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We have recently published a statistical deconvolution
method to study infiltrating immune cells using tumor
RNA-seq data [1]. One of the goals in that work was to
understand how proportions of different cell types co-
vary across different cancer tissues. To this end, we esti-
mated the abundance of six cell types over 9000 tumor
samples across 23 cancer types, and then assessed the
correlations of these estimated proportions across the
different samples within a cancer type. In particular we
compared our method (TIMER) with CIBERSORT [2], a
previously published deconvolution approach, for their
ability to assess such correlations. To our surprise, we
found many non-biological negative correlations be-
tween CIBERSORT estimates, and we believed that this
artifact was, to a large extent, due to the incorporation
of highly similar features in the linear model, or statis-
tical collinearity. Newman et al., the authors of CIBER-
SORT, have raised concerns that these correlations were
due to data normalization, instead of collinearity [3].
While we agree with Newman and coauthors that the
forced normalization indeed introduces unwanted nega-
tive correlations, we will show in this response that the
inclusion of highly similar features contributes as signifi-
cantly as normalization, if not more, to the observed
artificial negative correlations among the estimates
obtained by CIBERSORT.
Highly correlated features (covariates) in linear regres-

sion models can lead to many technical difficulties, such
as high estimation variances, non-robustness, and non-
identifiability. Furthermore, it is often misleading to
* Correspondence: jliu@stat.harvard.edu; xsliu@jimmy.harvard.edu
2Department of Statistics, Harvard University, 1 Oxford St, Cambridge, MA
02138, USA
1Department of Biostatistics and Computational Biology, Dana Farber Cancer
Institute, Harvard TH Chan School of Public Health, 450 Brookline Ave,
Boston, MA 02215, USA

© The Author(s). 2017 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
interpret their coefficients at their face value. For example,
it is very easy to create examples where when only one of
the two highly similar features is included in a regression
model, its coefficient is highly significant and positive;
whereas when both are included, none of the coefficients
is significant or one is positively significant and the other
is negative. This issue is a fundamental statistical problem
due to lack of information and is unlikely to be solved
simply by regularization employed by the CIBERSORT
method.
To evaluate how CIBERSORT estimations are affected

by the incorporation of similar features, we conducted
two in silico experiments. In the first one, we selected
two unrelated cell types, CD8 T cells and neutrophils,
from the CIBERSORT feature set, LM22 matrix. The
Pearson correlation of the expression levels of the two
cell types is 0.009. We generated 500 mixtures by
randomly apportioning the population consisting of
these two cell types only: Y = Yi, i = 1,2,…500, where:

Yi ¼ f 1;i � X1 þ f 2;i � X2 þ εi

with εi following the normal distribution with mean 0
and the same standard deviation as X1. Coefficients f1,i
and f2,i follow Uniform(0,0.5), and X1 and X2 are re-
spectively CD8 T cell and neutrophil gene expressions
from the LM22 matrix. This approach is very similar to
the procedure described in the CIBERSORT perform-
ance evaluation “Analysis of multicollinearity” [2]. We
applied CIBERSORT to estimate the fractions of all the
22 cell types, including CD8 T cells and neutrophils,
with the simulated data (Fig. 1a, b). Although f1 and f2
were independently simulated, their corresponding
CIBERSORT estimates were negatively correlated (r = –
0.4). Even when the true coefficients (f1,i, f2,i) were kept
as fixed constants across the 500 replications, their esti-
mates continued to show strong negative sampling
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Fig. 1 Simulations showing negative associations in CIBERSORT estimates. a, b CIBERSORT reported a negative correlation between unrelated
features, CD8 T cells and neutrophils. The fractions of features were independently sampled from Uniform(0,0.5). c, d CIBERSORT reported a
stronger negative association between closely correlated features, naïve and memory B cells; the sampling procedure used in a, b was applied.
Simulated data were sent to the CIBERSORT online server using LM22 as a reference matrix and default parameters
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correlations. This phenomenon is understandable be-
cause when one coefficient is estimated higher than its
true underlying value, the other one is necessarily esti-
mated lower due to normalization (fixed total sum at 1).
This analysis sets the baseline for negative correlation
resulting from data normalization in CIBERSORT.
In the second simulation, we replaced CD8 T cells and

neutrophils with two highly correlated features: naïve
and memory B cells. According to the LM22 matrix, the
expression levels are highly correlated (r = 0.9). We per-
formed the same simulation and used the online CIBER-
SORT server to infer f1 and f2. The estimated fractions
of the two cell types had even stronger negative correl-
ation (r = –0.7; Fig. 1c, d). These results indicate that, in
addition to data normalization, the incorporation of
highly correlated features will exaggerate the non-
biological negative correlations between the estimated
coefficients.
In our manuscript [1], we mentioned that some im-

mune subsets may respond to similar cytokines, but this
statement was in the context of a previous study which
observed such synergy in colorectal cancer [4]. We did
not make the argument that, in all cancer types, immune
cell levels are correlated, and we agree with Newman
et al. [3] that in certain cancers this may not hold true.
In their correspondence [3], they made additional ana-
lysis of the fractions of each immune subset from flow
sorting, which are normalized to the total leukocyte
count (Fig. 1a in [3]). Using this approach, Newman et al.
[3] observed both positive and negative correlations
between different immune subsets. Specifically, naïve B
cells and memory B cells were positively correlated (r =
0.7), as were active and resting CD4 T cells (r = 0.3),
which corroborated our speculation that the abundance
of closely related cell types may be positively correlated.
Since Newman et al. [3] argued that CIBERSORT is
compatible with RNA-seq data, we applied it to the The
Cancer Genome Atlas (TCGA) RSEM data in several
cancer types (Table 1) and focused on the positively
correlated B-cell subsets and CD4 T-cell subsets.



Table 1 Associations of CIBERSORT estimates for closely related features

Naive versus memory B cell (expected r = 0.7) Activated versus resting CD4 memory T cell (expected r = 0.3)

Glioblastoma r = −0.34 ⍴ = −0.77 r = −0.05 ⍴ = −0.06

Kidney renal clear cell carcinoma r = −0.07 ⍴ = −0.29 r = −0.12 ⍴ = −0.13

Lung squamous carcinoma r = 0.13 ⍴ = −0.38 r = −0.26 ⍴ = −0.19

Lung adenocarcinoma r = −0.07 ⍴ = −0.37 r = −0.29 ⍴ = −0.26

The expected correlations were obtained from Fig. 1a and are given in the column headings. RNA-seq data of each cancer type were analyzed by the CIBERSORT
online server to predict fractions of immune subsets. Pearson’s r and Spearman’s ρ were calculated between two pairs of closely related features: (1) naïve and
memory B cells, and (2) activated and resting memory CD4 T cells. Red values indicate a negative association

Fig. 2 Expression of LM22 signature genes in the malignant cells. For each cancer type, the expression level of each LM22 gene was compared
with tumor purity. Positive correlation indicates higher expression in the malignant cells. Genes were ranked by their correlations with purity. As
described in the text, a positive correlation between gene expression and tumor purity indicates that the gene is expressed in the malignant cells.
Cancer name abbreviations follow The Cancer Genome Atlas nomenclature. BLCA bladder cancer, GBM glioblastoma, LGG lower-grade glioma, OV
ovarian cancer, PCPG pheochromocytoma and paraganglioma, SKCM melanoma, STAD stomach cancer, UCEC uterine endometrial cancer
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CIBERSORT found negative correlations for almost all
the pairs of related cells in the cancers tested. These
negative correlations contradict the experimental results
reported in Newman et al. [3]. This result is likely due
to the fact that naïve and memory B cells, and similarly
active and resting CD4 T cells, have similar expression
profiles and are thus difficult to distinguish due to
collinearity.
The above analyses indicate that incorporating cells

with similar features causes CIBERSORT to produce re-
sults with non-biological associations.
Estimations from TIMER are proportional to the im-

mune content in the tumor tissue. However, we explicitly
emphasized in our manuscript [1] that TIMER estima-
tions “are not comparable between cancer types or differ-
ent immune cells,” but only comparable across individuals
within a cancer type. This is because in TIMER each im-
mune cell type is individually normalized according to the
availability of the reference data [5]. The absolute scales of
the estimates for different cell types within a tumor are
non-biological. In the original manuscript [1], we did not
make arguments regarding the estimation of the absolute
proportion of a single cell type. Therefore, we are sur-
prised by the claim by Newman et al. [3] that our method
reported “disproportionately high levels of typically rare
dendritic cells (DCs).” In their correspondence, Newman
et al. [3] went ahead and normalized TIMER estimations
and made a series of conclusions based on data
normalization (Fig. 2d–h in [3]). We believe that these
claims resulted from a misinterpretation of our method
and data, because the normalization of the total infiltrates
to sum to 1 does not apply to TIMER estimates. In
addition, we were fully aware that TIMER estimates may
correlate with total leukocyte levels (Fig. S3c in [1]).
Therefore, in the downstream analyses, we used the partial
Spearman correlation conditioning on tumor purity when-
ever necessary to control for this factor.
Let us now revisit the statistical model in CIBERSORT,

where the sample mixture is considered as a linear com-
bination of reference features. In this model, gene
expression in a tumor tissue sample is a mixture of dif-
ferent immune subsets:

Y i
g ¼

X22

j¼1

f ij � Xi
g þ ε

where i indicates the tumor sample, j indexes the im-
mune cell type, and g stands for an LM22 gene, with
constraints ∑j = 1

22 fj
i = 1 and fj

i ≥ 0, for ∀ i, j. An important
hidden assumption of this model is that malignant cells
in the tumor tissue do not express a significant amount
of any of the LM22 genes, which have been selected a
priori based on mRNA expression data profiled from
sorted immune cells. However, due to genome
instability, it is possible that malignant cells also ex-
press immune-related genes.
To examine if this is true, we analyzed the LM22 sig-

nature genes using The Cancer Genome Atlas data. We
found that, in multiple cancers, a substantial fraction of
the 513 LM22 signature genes showed positive correla-
tions with purity (Fig. 2). Such a correlation suggests
that samples with higher tumor content express these
genes at higher levels, indicating that these genes are
also expressed in malignant cells. In their analysis, New-
man et al. [2] in silico mixed colon cancer cell line
expression data with immune subsets to show that
CIBERSORT works for tumor tissues. In our analysis,
we found that colon cancer expresses a very small num-
ber of LM22 genes (n = 56), explaining why CIBERSORT
may work well for this cancer type. However, given that
up to a quarter of the LM22 genes are not immune-
specific in many other cancer types, the model assumption
of CIBERSORT is frequently violated. As a consequence,
it is likely that the CIBERSORT inferences derived from
these genes are confounded by cancer cell expression.
This is a possible reason that CIBERSORT [6] failed to
identify putative prognostic factors in these cancers, such
as T cells in melanoma and ovarian cancer, or macro-
phages in glioma.
Finally, we would like to re-emphasize that CIBERSORT

and TIMER target different aspects of tumor immune
infiltrates. CIBERSORT infers the relative fractions of
immune subsets in the total leukocyte population, while
TIMER predicts the abundance of immune cells in the
overall tumor microenvironment. Currently both methods
are limited by the assumption that transcriptomes of
tumor-infiltrating immune cells do not significantly differ
from those collected from peripheral blood of healthy
donors. This is a convenient assumption based on practi-
cality but may not hold for many tumors. Future deconvo-
lution methods could continue to improve, with more
studies profiling the tumor-infiltrating immune subsets or
single-cell tumor transcriptomes to generate high-quality
reference data.
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