PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Double-duplication evolution

ArticleInfo		
ArticleID	:	3760
ArticleDOI	:	10.1186/gb-spotlight-20000906-02
ArticleCitationID	:	spotlight-20000906-02
ArticleSequenceNumber	:	197
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2000-09-06OnlineDate: 2000-09-06
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

In the 1 September Science Lang *et al.* argue that two single-domain biosynthetic enzymes appear to have evolved from gene duplication, followed by fusion, followed by a second gene duplication (*Science* 2000, **289**:1546-1550). Both of the proteins, HisA and HisF, can be broken down into two half beta/ alpha barrels. The four half barrels can be superimposed on each other, revealing 22% identical or similar residues. As both enzymes bind biphosphate substrates, each half barrel has a phosphate-binding motif, and HisF even exhibits limited HisA catalytic activity. Lang *et al.* propose that an ancestral protein motif was duplicated and fused to produce the HisA isomerase enzyme, before a second duplication and further evolution yielded the more complex HisF synthase activity.

References

1. Science magazine, [http://www.sciencemag.org/]

2. Three-dimensional profiles from residue-pair preferences: identification of sequences with beta/ alpha-barrel fold.