reference) [10]. It used a Kolmogorov-Smirnov statistical 
test (KS-test) to assess whether the distribution of positive PMLs was overall larger 
(shifted higher) compared to the null PMLs.

SPUMONI 2 uses a simpler approach; it also accumulates empirical distributions of 
positive and null PMLs, but it classifies reads by first computing a threshold PML value 
as a function of the null PML distribution. The null PML distribution is constructed 
by extracting small reads (substrings) from the reference, reversing the sequence, then 
computing PMLs for those sequences with respect to the reference. Since the sequences 
are reversed (not reverse complemented), they serve as random sequences that should 
not be classified as matching the reference, but they nonetheless share the reference’s 
base distribution. Pooling across simulated reads, we compile an aggregate distribution 
of null PMLs and compute the threshold as being equal to the largest PML that occurs at 
least 5 times. Because the process of computing the threshold uses the same parameters 
as the read-classification process (i.e., same minimizer scheme and alphabet), the choice 
of threshold is customized to the problem at hand.

Given the threshold PML value, SPUMONI 2 classifies a read by computing the read’s 
positive PMLs with respect to the reference index in many distinct non-overlapping win-
dows of the read. By default, the read is divided into non-overlapping windows of 150 
symbols. We found this window size performs well in terms of accuracy across different 
alphabets (minimizers or DNA). The windows at the end of the read that are less than 
150 symbols are grouped together with the previous window. If a majority of the win-
dows have a maximum PML greater than the threshold, the read is classified as matching 
the reference, otherwise it is classified as not matching.

Adaptive sampling simulation

Nanopore sequencers report a time series representing the amount of current flowing 
through a pore. The data is split into batches which are delivered to the control software 
for analysis. Following our experimental setup from the SPUMONI study [10], we simu-
lated 4 batches of 0.4 s of basecalled nanopore data, with each batch consisting of 180 bp 
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each. Batches of this size were shown to be sufficient for binary classification method [5, 
7]. We start from base-called data, rather than from raw signal data.

For our adaptive sampling simulation, we simulated two different scenarios where 
adaptive sampling could be used to enrich for certain reads. The first scenario is a mock 
community which consists seven bacterial species (Staphylococcus aureus, Salmonella 
enterica, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Enterococ-
cus faecalis, Bacillus subtilis) and 1 yeast species (Saccharomyces cerevisiae). The goal in 
this scenario is to enrich for the yeast reads by rejecting bacterial reads. To accomplish 
this, we built a pangenome reference over all the strains of the seven bacterial species in 
RefSeq [17] to identify which reads come from bacteria.

The second scenario is focused on the human microbiome where we used a 50:50 
mixture of simulated human reads from the CHM13 reference [27], and real nanopore 
reads from the microbial species in the human gut [28]. The goal in this experiment is to 
enrich for the microbial reads while removing as many human reads as possible. For this 
scenario, we built a pangenome reference over 10 human assemblies [27, 29–36] in order 
to identify human reads that we want to remove.

We use both SPUMONI and minimap2 to classify batches against the pangenome 
index. A read classified as “present” should be immediately ejected by the pore, so sub-
sequent batches of data are not processed. SPUMONI 2 classifies the current batch of 
180 bp using the test described in “Read Classification” methods section. In the case 
of minimap2, aligning against a pan-genomic database usually yields numerous align-
ments: a primary and many secondary alignments. We examine these to ensure all are 
to the same species and, if so, we classify the read as “present.” For any batch after the 
first, we provide the entire base-called read so far to minimap2; i.e. we concatenate the 
bases from all the batches so far. In this way, minimap2 is redundantly processing the 
same bases when examining batches beyond the first. This is consistent with minimap2’s 
design; unlike the r-index-based algorithms that have the ability to “pause” and “resume” 
the matching process, minimap2 must be run on a complete read sequence.

The time required for each method is reported in Table 2; this is the total time used by 
each method to classify the reads across all 4 batches of data.

Sampled document array

SPUMONI 2’s sampled document array consists of 2r integers encoding the class of the 
suffixes at the beginning and end of every BWT run. The class labels are computed at 
index construction time. Note that the class labels can be stored in ⌈log2 c⌉ bits, where 
c is the number of class labels, which willl often be much less than the ⌈log2 n⌉ bits 
required for suffix array entries. An example is shown in Fig. S4 (Additional file 1).

At query time, the sampled document array is queried whenever the algorithm for 
computing PMLs passes through a suffix at a run boundary. As described in detail in 
the MONI paper [13], the algorithm proceeds base-by-base starting from the right-
hand extreme of the read. Each step falls into one of two cases. When the match can be 
extended to the left using the LF mapping, this is called “case 1.” When the match can-
not be extended to the left using the LF mapping, the algorithm uses threshold infor-
mation to choose a new BWT run to “jump” to. This is “case 2.” Importantly, case 2 
always results in the algorithm moving to a run boundary. That is, when the algorithm 
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jumps, it jumps either to the beginning of a run (if it jumps down) or the end of a run (if 
it jumps up).

When using the sampled document array, the SPUMONI 2 algorithm compiles not 
only its usual array of PMLs, but also an array of document (class) labels, CA . At posi-
tion j in the read where the algorithm uses case 2, the label CA[j] equals the sampled 
document array element corresponding to the run boundary jumped to. For a posi-
tion j in the read where the algorithm uses case 1, the label CA[j] equals the class 
observed in the most recent instance of case 2. When the read truly originates from 
one of the classes in the reference pangenome, we expect the majority of the labels in 
CA to match the true class. This algorithm is summarized in the form of pseudocode 
in Fig. S2 (Additional file 1).
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