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Abstract 

Assay for Transposase-Accessible Chromatin with sequencing (ATAC-seq) reveals chro-
matin accessibility across the genome. Currently, no method specifically detects differ-
ential chromatin accessibility. Here, SeATAC uses a conditional variational autoencoder 
model to learn the latent representation of ATAC-seq V-plots and outperforms MACS2 
and NucleoATAC on six separate tasks. Applying SeATAC to several pioneer factor-
induced differentiation or reprogramming ATAC-seq datasets suggests that induction 
of these factors not only relaxes the closed chromatin but also decreases chromatin 
accessibility of 20% to 30% of their target sites. SeATAC is a novel tool to accurately 
reveal genomic regions with differential chromatin accessibility from ATAC-seq data.
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Background
Eukaryotic genomes are packed into nucleoprotein called chromatin whose basic 
unit is the nucleosome, which comprises a histone octamer wrapped around 147 base 
pairs of DNA [1]. Nucleosomes are arranged into regularly spaced arrays, separated by 
unwrapped linker DNA whose length varies among species and cell types [2]. The dense 
nucleosome regions (nucleosome occupied regions, NOR) are tightly packed, whereas 
the loose nucleosome regions (nucleosome free regions, NFR) are more accessible to 
transcription factors. It is known that precise location of a nucleosome relative to tran-
scriptional target sites can significantly influence factor binding [3–7]. Thus, the chro-
matin accessibility plays a critical role in regulating gene expression pattern.

High-throughput sequencing techniques such as MNase-seq [8, 9], chemical mapping 
[10], DNase-seq [11], FAIRE-seq [12], and ATAC-seq [13] have been developed to assess 
genome-wide chromatin structure. MNase-seq uses an endo-exonuclease that degrades 
the accessible linker DNA between nucleosomes and reveals the position of nucleosomes 
by sequencing the protected DNAs. The chemical cleavage method introduces a cysteine 
substitution at serine 47 in histone H4 (H4S47C) to localize free radical mediated 
cleavage of nucleosome DNA, followed by performing a copper ion-mediated Fenton 
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reaction to cleave nucleosomal DNAs. The cleaved DNA fragments are then sequenced 
to estimate the position of the center of the nucleosome. DNase-seq digests with DNase 
I endonuclease and the resulting DNA fragments correspond to open chromatin region. 
FAIRE-seq uses formaldehyde and phenol–chloroform extraction separation to isolate 
nucleosome-depleted DNA from chromatin. Assay for Transposase-Accessible Chroma-
tin using sequencing (ATAC-seq), which utilizes Tn5 transposases to digest accessible 
genomic DNA, is an efficient and precise method for revealing chromatin accessibil-
ity across the genome. Compared with other techniques, ATAC-seq requires less input 
materials and sample processing time [13, 14] and thus becomes a widely adopted tool 
for profiling chromatin accessibility of both bulk samples and single cells [15].

The fragment size profile of ATAC-seq paired-end reads can be partitioned into reads 
generated from putative NFR and NOR regions of DNAs, respectively [13]. The reads 
from the NOR region have clear periodicity of approximately 150 to 200  bp and pro-
duced detailed information on nucleosome position and degree of chromatin com-
paction [13]. This unique feature of ATAC-seq reads have been utilized to infer the 
nucleosome positions using NucleoATAC [16] and deNOPA [17], which have demon-
strated improved performance compared to generic nucleosome calling tools such as 
DANPOS [18] and NPS [19]. However, to date, there is no published method for the 
detection of differential chromatin accessibility specifically for ATAC-seq data. Cur-
rently, MACS2 [20, 21], which was originally designed for ChIP-seq data, remains the 
gold standard for analyzing ATAC-seq data [22] and does not consider ATAC-seq-spe-
cific properties.

In this study, we engineered a tool, named SeATAC, to estimate the genomic regions 
with statistically differential chromatin accessibility from multiple ATAC-seq data. 
Using SeATAC, each genomic region is represented as a V-plot, a dot-plot showing how 
sequencing reads with different fragment sizes distribute surrounding one or a set of 
genomic region(s) [23]. The V-plot based analysis has been used to study nucleosome 
dynamics flanking the transcription factor (TF) binding sites [23, 24], nucleosome phas-
ing near pioneer factors during reprogramming [25], clustering the nucleosome profiles 
near promoters [26], and examining the distance between nearby nucleosomes [27, 28]. 
However, the V-plot was derived from and visualized for a set of genomic regions due to 
the noisy and sparse nature of the sequence reads on genomic regions. The difference of 
V-plots on individual genomic regions between multiple ATAC-seq datasets have never 
been evaluated before. For SeATAC, we used a conditional variational autoencoder 
(CVAE) model to learn the latent representation of the ATAC-seq V-plot [29–31]. With 
the probabilistic representation of the data, we developed a Bayesian method to evalu-
ate the statistical difference between multiple V-plots. We demonstrated that SeATAC 
had significantly better performance on six separate tasks compared to MACS2 and/
or NucleoATAC on both synthetic and real ATAC-seq datasets. SeATAC is available at 
https://​github.​com/​gongx​030/​seatac as an R package.

Results
The SeATAC model

The SeATAC model uses a V-plot with a width of 640-bp genomic region and a height of 
640 bp of fragment sizes that covers nucleosome free reads (< 100 bp), mono-nucleosome 

https://github.com/gongx030/seatac


Page 3 of 28Gong et al. Genome Biology          (2023) 24:125 	

reads (between 180 and 247 bp), di-nucleosome reads (between 315 and 473 bp), and 
tri-nucleosomes (between 558 and 615 bp) [13]. The four groups of ATAC-seq reads rep-
resent the majority of total ATAC-seq reads (> 95%) and have been successfully used to 
segment the genomic structure [13, 32]. To reduce the impact of noise, an array of 5 × 10 
pixels were aggregated together and became a single larger pixel, resulting in an image 
composed of 128 × 64 pixels. We named the bins along the genomic region dimension 
and fragment size dimension as genomic bins and fragment size bins, respectively. The 
aggregated reads along the genomic bins were then normalized to a vector that sum to 
one (Fig. 1a).

We modeled the V-plot xni of each genomic region i in each sample n as a probabilistic 
distribution p(xni|zni, sn) conditioned on the sample indicator sn of each sample, as well 
as an unobserved latent variable zni (Fig. 1b). The sample indicator sn represents the nui-
sance variation due to the sample-specific fragment size profile. The latent variable zni is 
a K  dimensional vector of Gaussians representing the remaining variation with respect 
to the underlying V-plot ( K = 5 ). In SeATAC, a neural network serves as a decoder to 
map the latent variables zni and sample indicator sn to an estimated output V-plot. We 
expected that latent variables provide batch-corrected representations of the V-plot for 
the differential analysis. We derived an approximation of the posterior distribution of the 
latent variable q(zni|xni, sn) by training another encoder neural network using variational 
inference and a scalable stochastic optimization procedure [29, 30]. The variational dis-
tribution q(zni|xni, sn) is chosen to be Gaussian with a diagonal covariance matrix, where 
the mean and covariance are estimated by an encoder neural network applied to (xni, sn) . 
The variational evidence lower bound (ELBO) is

A standard multivariable normal prior p(zni) is used in SeATAC because it can be 
reparametrized into a way that allows backpropagation to flow through the determin-
istic nodes [29]. To optimize this lower bound, we used the reparameterization trick to 
compute low-variance Monte Carlo estimates of the expectations’ gradients. Through-
out the study, we used Adam optimizer (learning rate = 0.01) with a cosine learning rate 
schedular with warmup.

SeATAC corrects batch effects in ATAC‑seq data

Although the fragment size profile (the fragment size density plot) provided similar frag-
ment length estimation regarding NFR and nucleosomes (mono-nucleosomes, di-nucle-
osomes, tri-nucleosomes, etc.) [13], the exact pattern differed across ATAC-seq datasets, 
resulting in different fragment size ranges and density for NFR and nucleosome reads. 
We assumed that the majority of the batch effects in the ATAC-seq were due to the dif-
ference of the fragment size profile [13]. In the SeATAC model, an embedding layer first 
maps the sample indicator sn to the fragment size vector gn and combines with the input 
V-plot to produce a modified V-plot. Then, convolutional neural networks (CNN) map 
the modified V-plot to the latent variables. Once the model was optimized, SeATAC 
used a constant sample indicator s0 to replace the sample specific indicator sn to generate 
a batch-free estimated V-plot.

logp(x|s) ≥ Eq(z|x,s)logp(x|z, s)− DKL[q(z|x, s) � p(z)]
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We applied SeATAC to a human hematopoietic differentiation dataset with 13 sam-
ples [33], and each sample showed a distinct fragment size profile (Additional File 1: Fig. 
S1a). We randomly sampled 2000 640-bp genomic regions, generated batch-free V-plot, 

Fig. 1  The SeATAC model and tasks for performance evaluation. a A full V-plot has a width of 640-bp 
genomic region and a height of 640 bp of fragment sizes (left panel). An array of 5 × 10 pixels is aggregated 
together and become a single larger pixel, resulting in a 128 × 64 pixels image (right panel). The heatmap 
color indicates the normalized read density. b SeATAC models the ATAC-seq V-plot using a conditional 
variational autoencoder (CVAE) framework. c Six separate tasks for evaluating the performance of detecting 
chromatin accessibility changes. MACS2 was excluded from tasks #2 and #3
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and computed the aggregated fragment size profile by averaging along each fragment 
size bin. The corrected fragment size profile became consistent across 13 samples, sug-
gesting that SeATAC was able to successfully correct the batch effects due to difference 
in fragment size profile, allowing SeATAC, in an unbiased fashion, to compare multiple 
ATAC-seq samples.

Tasks for performance evaluation

We designed six separate tasks for evaluating the performance of detecting chromatin 
accessibility changes including: (1) the detection of differential V-plots, (2) the recov-
ery of nucleosome positions from sparse ATAC-seq data, (3) calling differential nucle-
osomes, (4) predicting differentially expressed genes from ATAC-seq signals near 
promoters, (5) predicting histone modifications, and (6) the designation of transcrip-
tional factor binding sites (TFBS) following increased chromatin accessibility (Fig. 1c). 
The task #1 was to determine whether or not the V-plot for a genomic region was differ-
ent between multiple ATAC-seq samples. Tasks #2 and #3 asked the methods to recover 
(task #2) and to compare (task #3) nucleosome positions. We excluded MACS2 from 
these two tasks since MACS2 was not capable of calling the nucleosomes directly. Tasks 
#1–#3 were evaluated on the datasets down-sampled from a full ATAC-seq dataset. 
Task #4 was evaluated on paired RNA-seq/ATAC-seq datasets. Task #5 was evaluated 
on paired ATAC-seq/histone ChIP-seq datasets. Both tasks, #4 and #5, were designed to 
evaluate how accurate the local ATAC-seq information captured by SeATAC, Nucleo-
ATAC, or MACS2 was able to predict the biologically relevant readout such as differen-
tially expressed genes or local histone modification. Task #6 focused on the detection of 
individual TFBS with differential chromatin accessibility and was evaluated using several 
ATAC-seq datasets of TF-induced reprogramming.

SeATAC detects differential V‑plot

To define a benchmark dataset for testing a differential V-plot, we generated two sepa-
rate down-sampled datasets (dataset #1 and dataset #2) that included 10% of sequencing 
reads of a full ATAC-seq dataset (GM12878) by using different random seeds, separately. 
Then every read in dataset #2 was shifted to 3′ direction by a pre-specified distance (e.g., 
100 bp) to generate a new dataset #3. Thus, dataset #1 and dataset #2 should have the 
identical V-plot for any genomic regions, while dataset #1 and dataset #3 should have 
different V-plot because the shift size is smaller than the length of nucleosome DNAs 
and the linker DNAs (Fig. 2a). We used SeATAC, MACS2, and NucleoATAC to com-
pare dataset #1 vs. dataset #2 and dataset #1 vs. dataset #3 and evaluate the performance 
of calling differential V-plots by computing the receiver operating characteristic (ROC) 
curves, respectively (Fig. 2b). The SeATAC p-values ( pSeATAC ), maximum difference of 
MACS2 pileup (and the maximum difference of NucleoATAC signal were used to rank 
the differential V-plots (see the “ Methods” section). We evaluated the performance on 
different shift size for dataset #3 (10 to 100 bp with a step size of 10 bp). With a shift size 
of 50 bp, the average area under the ROC curve (AUC) of SeATAC, MACS2, and Nucle-
oATAC were 0.994, 0.538, and 0.536, respectively (Fig. 2c). The performance of SeATAC 
was not significantly impacted by the shift size (Additional File 1: Fig. S2a). Moreover, 
we found that SeATAC had significantly better performance on detecting differential 
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V-plots than NucleoATAC and MACS2 on 523 ATAC-seq samples from 20 published 
studies (Fig. 2d) [25, 34–53]. The read counts of the V-plot had no significant impact on 
SeATAC performance, suggesting robust performance of SeATAC on detecting differen-
tial V-plot (Fig. 2e).

SeATAC recovers nucleosome positions from sparse ATAC‑seq data

To evaluate how well SeATAC detected nucleosome positions from sparse ATAC-seq 
data, we first defined the NFR or NOR positions on a full ATAC-seq dataset (GM12878). 
A genomic locus was considered as a NOR center if the NucleoATAC signal at this 
locus was greater than 0.5 and was also greater than any other positions in the flank-
ing 200-bp region. A genomic locus was considered as a NFR center if the NucleoATAC 
signal at this locus was smaller than 0.01 and was also smaller than any other position 
in the flanking 200-bp region. There were 9965 and 316,075 NOR and NFR centers in 
the full ATAC-seq data. We randomly sampled ~ 5000 NOR and NFR centers to evaluate 

Fig. 2  SeATAC detects differential V-plots. a A full ATAC-seq dataset is down-sampled to two separate 
datasets (dataset #1 and dataset #2) that includes 10% of the sequencing reads. Every read in dataset #2 
is shifted to the 3′ direction by a pre-specified distance (e.g., 100 bp) to generate a new dataset #3. The 
dataset #1 and dataset #2 have the identical V-plot for any genomic regions, while dataset #1 and dataset 
#3 have different V-plots. b Different tools are used to compare dataset #1 vs. dataset #2 and dataset #1 vs. 
dataset #3 to detect differential V-plots. The true positive (TP), false positive (FP), true negative (TN), and 
false negative (FN) predictions are computed. The receiver operating characteristic (ROC) curve is used to 
evaluate the performance of different tools. c The ROC curves for SeATAC, NucleoATAC, and MACS2 with a 
shift size of 50 bp. d The violin plot shows the AUC (area under ROC) of SeATAC, NucleoATAC, and MACS2 
on 523 ATAC-seq samples from 20 studies. ***Wilcoxon rank sum test p-value < 0.001. e The AUC of SeATAC, 
NucleoATAC, and MACS2 at different read counts cutoff from 1 to 20 (the minimum reads in a V-plot)
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the performance of nucleosome calling. We down-sampled the full ATAC-seq dataset 
to 0.1%, 1%, and 10% of the full datasets and used SeATAC and NucleoATAC to esti-
mate the nucleosome signals at each NOR and NFR centers (see the “  Methods” sec-
tion). SeATAC demonstrated overall superior performance on calling nucleosomes 
from sparse ATAC-seq data with AUR of 0.583, 0.606, and 0.653 for 0.1%, 1%, and 10% 
down-sampled datasets, respectively, while the AUC for NucleoATAC were 0.503, 0.491, 
and 0.591, respectively (Fig. 3a). Among ~ 5000 NORs, we identified 2042, 3453, and 22 
regions that were called by both SeATAC and NucleoATAC, SeATAC only, and Nucle-
oATAC only as nucleosomes, respectively ( NucSeATAC > 0.5 or NucNucATAC > 0.2 ). 
The center of these genomic regions that were called as nucleosomes by SeATAC only 
showed enriched nucleosome signals supported by both NucleoATAC estimation on 
the full dataset and an MNase-seq dataset on GM12878 [54] (Fig.  3b). The additional 
systematic analysis over 523 ATAC-seq samples further supported the notion that 

Fig. 3  SeATAC recovers nucleosome positions from sparse ATAC-seq. a The ROC curve for recovering 
nucleosome positions from ATAC-seq with 0.1%, 1%, and 10% of the sequencing reads randomly sampled 
from the full dataset (GM12878). b The heatmaps shows the nucleosome density estimated by SeATAC 
(blue) and NucleoATAC (purple) on a 1% down-sampled dataset. There are 2042 and 3453 regions (640 bp) 
identified by both SeATAC/NucleoATAC and by SeATAC only as nucleosomes. The NucleoATAC signal on the 
full dataset (black) and a MNase-seq dataset on GM12878 (red) for these regions are also shown. c The violin 
plot shows the AUC (area under ROC) of SeATAC and NucleoATAC on 523 ATAC-seq samples from 20 studies. 
***Wilcoxon rank sum test p-value < 0.001. d The AUC of SeATAC and NucleoATAC at different read counts 
cutoff from 1 to 20 (the minimum reads in a V-plot)
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SeATAC had better performance on estimating nucleosomes from sparse ATAC-seq 
data (Fig.  3c). The systematic analysis also showed that the performance of SeATAC 
was significantly positively correlated with total number of reads, proper pair rate, and 
negatively correlated with mitochondria rate, unmapped rate, has unmapped mate rate 
(t-test p-value < 0.05) (Fig. 3d and Additional File 1: Fig. S3).

SeATAC detects nucleosome changes

By using the ground truth NOR and NFR centers on full GM12878 ATAC-seq dataset, 
we could also evaluate how capable SeATAC was regarding the call of the nucleosome 
change from NFR to NOR. We randomly sampled 5000 NFR/NOR pairs and applied 
SeATAC and NucleoATAC to evaluate the nucleosome changes at the center of each 
NFR/NOR pairs on a down-sampled ATAC-seq dataset with 10% of sequencing reads. 
The nucleosome changes were ranked by SeATAC’s differential central nucleosome score 
( δSeATAC ) and NucleoATAC’s differential central signal ( δNucATAC ), respectively (see the 
“  Methods” section). SeATAC demonstrated superior performance on calling nucleo-
some changes than NucleoATAC with an AUC of 0.904 vs. 0.827 (Fig. 4a). Among ~ 5 k 
NFR/NOR pairs, SeATAC was able to successfully identify more than 72.9% of genuine 
NFR/NOR changes compared to NucleoATAC (1278 vs. 739), and these changes were 
supported by the NucleoATAC signals on the full dataset and an MNase-seq dataset 
[54] (Fig. 4b, c). Similar to the previous two tasks, we extended the analyses to include 
523 ATAC-seq samples and confirmed that SeATAC could significantly more accurately 
detect the nucleosome changes between ATAC-seq samples (Fig. 4d, e).

SeATAC predicts differentially expressed genes from ATAC‑seq signals near promoters

Previous studies have shown that the changes of DNA accessibility over the promoter 
regions were weakly associated the gene expression changes [55, 56]. However, these 
studies used the simple ATAC-seq peaks or density as the features for correlation with 
the RNA-seq levels. We asked whether including more sophisticated ATAC-seq fea-
tures such as V-plot would improve the accuracy of predicting gene expression changes. 
We compiled a list of 17 paired RNA-seq/ATAC-seq datasets on temporal reprogram-
ming or cellular differentiation (Table 1). In each dataset, we first compared the RNA-
seq of data from any two conditions (e.g., treatment vs. control) and determined a list 
of significantly up- and down-regulated genes (DESeq2 q-value < 0.05 with > two fold 
change) [57]. Then we used SeATAC, NucleoATAC, and MACS2 to generate features 
from the ATAC-seq signals over the promoter regions to predict whether the underly-
ing genes were up- or down-regulated (Additional File 1: Fig. S4a). We found that the 
feature dimensions had moderate impact on the prediction performance of MACS2 and 
increasing the latent dimension from 10 to 20 significantly improved the performance 
of SeATAC (Wilcoxson rank-sum test p-value < 0.05), while extending the promoter 
regions (e.g., from 640 to 2560 bp) did not improve the performance of SeATAC (Addi-
tional File 1: Fig. S4b) [25, 58]. Overall, we found that SeATAC had the best performance 
of predicting differentially expressed (DE) genes in 16 out of 17 datasets, suggesting 
that the V-plot representations produced by SeATAC better captured the relationship 
between DNA accessibility at the promoter and the gene expression changes (Additional 
File 1: Fig. S4c).
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Fig. 4  SeATAC detects nucleosome changes. a The ROC curve for detecting nucleosome changes from 
ATAC-seq with 10% of the sequencing reads from the full dataset (GM12878). b The raw and estimated 
V-plot of a NFR (chr1:113,162,059–113,162,698) and a NOR (chr2:226,653,061–226,653,700) region are shown. 
The heatmap color indicates the normalized read density. c The heatmaps show the nucleosome density 
of ~ 5000 sampled NOR and NFR regions estimated by SeATAC (blue) and NucleoATAC (purple) on a 10% 
down-sampled dataset. There are 3276, 1278, 739, and 311 regions that are identified as a change from NFR 
to NOR (with decreased chromatin accessibility) by both SeATAC and NucleoATAC (11), by SeATAC only (10), 
by NucleoATAC only (01), and by neither of them (00), respectively. The NucleoATAC signal on the full dataset 
(black) and a MNase-seq dataset on GM12878 (red) for these regions are also shown. d The violin plot shows 
the AUC (area under ROC) of SeATAC and NucleoATAC on 523 ATAC-seq samples from 20 studies. ***Wilcoxon 
rank sum test p-value < 0.001. e The AUC of SeATAC and NucleoATAC at different read counts cutoff from 1 to 
20 (the minimum reads in a V-plot)
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Table 1  24 ATAC-seq or ATAC-seq/RNA-seq paired datasets used in this study

Name Tasks Description RNA-seq ATAC-seq # cond Refs

Ascl1 4,6 Ascl-1-induced mouse 
neural reprogramming

GSE43916 GSE101397 4  [25, 59–61]

Duren 1,2,3,4 Retinoic acid (RA)-
induced mESC dif-
ferentiation

GSE136312 GSE136312 6  [35, 62]

Perrin 1,2,3,4 Human adipocyte dif-
ferentiation

GSE178795 GSE178794 5  [51, 63, 64]

Ramirez
(macrophage, 
monocyte derived, 
monocyte)

1,2,3,4 Human myeloid dif-
ferentiation

GSE79044 GSE79019 30  [46, 65, 66]

Liu 1,2,3,4 Human cardiac dif-
ferentiation

GSE85331 GSE85330 16  [44, 67, 68]

Markov 1,2,3,4 Human early iPSC 
reprogramming

GSE121052 GSE120992 10  [45, 69, 70]

Schwarz 1,2,3,4 Human iPSC repro-
gramming

GSE106836 GSE106834 7  [41, 71, 72]

Liu2 1,2,3,4 Human-induced 
trophoblast stem cell 
reprogramming

GSE150616 GSE150590 3  [43, 73, 74]

Melendez 1,2,3,4 Human dopaminergic 
neuron differentiation

GSE153005 GSE153005 4  [75, 76]

Benchetrit 1,2,3,4 Mouse blastocyst cell 
reprogramming

GSE98124 GSE98124 7  [40, 77]

Wu 1,2,3,4 Human somatic cell 
reprogramming

GSE147679 GSE147678 11  [39, 78, 79]

Yagi 1,2,3,4 Mouse nature myo-
cytes and myogenic 
stem cell trans-differ-
entiation

GSE169488 GSE169488 15  [38, 80]

Knaupp 1,2,3,4 Human iPSC repro-
gramming

GSE101905 GSE101905 9  [37, 81]

Li 1,2,3,4,6 Mouse iPSC repro-
gramming

GSE93027 GSE93026 14  [36, 82, 83]

Zenere 1,2,3,4 T-help type 1 (Th1) 
differentiation

E-MTAB-7775
E-MTAB-10423

E-MTAB-10444 13  [34, 84–86]

Maza 1,2,3 Somatic cell trans-
differentiation

GSE67298 4  [47, 87]

Qu 1,2,3 Primary human T cells GSE60682 29  [53, 88]

Denny 1,2,3 Primary tumors and 
metastases

GSE81255 31  [48, 89]

Zviran 1,2,3 Somatic cell repro-
gramming

GSE103821 16  [49, 90]

Corces 1,2,3 Hematopoietic and 
leukemic cells

GSE74912 130  [50, 91]

GM12878 5 Human LCL (GM12878) GSE47753 1  [13, 92]

Tang 1,2,3 MCF-7 cells with 
retinoic acid and/or 
TGF-beta

GSE152749 4  [42, 93]

K562 5 Human K562 cells GSE170378 1  [58, 94]

Etv2 5,6 Etv2-induced 
reprogramming and 
differentiation

GSE168636 17  [95, 96]

Buenrostro Human hematopoietic 
differentiation

GSE96771 13  [33, 97]
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SeATAC predicts histone modifications

To test whether histone modification changes were associated with chromatin accessibil-
ity changes as determined by SeATAC, we compiled the ATAC-seq data from GM12878 
and K562 cell lines [13, 58] and used SeATAC to detect the nucleosome changes over 
NFKB1 binding sites, which were enriched in the GM12878 cell lines [15]. We identi-
fied 728 and 1633 NFKB1 binding sites that had decreased chromatin accessibility in 
K562 in comparison with GM12878 (SeATAC adjusted p-value < 0.05 and δNOR > 0.2 ) 
in distal and promoter regions, respectively (Additional File 1: Fig. S5a). We observed 
“dips” of the signals at the NFKB1 binding sites of all three examined euchromatic marks 
(H3K4me1, H3K4me3, and H3K27ac) (Additional File 1: Fig. S5b).

To further explore whether the local ATAC-seq signal captured by SeATAC, MACS2, 
or NucleoATAC can be predictive of the histone modification signals, we used the fea-
tures produced by three tools to train a simple multilayer perceptron (MLP) to predict 
the H3K27ac, H3K4me1, and H3K4me3 signals (Additional File 1: Fig. S5c). SeATAC 
had the best performance of predicting 6 out of 7 histone modifications (Additional File 
1: Fig. S5d). In summary, tasks #4 and #5 demonstrated that the latent representations 
produced by SeATAC on ATAC-seq data were significantly more predictive of biologi-
cal readout such as gene expression and histone modifications than NucleoATAC and 
MACS2.

SeATAC detects chromatin accessibility changes associated with biological functions

Having established SeATAC’s superior performance on three separate tasks using syn-
thetic data, we then applied SeATAC to ATAC-seq datasets of Etv2-induced MEF repro-
gramming and ES/EB differentiation [98]. Etv2 is an essential transcription factor for the 
development of cardiac, endothelial, and hematopoietic lineages [99–109]. Moreover, 
Etv2 has recently been shown to function as a pioneer factor. In these studies, the induc-
tion of Etv2 drove embryonic body (EB) and MEFs to an endothelial fate [98]. Therefore, 
we hypothesized that the relaxed Etv2 binding sites (becoming more accessible) during 
the Etv2-induced differentiation or reprogramming period and should be closely associ-
ated with the endothelial function.

SeATAC identified 5451 and 2142 Etv2 motifs with increased chromatin accessibility 
from MEF reprogramming (undifferentiated MEFs vs. Flk1+ cells at 7 days post induc-
tion) and EB differentiation (D2.5 EB vs. Flk1+ cells at 12 h post induction) ATAC-seq 
data, respectively (adjusted p-value < 0.05 and δNOR < −0.2 ). Interestingly, SeATAC 
identified 2776 and 1626 relaxed Etv2 motifs that were detected by neither MACS2 nor 
NucleoATAC. The aggregated V-plot of 1626 SeATAC-only Etv2 binding sites showed 
increased NFR reads, while the aggregated V-plot of 222 MACS2-only and 2305 Nucle-
oATAC-only Etv2 binding sites did not show significant changes from undifferentiated 
EBs to Flk1+ cells from 12 h post induction (Fig. 5c). The aggregated V-plot of SeATAC-
only, MACS2-only, and NucleoATAC-only Etv2 binding sites from MEF reprogramming 
also showed a similar pattern (Additional File 1: Fig. S6a). Moreover, the pathway analy-
sis showed that the relaxed Etv2 binding sites identified by SeATAC were more signifi-
cantly associated with Gene Ontology terms related to endothelial development and cell 
migration (Fig. 5d).
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We examined two additional ATAC-seq datasets of Ascl1-induced neural reprogram-
ming [25] (undifferentiated MEFs vs. 22 days post induction of Ascl1) and OSK (Oct4, 
Sox2, and Klf4)-induced reprogramming [36]. We found that the relaxed Ascl1 bind-
ing sites identified by SeATAC were more significantly associated with Gene Ontology 
terms related to neurogenesis and neuron migration (Additional File 1: Fig. S7), while 
the relaxed OSK binding sites were more significantly associated with Gene Ontology 
terms related to stem cell development, fibroblast growth factor receptor signaling path-
ways, and canonical Wnt signaling pathway (Additional File 1: Fig. S8) [36, 110]. These 
results suggested that SeATAC was able to identify TFBS with differential chromatin 
accessibility and closely related biological functions. Importantly, these differential TFBS 
were missed by conventional tools such as MACS2 and NucleoATAC.

Induction of pioneer factors cause both chromatin relaxation and closure

Previous studies showed that pioneer factors such as Etv2, Ascl1, and OSK could 
recognize their target DNA sequences in compacted chromatin, recruit chroma-
tin remodelers, and trigger the relaxation of the adjacent chromatin landscape to 
accommodate non-pioneer transcription factors [111, 112]. In Etv2-induced EB dif-
ferentiation and MEF reprogramming, although the overall Etv2 motif associated 
chromatin accessibility significantly increased, as suggested by chromVAR analysis 
[113], SeATAC showed that among the Etv2 motifs with differential chromatin acces-
sibility, ~ 30% (24.6% in MEFs and 35.1% in EBs) of the Etv2 motifs showed decreased 
chromatin accessibility during Etv2-induced differentiation (Fig. 6a, c and Additional 
File 1: Fig. S11). We found that a majority of the Etv2 motifs with decreased chro-
matin accessibility were located near the promoter regions (Fig.  6b) and marked 
by euchromatic marks such as H3K4me1, H3K4me2, H3K27ac, and P300 (Fig.  6d). 
The decrease of chromatin accessibility was also coupled with the decrease of Brg1 
(SMARCA4) density, a key SWI/SNF-related chromatin-remodeling complex that 
facilitates chromatin relaxation (Fig. 6d) [114]. Additionally, we found that the genes, 
which harbor Etv2 binding sites with decreased chromatin accessibility in the pro-
moter regions (− 5000 to + 1000  bp surrounding the TSS), including Brachyury (T) 
and Mycn, were more likely to be down-regulated during the differentiation process 
(Fig. 6e–g, Additional File 1: Fig. S6c), suggesting the Etv2 may regulate gene expres-
sion by reducing the chromatin accessibility of their binding sites.

Fig. 5  SeATAC detects Etv2 binding sites with increased chromatin accessibility during Etv2-induced EB 
differentiation and MEF reprogramming. a, b The Venn diagrams show the number of Etv2 motifs with 
increased chromatin accessibility identified by SeATAC, MACS2, and NucleoATAC, in a Etv2-induced MEF 
reprogramming (undifferentiated MEFs vs. Flk1+ cells at 7 days post-induction) and b Etv2-induced EB 
differentiation (D2.5 EB vs. Flk1+ cells at 12 h post-induction). c The aggregated V-plot includes 1626, 
222, and 2305 Etv2 motifs with increased chromatin accessibility identified by SeATAC only, MACS2 only 
and NucleoATAC only in ATAC-seq data of Etv2-induced EB differentiation (day 2.5 EB vs. Flk1+ cells at 
12 h post-induction). Both raw V-plots and estimated V-plots are shown. The heatmap color indicates the 
normalized read density for raw counts (top) and the estimated read density for estimated read counts 
(bottom). d The barplots show the Gene Ontology (GO) terms that are significantly associated with the 
genes where the promoters (− 5000 to + 1000 bp region flanking the TSS) have Etv2 motifs with increased 
chromatin accessibility, identified by SeATAC, MACS2, and NucleoATAC. The y-axis showed the adjusted 
p-value of the pathway analysis

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Fig. 6  Inducing Etv2 causes both chromatin relaxation and closure at Etv2 binding sites. a The dot plots 
compare the changes of motif associated chromatin accessibility estimated by chromVAR (x-axis) and 
the difference of the percent of TFBS with decreased or increased chromatin accessibility estimated by 
SeATAC (y-axis). zDox+ and zDox− are the normalized deviation score of Dox+ condition (Flk1+ cells at 7 days 
post-induction for MEF reprogramming or Flk1+ cells at 12 h post-induction for EB differentiation) and 
Dox− condition (undifferentiated MEFs or D2.5 EBs).  p↓ and p↑ are the percent of TFBS that shows decreased 
or increased chromatin accessibility in Dox+ condition compared with the Dox− condition. b The barplots 
show the genomic distribution of Etv2 binding sites with decreased (NFR- > NOR) or increased (NOR- > NFR) 
chromatin accessibility in EB differentiation or MEF reprogramming. The change of chromatin accessibility is 
estimated by SeATAC. c The aggregated V-plot include 3000 and 1623 Etv2 binding sites that have increased 
(NOR- > NFR) or decreased (NFR- > NOR) chromatin accessibility during MEF reprograming. The heatmap color 
indicates the estimated read density. d The heatmaps show the Etv2, Brg1, H3K27ac ChIP-seq of 3000 and 
1623 Etv2 binding sites that have increased (NOR- > NFR) or decreased (NFR- > NOR) chromatin accessibility 
at day 2.5 EB (Brg1 and H3K27ac), 3 h post Etv2 induction (Etv2), and 12 h post Etv2 induction (Etv2, Brg1, 
and H3K27ac). The change of chromatin accessibility is estimated by SeATAC. e The barplots show the 
percent of genes that were down-regulated, up-regulated, or not changed between day 2.5 EB and 12 h post 
Etv2 induction. f–g Brachyury (T) and Mycn (f) are significantly down-regulated during the Etv2-induced 
differentiation and (g) have Etv2 motifs that become significantly less accessible during differentiation at 
their promoter region (− 5000 to + 1000 bp region flanking the TSS). The heatmap color indicates estimated 
read density



Page 15 of 28Gong et al. Genome Biology          (2023) 24:125 	

The analysis of the ATAC-seq dataset of Ascl1-induced neural reprogramming [25] 
revealed among Ascl1 motifs with differential chromatin accessibility, 19.8% showed 
decreased chromatin accessibility (Fig. S9a and S9d). Similar to Etv2 motifs, the Ascl1 
motifs with decreased chromatin accessibility were marked by euchromatic histone 
marks (Fig. S9b and S9c) and were present in the promoters of genes that were down-
regulated during the reprogramming, including Hmga2 [115], Egfr [116], and Elf4 [117], 
as well as Notch signaling member Hes1 [118] (Additional File 1: Fig. S9e). The analysis 
of the ATAC-seq dataset of OSK-induced reprogramming 47 also revealed that the OSK 
motifs that became less accessible during the reprograming were marked by euchro-
matic marks in MEFs, more likely located at the promoter regions, and present at the 
promoters of down-regulated genes during reprogramming, including Maf [119] and 
Smad3 [120] (Additional File 1: Fig. S10).

These results clearly showed that pioneer factors could recognize DNA sequences in 
both closed and open chromatin structure and alter the chromatin landscape in a con-
text dependent manner.

Discussion
SeATAC employed a conditional variational autoencoder framework to model the 
ATAC-seq-specific V-plot while addressing the batch effect in the ATAC-seq data, 
allowing an unbiased comparison across multiple samples. The convolutional neural 
network (CNN) blocks used in the encoder network allowed SeATAC to robustly esti-
mate the posterior distribution of the latent variables by considering ATAC-seq specific 
fragment size profile, resulting in superior performance on several tasks such as detect-
ing differential V-plot, recovering nucleosome positions, detecting nucleosome changes, 
predicting differentially expressed genes, predicting histone modifications, and calling 
TFBS with differential chromatin accessibility compared to conventional methods such 
as MACS2 and NucleoATAC.

When applying ATAC-seq datasets on TF-induced differentiation and reprogram-
ming methods, SeATAC more accurately identified TFBS with differential chromatin 
accessibility, resulting in a more significant association with the underlying biological 
function. Surprisingly, we found that the induction of pioneer factors such as Etv2, 
Ascl1, Oct4, Sox2, and Klf4 not only relaxed the compacted chromatin surrounding 
the respective binding sites but also resulted in the reduction of chromatin accessi-
bility near 20% ~ 30% of the binding sites. The mechanism of pioneer factor induced 
chromatin closure and their roles in lineage specification has never been explored 
before and it warrants further investigation.

SeATAC was designed as a tool to model the local ATAC-seq data as a V-plot and 
to provide more accurate information regarding the local chromatin accessibility 
changes, such as nucleosomal positions and nucleosome phasing [95, 121]. However, 
SeATAC could not directly predict the global outcome (e.g., gene expression changes) 
based on the changes of local chromatin accessibility. Although SeATAC was able 
to determine a significant amount of pioneer factor-induced decreasing of chroma-
tin accessibility, the functional role of these events need to be confirmed by further 
experiments such as mutagenesis followed by ATAC-seq or ATAC-PCR, especially for 
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the distal enhancers such as the ZPA regulatory sequence (ZRS) in limb development 
[121].

The SeATAC framework can be extended to model single cell ATAC-seq (scATAC-
seq) data and to investigate the V-plot dynamics in the scATAC-seq data [15]. More 
sophisticated neural architecture such as attentions or transformer encoders [122] can 
be used to replace CNN layers to better model the dependences of ATAC-seq reads on 
V-plot [123]. Although throughout this study, a default width of 640  bp was used for 
the V-plot, a wider V-plot (e.g., 2048 bp) can be potentially used to model more nucle-
osomes at a specific locus and distant dependencies.

Conclusion
In the present study, we presented a novel algorithm SeATAC for the detection of 
genomic regions with differential chromatin accessibility and nucleosome positions. 
We believe that SeATAC provides an accurate and powerful way of revealing chroma-
tin dynamics from the ATAC-seq data and be a valuable tool to examine the chromatin 
landscape and the functional role of epigenetic regulators.

Methods
Neural architecture

For each genomic region i in S ATAC-seq samples, the V-plot with the dimension of 
W ×H × 1 from each sample was stacked together at the channel dimension to form 
an array xi ∈ RW×H×S , where W  is the number of genomic bins, H is the number of 
fragment size bins, and S is the sample size. SeATAC used W=128 and H=64 by 
default. An embedding layer first maps the sample indicator s ∈ ZS to a fragment size 
array g ∈ R1×H×S . An encoder neural network then maps the modified V-plot (xi + g) 
to latent variables with the mean of zi ∈ RK×S and the standard deviation of σ ∈ RK×1 , 
where K  is the dimension of the latent variable ( K = 5 by default). The encoder network 
consists of four convolutional neural networks (CNN) blocks, where each block consists 
of a CNN layer (filter of 16, stride of 2 and kernel size of 3), a batch normalization layer 
and a Rectified linear Unit (ReLU) activation layer. The output of the CNN blocks is flat-
tened and mapped to latent variables with the mean of zi and standard deviation of σ 
by a dense layer. The decoder neural network first maps concatenated latent variable zi 
and sample indicator s to a vector of 128 by a dense layer, followed by four transposed 
CNN blocks, where each block consists of a transposed CNN layer (filter of 16, stride of 
2 and kernel size of 3), a batch normalization layer, and a Rectified linear Unit (ReLU) 
activation layer. The output of the CNN blocks feed into a final softmax activation layer 
to normalize the values in each genomic bin to a vector that sum to one. In this study, 
we employed the binary cross entropy loss to minimize the difference between input and 
the estimated V-plot.
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Task #1: Detection of differential V‑plots

SeATAC​

With its probabilistic representation of the data, SeATAC provides a natural way of test-
ing differential V-plot, while intrinsically controlling for nuisance factors. We used the 
SeATAC model to approximate the posterior probability of the batch-free latent vari-
able z . For each genomic region and a pair of ATAC-seq samples with latent variables of 
mean of (zak , zbk) and variance of 

(
σ 2
ak , σ

2
bk

)
 , where k = 1, ...,K  and K  is the dimension 

of the latent variables, we constructed a χ2 variable Q by standardizing the difference 
between za and zb:

This χ2 variable Q measures the standardized distance between a pair of V-plot on the 
latent space and a χ2 test with K  degree of freedom was used to compute a p-value of the 
difference between two V-plot [124] ( pSeATAC).

MACS2

We used MACS2 (v2.1.1) [20, 21] to compare two BAM files (file1.bam and file2.bam) 
twice by swapping the control and treatment samples, using the following parameters: 
“macs2 callpeak -q 0.05 –call-summits -f BAMPE –nomodel -t file1.bam -c file2.bam 
–keep-dup all” and “macs2 callpeak -q 0.05 –call-summits -f BAMPE –nomodel -t file2.
bam -c file1.bam –keep-dup all”. The maximum absolute values of the difference of 
pileup signals that overlapped with a 640-bp genomic region was used as the difference 
of nucleosome signals for this genomic region.

NucleoATAC​

We used NucleoATAC (v0.3.4 with default parameters) [16] to estimate the nucleosome 
signal of two BAM files separately and calculated the difference of estimated nucleosome 
signal for genomic regions. The maximum absolute values of the difference of nucleo-
some signals that overlapped with a 640-bp genomic region was used as the difference of 
nucleosome signals for this genomic region.

Task #2: Estimating the nucleosome signals

SeATAC​

For any genomic region, SeATAC generates estimated V-plot x ∈ RW×H based on the 
latent variables z and a constant sample indicator s0 , from which we computed the cen-
tral NFR score:

where N  is the number of central genomic bins and M is the number of fragment size 
bins for NFR. The central genomic bins were defined as the genomic bins which distance 
to the V-plot center ( di ) is less than 50 bp ( −50 ≤ di ≤ 50 ), and fragment size bins for 

Q =

K∑

i=1

(zak − zbk)
2

σ 2
ak + σ 2

bk

wNFR =
1

NM

N∑

i=1

M∑

j=1

x̂ij
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NFR ( fj ) were defined as the fragment size less than 150 bp ( fj ≤ 150 ). The center nucle-
osome score was defined as:

The central nucleosome score ( NucSeATAC) was used as the nucleosome score esti-
mated by SeATAC to rank the nucleosomes.

NucleoATAC​

We used NucleoATAC to estimate the nucleosome signal from the input BAM files. We 
defined the central NucleoATAC signal as the average NucleoATAC signal over the 100-
bp region flanking the V-plot center.

where hi is the NucleoATAC signal at position i . We used central NucleoATAC signal 
( NucNucATAC ) to rank the nucleosomes for this task.

Task #3: Detection of nucleosome changes

SeATAC​

For any genomic region between a pair of ATAC-seq samples 
(
i, j
)
 , SeATAC computed 

the differential central nucleosome score by:

δSeATAC quantitatively measures how estimated nucleosome signal changes from sample 
i to i over the 100-bp regions flanking the center.

NucleoATAC​

For any genomic region between a pair of ATAC-seq samples 
(
i, j
)
 , the differential cen-

tral NucleoATAC signal ( δNucATAC ) was defined as the difference of the average Nucle-
oATAC signal over the 100-bp region flanking the V-plot center between a pair of 
ATAC-seq samples:

Task #4: Predicting differentially expressed genes from ATAC‑seq signals near promoters

SeATAC​

The latent representations of the V-plots centering at transcription start sites (TSS) were 
used as the input for training a logistic regression model.

MACS2

The principal components (PC) of the differential pileup signals (MACS2’s pileup out-
put) centering at TSS were used as the input for training a logistic regression model.

NucSeATAC = 1− wNFR

NucNucATAC =
1

100

100∑

i=1

hi

δSeATAC = logNucSeATACj − logNucSeATACi

δSeATAC = NucNucATAC
j − NucNucATAC

i
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NucleoATAC​

The principal components (PC) of the differential nucleosome signals (NucleoATAC’s 
smooth signal output) centering at TSS were used as the input for training a logistic 
regression model.

We kept the feature dimensions the same for three tools. Simple logistical regression 
models were built to predict the up- or down-regulated genes (a classification task) from 
the corresponding features, followed by a fivefold cross-validation (CV) to evaluate the 
prediction.

Task #5: Predicting histone modifications

SeATAC​

The latent representations of the V-plots were used as the input for training a MLP 
model.

MACS2

The principal components (PC) of the pileup signals (MACS2’s pileup output) were used 
as the input for training a MLP model.

NucleoATAC​

The principal components (PC) of the nucleosome signals (NucleoATAC’s smooth signal 
output) were used as the input for training a MLP model. We kept the feature dimensions 
the same for three tools. MLP models were built to predict the observed histone modifi-
cations (H3K27ac, H3K4me1, and H3K4me3) (Additional File 1: Fig. 5c). We trained the 
MLP model on 50,000 randomly sampled genomic regions from GM12878 and tested 
it on 20,000 randomly sampled genomic regions from K562 (H3K27ac, H3K4me1, and 
H3K4me3), Etv2-induced reprogramming (H3K27ac only), and Etv2-induced EB dif-
ferentiation datasets (H3K27ac only) [95]. The mean squared error between known and 
predicted histone modification signals was used to quantitatively evaluate the prediction 
performance.

Task #6: Designation of TFBS with increased chromatin accessibility

SeATAC​

Between a pair of ATAC-seq samples 
(
i, j
)
 , SeATAC determined that a TFBS became 

more accessible in sample j compared with sample i if the adjusted p-value < 0.05 and 
δSeATAC < −0.2.

MACS2

First, we used MACS2 to compare the sample i (file1.bam) and sample j (file2.bam) 
using the following parameters: “macs2 callpeak -q 0.05 –call-summits -f BAMPE –
nomodel -c file1.bam -t file2.bam –keep-dup all”. Then we computed MACS2 p-value for 
a specific TFBS as the minimum p-values of all summits that overlapped with the 100-
bp region flanking this TFBS ( pMACS2 ). MACS2 determined that a TFBS became more 
accessible if adjusted pMACS2 < 0.05.
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NucleoATAC​

NucleoATAC determined that a TFBS became more accessible in sample j compared 
with sample i if the δNucATAC < −0.4.

Input data processing

Ascl1‑induced MEF reprogramming (Ascl1)

The ATAC-seq dataset was downloaded from NCBI GEO database (GSE101397) [25, 
59]. The sequence reads for undifferentiated MEFs was obtained from GSM2701947. 
For MEFs at day 22 post Ascl1 induction the sequence reads were pooled from three 
replicates (GSM2701979, GSM2701980, and GSM2701981). MACS2 identified 123,271 
peaks for undifferentiated MEFs and MEFs at day 22 post Ascl1 induction and motif-
matchr identified 71,616 canonical Ascl1 motif binding sites. The RNA-seq dataset was 
downloaded from NCBI GEO database (GSE43916) [60, 61].

Retinoic acid (RA)‑induced mESC differentiation (Duren)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE136312) [35, 62]. The samples of day 0, day 2, day 4, day 10, and day 20 post differ-
entiation were used in downstream analysis.

Human adipocyte differentiation (Perrin)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE178795 and GSE178794) [51, 63, 64]. The samples of day 0, day 2, day 4, and day 14 
post differentiation were used in the downstream analysis.

Human myeloid differentiation (Ramirez)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE79019 and GSE79044) [46, 65, 66]. The 30 samples with both ATAC-seq and RNA-
seq profiles were used in the downstream analysis.

Human cardiac differentiation (Liu)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE120992 and GSE121052) [44, 67, 68]. The 16 samples with both ATAC-seq and 
RNA-seq profiles were used in the downstream analysis.

Human early iPSC reprogramming (Markov)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE85330 and GSE85331) [45, 69, 70]. The 10 samples with both ATAC-seq and RNA-
seq profiles were used in the downstream analysis.

Human iPSC reprogramming (Schwarz)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE106834 and GSE106836) [41, 71, 72]. The 7 samples with both ATAC-seq and RNA-
seq profiles were used in the downstream analysis.
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Human‑induced trophoblast stem cell reprogramming (Liu2)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE150590 and GSE150616) [43, 73, 74]. The three samples with both ATAC-seq 
and RNA-seq profiles were used in the downstream analysis.

Human dopaminergic neuron differentiation (Melendez)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE153005) [75, 76]. The four samples with both ATAC-seq and RNA-seq profiles 
were used in the downstream analysis.

Mouse blastocyst cell reprogramming (Benchetrit)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE98124) [40, 77]. The 7 samples with both ATAC-seq and RNA-seq profiles were 
used in the downstream analysis.

Human somatic cell reprogramming (Wu)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE147678 and GSE147679) [39, 78, 79]. The 11 samples with both ATAC-seq and 
RNA-seq profiles were used in the downstream analysis.

Mouse nature myocytes and myogenic stem cell trans‑differentiation (Yagi)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE169488) [38, 80]. The 15 samples with both ATAC-seq and RNA-seq profiles 
were used in the downstream analysis.

Human iPSC reprogramming (Knaupp)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(GSE101905) [37, 81]. The 9 samples with both ATAC-seq and RNA-seq profiles were 
used in the downstream analysis.

OSK‑induced MEF reprogramming (Li)

The ATAC-seq dataset was downloaded from NCBI GEO database (GSE93026) [36]. 
The sequence reads for the undifferentiated MEF samples were pooled from two rep-
licates (GSM2442671 and GSM2442671) and for the MEFs at day 7 post-OSK induc-
tion were pooled from two replicates (GSM2442705 and GSM2442706). We used 
motifmatchr to identify 282,789 putative binding sites for Oct4, Sox2, or Klf4 for the 
downstream analysis. The RNA-seq datasets were downloaded from NCBI GEO data-
base (GSE93027) [36, 82, 83].
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T‑help type 1 (Th1) differentiation (Zenere)

The ATAC-seq and RNA-seq datasets were downloaded from NCBI GEO database 
(E-MTAB-7775, E-MTAB-10423, and E-MTAB-10444) [34, 84–86]. The 13 samples 
with both ATAC-seq and RNA-seq profiles were used in the downstream analysis.

Somatic cell trans‑differentiation (Maza)

The ATAC-seq dataset was downloaded from NCBI GEO database (GSE67298) [47, 87]. 
The four samples from the ATAC-seq dataset were used in the downstream analysis.

Primary human T cells (Qu)

The ATAC-seq dataset was downloaded from NCBI GEO database (GSE60682) [53, 88]. 
The 29 samples from the ATAC-seq dataset were used in the downstream analysis.

Primary tumors and metastases (Denny)

The ATAC-seq dataset was downloaded from NCBI GEO database (GSE81255) [48, 89]. 
The 31 samples from the ATAC-seq dataset were used in the downstream analysis.

Somatic cell reprogramming (Zviran)

The ATAC-seq dataset was downloaded from NCBI GEO database (GSE103821) [49, 
90]. The 16 samples from the ATAC-seq dataset were used in the downstream analysis.

Hematopoietic and leukemic cells (Corces)

The ATAC-seq dataset was downloaded from NCBI GEO database (GSE74912) [50, 91]. 
The 130 samples from the ATAC-seq dataset were used in the downstream analysis.

GM12878

EBV-transformed lymphoblastoid cell line (LCL) ATAC-seq data were downloaded from 
NCBI GEO database (GSE47753) [33, 97]. The sequence reads from three replicates of 
50 k cell sample (GSM1155957, GSM1155958, and GSM1155959) were pooled and used 
for the downstream analysis. The 86,004 peaks called by MACS2 (v2.1.1) [20, 21] were 
used for the downstream analysis.

MCF‑7 cells with retinoic acid and/or TGF‑beta (Tang)

The ATAC-seq dataset was downloaded from NCBI GEO database (GSE152749) [42, 
93]. The four samples from the ATAC-seq dataset were used in the downstream analysis.

Human K562 cells (K562)

The K562 ATAC-seq dataset was downloaded from NCBI GEO database (GSE170378) 
[58, 94].

Etv2‑induced MEF reprogramming and ES/EB differentiation (Etv2)

The ATAC-seq dataset was downloaded from NCBI GEO database (GSE168636) 
[96, 98]. Sequence reads for undifferentiated MEFs were pooled from two replicates 
(GSM5151877 and GSM5151879) and for Flk1+ MEFs at day 7 post-Etv2 induc-
tion were pooled from two replicates (GSM5151861 and GSM5151863). Sequence 
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reads for undifferentiated EBs were pooled from two replicates (GSM5151873 and 
GSM5151875), and for Flk1+ EBs at day 2.5 post Etv2 induction were pooled from 
two replicates (GSM5151869 and GSM5151871). MACS2 (v2.1.1) identified 57,732 
peaks for undifferentiated MEFs and Flk1 + MEFs at day 7 post Etv2 induction and 
36,114 peaks for undifferentiated EBs and Flk1 + EBs at day 2.5 post Etv2 induction. 
We used motifmatchr (v1.16.0) to obtain 20,822 and 24,935 putative Etv2 motif bind-
ing regions for MEFs and EBs, respectively [25, 59, 36].

Human hematopoietic differentiation (Buenrostro)

The dataset was downloaded from NCBI GEO database (GSE96771). A union set with 
491,437 peaks defined by the original authors were used for the downstream analysis 
[33, 97].

For ATAC-seq data, the sequencing reads where mapped to the mouse and human 
genome (mm10 or hg19) using Bowtie2 (v2.2.4) [125]. The ATAC-seq reads lied on 
chromosome Y and mitochondria were excluded [126]. ChromVAR (v1.10) [113] were 
used for transcription factor based chromatin accessibility analysis; 322 transcrip-
tion factors compiled in the Homer database were used for the chromVAR analysis. 
The pathway analysis was performed using R packages clusterProfiler and ChIPseeker 
[127, 128]. For RNA-seq, the sequencing reads were mapped to the mouse and human 
genome (mm10 or hg19) using kallisto (v0.46.0) [129].
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