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Abstract

We present a set of statistical methods for the analysis of DNA methylation microarray data, which account for
tumor purity. These methods are an extension of our previously developed method for purity estimation; our
updated method is flexible, efficient, and does not require data from reference samples or matched normal
controls. We also present a method for incorporating purity information for differential methylation analysis. In
addition, we propose a control-free differential methylation calling method when normal controls are not available.
Extensive analyses of TCGA data demonstrate that our methods provide accurate results. All methods are implemented
in InfiniumPurify.
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Background
The role of DNA methylation in cancer has been studied
extensively over several decades, in the hope of identify-
ing diagnostic biomarkers and therapeutic targets [1–3].
Recent developments in high-throughput technologies,
such as Illumina Infinium 450 k microarray [4] and bi-
sulfite sequencing [5, 6], have revolutionized the cancer
epigenomics research. Enormous amounts of data have
been generated from these platforms, for example, by
large international consortiums like The Cancer Genome
Atlas (TCGA) or the International Cancer Genome Con-
sortium (ICGC). Analysis results from these data have
greatly advanced our knowledge in cancer epigenomics
and provide valuable targets for drug development [7–10].
One important problem in cancer genomics or epige-

nomics research, especially from high-throughput tech-
nologies, is that the solid tumor tissues obtained from
clinical practice are highly heterogeneous. They are al-
ways mixtures of cancer cells, adjacent normal tissues,
stromal, and infiltrating immune cells. In high-

throughput DNA methylation experiments, the whole
tumor sample is processed to extract DNA from all cells
and then the methylation levels are profiled. Thus, the
measurements are in fact mixed signals from different
cell types. If not correctly accounted for, such sample
mixture could bias the downstream data analyses such
as differential methylation and sample clustering, since
it increases the within group variation and masks the
true biological signal [11].
The sample mixture problem in cancer study was

identified a while ago. Estimating the “tumor purity”, or
the percentage of cancer cells in a solid tumor sample,
has been an active research topic [12, 13]. Experimen-
tally determining the cancer purity is possible through
cell sorting-based technology such as Fluorescent-
Activated Cell Sorting (FACS) [14] or Magnetic-
Activated Cell Sorting (MACS) [15]. These methods,
however, are laborious and expensive thus cannot be
applied to large-scale studies. Fortunately, it was discov-
ered that in silico estimation of tumor purity from high-
throughput data is feasible because of the marked differ-
ences in genomics and epigenomics profiles between
cancer and normal cells. These differences, including dif-
ferential gene expression, differential methylation, and
different mutation and copy number variation patterns,
can be used as predictors to estimate tumor purity. A
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number of statistical methods have been developed for
the purpose, based on genetic variants (single nucleotide
polymorphism (SNP) or copy number variation) [12, 16],
gene expression [13, 17], or DNA methylation data [18–
20]. Wang et al. provide a comprehensive review for
available purity estimation methods [21]. Many of these
methods share a similar approach that data from tumor
samples are modeled by a mixture distribution where
tumor purity is a latent parameter and the purity estima-
tion is performed by maximizing the data likelihood.
Method implemented in the RefFreeEWAS R package
provides “reference-free” deconvolution [20], which does
not require data from purified samples. The problem is
similar to the blind signal separation (BSS) in signal-
processing field [22, 23] and the deconvolution is
achieved by non-negative matrix factorization.
In spite of the successes, there are a number of limita-

tions in these purity estimation methods. First, many
methods require data from “reference samples” (the pure
cancer/normal samples) as predictors in a linear model
framework to estimate tumor purity. The reference data
could be difficult or expensive to obtain in practice. The
reference-free method, such as RefFreeEWAS, requires
data from a large number of tumor samples so that the
matrix factorization can be performed stably. This poses
difficulties for a smaller-scale study. Moreover, several
methods require data from normal controls so that dif-
ferential expression/methylation can be identified and
used as predictors [11, 24], which are also not easy to
obtain sometimes. Finally, some methods are based on
complicated statistical modeling that requires substantial
amount of computation [12, 25].
Differential methylation (DM) analysis in cancer-

normal comparison is an important task in cancer epige-
nomics research. The differentially methylated CpG sites
(DMCs) or regions (DMRs) identified from such analysis
can be further associated with somatic mutations [26] or
gene expression regulation [27] to enhance our under-
standing of cancer etiology. Moreover, the DMCs/DMRs
could potentially serve as diagnostic biomarkers or
therapeutic targets [28–31]. Current methods for DM
analysis usually ignore the purity information and treat
data from tumor samples as independent biological rep-
licates [32–40]. Such an approach is undesirable because
the data from tumor samples do not follow the same
distribution due to differences in the purity. Ignoring the
purity could lead to biased, even erroneous results. A
closely related problem is the adjustment of cell com-
position from heterogeneous samples such as blood or
brain in the epigenome-wide association study (EWAS)
[11, 41–43]. Such a problem assumes multiple compo-
nents in the mixture and that the mixing proportion can
be related to experimental conditions. The goal is to
eliminate the effect of differences in mixing proportions

and detect changes caused by experimental factor of
interest. The problem is very similar to earlier works on
removing hidden confounding factors (such as batch ef-
fect) [44, 45] and a few methods were developed based
on different methods such as singular value decompos-
ition [42] or linear mixed model [43]. The goal of this
problem, however, is fundamentally different from the
DM analysis in cancer-normal comparison, assuming
both case and control samples are mixtures of two types
of cells A and B and one wants to detect methylation
changes between cases and controls. The EWAS tries to
find sites that both A and B change (in the same direc-
tion) between case and control, adjusting for potential
differences in mixing proportions, whereas the DM ana-
lysis is to find the difference between A and B. Due to
this reason, the methods developed for EWAS are not
directly applicable for cancer-normal comparison. To
the best of our knowledge, the method for DM analysis
with consideration of tumor purity is not yet available.
There are some practices to account for purity in differ-
ential expression (DE) analysis [46] by adding purities as
a covariate in the linear model. As we will show, the
purity should have a multiplicative effect instead of an
additive effect. In addition, the normal controls are
sometimes difficult or expensive to obtain in a cancer
study, for example among all available 450 k methylation
array data in TCGA, 17 of 32 cancer types have less than
five normal samples, while ten of them are completely
absent of normal samples. When normal controls are
unavailable, it seems the DMCs/DMRs between cancer
and normal cannot be detected.
With the continuous cost reduction of technology,

large-scale, population level methylation studies have be-
come increasingly prevalent for different types of can-
cers. The rapid accumulation of data requires a better
method for analysis. In this work, we make three im-
portant contributions to the field of DNA methylation
analysis in cancer. First, we extend our previously devel-
oped method for estimating tumor purity from Illumina
Infinium 450 k methylation microarray data. The up-
dated purity estimation procedure does not require data
from reference samples, matched normal controls, or
purity estimated from other tools. The algorithm is ex-
tremely simple, intuitive, and computationally efficient,
yet it provides results highly consistent with methods
based on other data types. Second, we develop a statis-
tical method, based on a linear model, to perform DM
analysis for 450 k data with the consideration of tumor
purity. Parameters are estimated using a generalized
least square and hypothesis testing for DMC is achieved
by the Wald test. Finally, we develop a method for de-
tecting DMCs when normal control data are absent. The
method draws inferences of DMCs based on the correl-
ation between methylation and purity levels. We show
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by extensive real data analyses that the proposed
methods are sensitive, accurate, and computationally ef-
ficient. All proposed methods are implemented in the
latest version of InfiniumPurify, which is freely available
at https://zenodo.org/record/200214.

Results
The newly updated method for purity estimation
The previously developed InfiniumPurify for purity esti-
mation [18] is based on an important observation from
the 450 k methylation data: the number of probes with
intermediate methylation level is significantly greater in
tumors compared to normal samples. Many of the inter-
mediate methylated CpG sites are the result of sample
mixtures and contain information of the mixing propor-
tion (tumor purity). InfiniumPurify first identifies a
number of informative differentially methylated CpG
sites (iDMCs) from cancer-normal comparisons and
then estimates purity from the probability density of
methylation levels of iDMCs. An important drawback of
the previous version of InfiniumPurify is that the selec-
tion of iDMCs requires a number of cancer and normal
samples. For cancer types without or only having a few
normal samples, such as ovarian carcinoma (without a
normal sample) or glioblastoma (only one normal sam-
ple) from TCGA, InfiniumPurify would fail or has not
enough statistical power to find reliable iDMCs. Our
previous method therefore was only able to provide esti-
mated tumor purities for nine cancer types in TCGA.
This greatly limits the application of InfiniumPurify in
smaller scale studies or on new cancer types.
We obtained all 450 k methylation data from TCGA

(including 8830 tumor samples and 703 normal samples
for 32 cancer types) to study the effect of iDMC selec-
tion and purity estimation. We found that it is possible
to use a group of “universal” normal samples to obtain
iDMCs and then apply them on purity estimation for
different cancers. We redesigned the purity estimation
algorithm, which can be applied to data without normal
controls or replicates. The essence of the newly updated
method is to combine normal samples from different tis-
sue types, construct a panel of normal methylomes, and
then detect iDMCs for each cancer type using this panel
for downstream purity estimation. Another important
improvement of current version of InfiniumPurify is that
it does not rely on ABSOLUTE to calibrate the estima-
tion. Therefore, all purity results in this paper are from
450 k methylation array data alone. The comparison
with existing methods shows that tumor purities using
universal normal samples are comparable with previous
version, even better for cancer types with only small
number of normal samples. The algorithm of updated
InfiniumPurify is illustrated in Fig. 1, and is detailed in
the “Methods” section.

Genomic locations of iDMCs
We carefully investigated the genomic locations of the
iDMCs. Taking the average across all cancer types, 22%
of the iDMCs are located at the transcriptional start site
(TSS), 3% are at the transcriptional end site (TES), 11%
at the exonic regions, 32% at the intronic regions, and
31% at the intergenic regions. Compared with all CpG
sites on the 450 k array, these iDMCs are relatively de-
pleted at gene promoter regions and enriched at inter-
genic regions. This indicates that the iDMCs are more
likely to appear in the less important regions. Moreover,
the iDMCs are rather dispersed along the genome (the
top 1000 iDMCs are located in 432 genes on average).
The spatial diversity of the iDMC is a desirable feature
because the purity estimation will not be overly influ-
enced by the differential methylation by a few genes. Fi-
nally, overlaps of iDMCs from different cancer types are
rather low: the average pairwise overlap is only 2.8%.
These results demonstrate the cancer type specificity of
iDMCs, thus it is necessary to obtain a set of iDMCs for
each cancer. We also associate each iDMC to a gene if it
is located within 3000 bps to the gene. On average,
iDMCs are located in 432 genes (Additional file 1: Ma-
terial Section S1). Most (89%) of the iDMC-bearing
genes contain only one or two iDMCs, thus the locations
of iDMCs are rather dispersed. The spatial diversity is
desirable and potentially more robust, because the purity
estimation result will not be overly influenced by the dif-
ferential methylation by a few genes. More detailed
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Fig. 1 A flowchart to illustrate the InfiniumPurify algorithm, including
purity estimation and DM calling procedures
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description of the iDMC location is provided in
Additional file 1: Material Section S1.

Tumor purity estimation results from TCGA data
Overall purity estimates and their correlation with other
methods
We then applied InfiniumPurify to all TCGA tumor
samples whenever the 450 k data are available (8830
samples from 32 cancer types). To compare our esti-
mated purities with other methods, we obtained purity
estimates for all cancer samples from [46], based on dif-
ferent methods including ABSOLUTE [12], ESTIMATE
[13], a consensus measurement of purity estimation
(CPE) [46], image analysis of hematoxylin and eosin
stain slides (IHC) [46], and non-methylation of immune-
specific CpG sites (LUMP) [46]. Overall, the Infinium-
Purify estimates have good correlations with these ex-
cept IHC. Figure 2a shows the scatter plots of estimated

purities from InfiniumPurify versus other methods for
all samples in all cancer types. InfiniumPurify estimates
have the highest Pearson’s correlation with ABSOLUTE
(Pearson’s correlation 0.78) and the lowest correlation
with IHC (Pearson’s correlation 0.34). For each individ-
ual cancer type, the correlations between InfiniumPurify
and other estimates are also high (Additional file 2: Fig-
ures S1–S5), showing that the good overall consistence
is not due to cancer type bias or a few outliers. Figure 2b
summarizes such correlations from different cancer
types. A barplot of these correlations (with cancer
names) is also provided in Additional file 2: Figure S6.
The correlations are mostly high except for IHC, which
is consistent with the findings in [46]. It is because IHC
is based on image analysis and the data are substantially
different from other methods. Overall, we find consist-
ently high correlation between purity estimates from
InfiniumPurify and other methods.
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Fig. 2 Purity estimates from TCGA data. a Scatter plots showing comparison of purities for all TCGA tumor samples from InfiniumPurify with
ESTIMATE, ABSOLUTE, LUMP, IHC, and CPE, respectively. b Correlations between InfiniumPurify and other estimates for all TCGA cancer types.
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We further looked at the distributions of estimated
purities of individuals from different cancer types, shown
in Fig. 2c. Overall, LAML (acute myeloid leukemia) has
the highest purity, followed by THYM (thymoma), both
of which have very small variance in different patients.
On the other hand, PAAD (pancreatic adenocarcinoma)
and TGCT (testicular germ cell tumor) have the lowest
average purities, indicating that the small size of these
tumors causes difficulty and variability in collecting the
tumor samples in operation. A few other examples with
low average purities are LUSC (lung squamous cell car-
cinoma), HNSC (head and neck squamous cell carcin-
oma), KIRC (kidney renal clear cell carcinoma), and
LUAD (lung adenocarcinoma), which are also predicted
as low consensus purities by [46]. In general, this result
is consistent with the one reported in Fig. 1b of [46].
However, we were able to generate purity estimates for
more cancer types due to the wider availability of DNA
methylation data.

Effect of iDMC selection on purity estimation
We performed several analyses to investigate the effect
of iDMCs selection on purity estimation. First, we inves-
tigated the effect of number of iDMCs on purity estima-
tion. We selected different numbers of iDMCs (top N by
rank-sum test statistics) and evaluated the purity esti-
mates by their correlation with ABSOLUTE purities. An
example for lung adenocarcinoma LUAD is provided in
Additional file 3: Table S1. In general, the results are ra-
ther stable: the correlations with ABSOLUTE are similar
when selecting 50–5000 iDMCs. The correlations be-
come lower when using more iDMCs. For examples, the
correlation is decreased to 0.076 if selecting 30,000
iDMCs. This is because using too many iDMC brings
extra noise to the estimation. Overall, the purity estima-
tion procedure is reasonably stable to the number of
iDMC used and we recommend using top 1000 iDMCs.
We also explored the possibility of using normal blood

samples as controls in iDMC detection, since the blood
samples are much easier to collect in clinical practice.
We obtained DNA methylation data for whole blood of
656 human samples aged 19–101 years [47] and ran-
domly selected 50 samples as normal controls for iDMC
and purity estimation. As shown in Additional file 2: Fig-
ure S7, purities estimated from using blood controls are
highly correlated with those by universal normal con-
trols for most cancer types. Their correlations with esti-
mates from other methods are also comparable with
those from using universal normal controls (Additional
file 2: Figure S8). Nevertheless, we still observed a few
cancer types, such as DLBC, LAML, and THYM, whose
predicted purities by blood control are poorly (or even
negatively) correlated with our previous estimation by
universal normal controls. One likely explanation for

this phenomenon is that these tumor tissues may have
very distinct methylation profiles from blood tissue, so
the obtained iDMCs are mostly blood tissue-specific, not
necessarily associated with differential methylation be-
tween tumor and normal. Thus, we want to emphasize
that the accuracy of the purity estimation result could
depend on tumor types and the users should use blood
samples as controls with caution. It is also our future
work to find more reliable iDMCs for purity estimation,
especially in the blood control scenario. Overall, these
results demonstrate that the proposed purity estimation
procedure is robust and not affected much by iDMC se-
lection and that using blood control to identify iDMC
for purity estimation is possible.
We also conducted a tenfold cross-validation in iDMC

identification and purity estimation. In detail, all tumor
samples from specific cancer types are divided into
roughly ten equal groups. Each group is iteratively
served as test set, where iDMCs are obtained from
remaining nine groups based on the above previous pro-
cedures. Results show that the tumor purities estimated
from tenfold cross-validation are almost perfectly corre-
lated with that by the whole dataset (Additional file 2:
Figure S9).
Taken together, these results strongly validate the ro-

bustness and good performance of our purity estimation
method, as well as other genomics data-based methods.
They also demonstrate that different genomics and epi-
genomics signals provide rather consistent information
on tumor purity. Different purity estimation procedures
are based on different types of genomic data and from
completely different algorithms, yet produce highly con-
sistent results. This provides researchers more confi-
dence in these estimates. However, it is worth
mentioning that we do not claim superiority over any
other purity estimation method since it is difficult to
evaluate the performance without gold standards. We
claim that: (1) the high correlation among different
methods and from different data types provide validation
to each other; and (2) InfiniumPurify is the first tool to
provide purity estimation from methylation data, which
is useful and complementary to other methods.
With these results, we will take the estimated purities

as known constants and develop methods for differential
methylation analysis with consideration of purities, de-
tailed in later sections.

Correlation between methylation levels and tumor
purities
Through extensive exploration of the TCGA data, we
observed that at differentially methylated CpG sites
(DMCs), methylation levels in tumors are highly corre-
lated with tumor purities. To be specific, given a set of
450 k data from a number of tumor samples, each has a
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purity value (estimated from InfiniumPurify). For each
CpG site, we computed the correlation between the beta
values and the purities across samples. From there we
obtained 450 k correlation values for this dataset, each
for a CpG site. We also randomly shuffled the sample la-
bels, computed the correlations, and used these numbers
as controls for comparison purposes. Figure 3a plots the
distributions of observed and random correlations for
LUAD samples. It shows that the distribution of ob-
served correlations has a longer right tail, indicating that
there are many more CpG sites with high correlation
with purities.
Next, we looked at the relationship of such correla-

tions and differential methylation. We applied a
Wilcoxon rank-sum test on all CpG sites to obtain test
statistics. The CpG sites are then categorized into differ-
ent groups by the test statistics and the distributions of
correlations in each category are shown in the boxplots
in Fig. 3b. It clearly shows that CpG sites with greater
test statistics tend to have beta values more correlated
with purities. Figure 3c shows the stratified boxplot in
another direction: CpG sites are categorized by correla-
tions and distributions of test statistics are displayed for
each category. Similarly, CpG sites with higher correla-
tions tend to have greater test statistics, hence are more
likely to be differentially methylated.
We performed the above analysis for all available can-

cer types and observed the same phenomenon. These re-
sults indicate an important finding: DMCs tend to have
beta values with greater correlation with purities. This
observation is expected because only when the methyla-
tion levels are markedly different between cancer and
normal samples, the mixed signal will correlate with
mixing proportion. For CpG sites showing similar levels
of methylation in cancer and normal samples, the mixed

signal will be close to a constant regardless of the purity.
This observation is an important foundation for our de-
velopment of the DM calling method with consideration
of purity.

Differential methylation analysis with normal control
When normal control data are available, we developed a
statistical method to call DMC with consideration of
tumor purity. The performance of the method is demon-
strated in both simulation studies and real data analyses.

Simulation
We performed extensive simulation to compare the per-
formances of DM calling from different methods. We
used the LUAD as a template to generate data so that
the simulated data matched the real data characteristics.
We conducted simulations for various scenarios under
different sample sizes and signal-to-noise ratios. A de-
tailed description of the simulation is provided in
Additional file 1: Materials Section S2. The results show
that under all simulation settings, InfiniumPurify pro-
vides the best performance. These simulation results
demonstrate the robustness and accuracy of Infinium-
Purify in DM calling in cancer study when tumor purity
is a concern.

TCGA data results
We further applied the proposed DM calling method to
all TCGA data whenever the 450 k data were available.
We compared the DMC calling results with minfi [40],
arguably the most widely used package for 450 k data
analysis, and RefFreeEWAS, which considers cell com-
position in DM calling. We ran minfi using default
parameters and specified K = 2 in RefFreeEWAS, corre-
sponding to two components (cancer and normal) in the
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cell mixture. We want to point out that the comparison
is not completely fair, since minfi does not consider pur-
ity and RefFreeEWAS is not designed for cancer-normal
comparison (as discussed in the “Background” section).
However, because there is currently no DM calling
method accounting for purity, the results presented in
this section simply demonstrate that the DM calling re-
sults can be significantly improved with proper consider-
ation of purity. Even though there are a number of other
DM calling tools for 450 k data [32–39, 48], none of
them considers tumor purity so we expect they provide
results similar to minfi. Due to this reason, those
methods are not included in the comparison.
First, we examined the sensitivity in DM calling. Fig-

ure 4a shows the number of significant (defined as false
discovery rate (FDR) < 0.01) DMCs detected for all can-
cer types whenever data are available. The proposed
method detects the most DMCs in almost all datasets,
demonstrating higher sensitivity. This makes sense be-
cause with the consideration of purity, the within group
variance is reduced among the cancer samples, thus
leading to a more powerful statistical test. The gain in
sensitivity could be significant, for example, the number
of DMCs detected in THCA (thyroid carcinoma) is al-
most doubled compared to minfi. On average, there are
over 20% more DMCs detected from the proposed
method compared to other methods. We also investi-
gated the overlaps of DMCs called from different
methods, shown by Venn diagrams in Additional file 2:
Figure S10. It is shown that DMCs called from all three
different methods have rather significant overlap for all

tested cancer types, especially between InfiniumPurify
and minfi.
We compared the absolute methylation differences for

InfiniumPurify exclusive, minfi exclusive, and common
DMCs from BRCA data. As shown in Additional file 2:
Figure S11, InfiniumPurify exclusive DMCs show a
much higher methylation difference between matched
tumor and normal samples than minfi exclusive DMCs.
This is because the InfiniumPurify exclusive DMCs have
large within-group variances, caused by the tumor pu-
rities, thus they cannot be detected by minfi. After cor-
recting for purity, the within-group variances are
reduced and these sites will be called as DMC. This fur-
ther illustrates the importance of purity correction in
DM calling.
Next, we looked at the spatial correlations of test sta-

tistics from different methods. For each cancer type, we
first selected pairs of CpG sites with distances less than
50 base pairs and computed the Pearson’s correlation of
their test statistics. It was known that methylation levels
have strong spatial correlation [49], that is, the nearby
CpG sites usually have similar methylation levels. There-
fore, the differential methylation statuses are likely to be
similar among nearby CpG sites and this is the reason-
ing of grouping DMCs into DMRs in whole genome
methylation data. Thus, we argue that a better DMC
calling method should produce test statistics with stron-
ger spatial correlation. Figure 4b compares the spatial
correlations in test statistics from the three methods and
the proposed method provides the highest correlation
for all cancer types. This indicates that by accounting for
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purity in DM detection, the DM status from nearby
CpG sites become more similar.
We further looked at the correlations among test sta-

tistics from different types of cancers. Even though dif-
ferent cancer types have distinct etiologies, they also
share many commonalities, such as the hyper-
methylation in CpG islands and genic regions and global
hypo-methylation in whole genomes especially for highly
and moderately repeated DNA sequences [50]. Hence,
we believe that there are many shared epigenetics dy-
namics in different cancers and expect that the test sta-
tistics are well correlated across different cancer types.
Figure 4c shows, for each cancer type, the average corre-
lations in test statistics with other cancers. All inter-
cancer correlations from three methods are shown in
Additional file 2: Figure S12. Overall the test statistics
from the proposed method have a stronger correlation,
again suggesting that the results are more consistent.
Finally, we looked at the biological implications of the

DM calling results. We first identify the top 1000 genes
(termed as DMGs) with most DMCs by different
methods. Then DMCs mapped to these genes are input
to gometh function in missMethyl package [51] to test
their enrichments with “PATHWAYS_IN_CANCER”
from KEGG [52]. Compared to the simple Chi-square
test, gometh function adjusts the bias from different
numbers of probes on different genes, thus provide more
objective results. Figure 4d shows the -log10 of the p
values for the enrichment of DMGs in “PATHWAY-
S_IN_CANCER,” which contains 328 genes involved in
all cancer types. The p values are much smaller from the
proposed method, indicating stronger enrichment. We
further examined the enrichment of DMGs in pathways
related to different cancer types (Additional file 2: Figure
S13). To be specific, we looked at the enrichment of
DMGs from COAD (colon adenocarcinoma) in the
COLORECTAL_CANCER pathway, UCEC (uterine cor-
pus endometrial carcinoma) in the ENDOMETRIAL_-
CANCER pathway, PRAD (prostate adenocarcinoma) in
the PROSTATE_CANCER pathway, THCA in the
THYROID_CANCER pathway, BLCA (bladder urothe-
lial carcinoma) in the BLADDER_CANCER pathway,
and LUAD in the NON_SMALL_CELL_LUNG_CAN-
CER pathway. Again, the enrichments are in general
stronger from the proposed method. These results sup-
port that the proposed method generates more biologic-
ally meaningful results.
To better understand the differences in DM calling re-

sults from the proposed and other methods, we explored
the raw data of CpG sites with substantial discrepancies
in test results from the InfiniumPurify and minfi.
Additional file 2: Figure S14 shows several examples of
such CpG sites. These CpG sites are not statistically sig-
nificant from minfi, mainly because of the large variance

in the cancer group. However, the middle panel shows
the scatter plot of beta value versus purities, indicating
that the large within group variance is mostly caused by
the variation in purities from different samples. After
correcting the purity effect, as shown in the right panel,
the adjusted beta values become higher and the means
between two groups are visibly different now. This leads
to a very significant test result and tiny p values (p < 1e-
20). These examples illustrate the importance of correct-
ing purity in the DM calling procedure.
Taken together, the results presented in this section

show that the proposed DM calling method is more sen-
sitive, accurate, and provides more biologically interpret-
able results compared with existing methods.

Differential methylation analysis without normal control
Taking advantage of the observation that methylation
levels for DMCs tend to have higher correlation with pu-
rities, we developed a method to call DMCs without
normal control. We then applied the method to all
TCGA samples to call DMCs without using the data
from normal samples. The DMCs called with control
data are used as gold standard to benchmark these re-
sults. We generated receiver operating characteristic
(ROC) curves for the results from all cancer types
(Figure 5a and Additional file 2: Figure S15). The barplot
of areas under the curve (AUCs) of all ROC curves is
shown in Fig. 5b. Overall the results are satisfactory with
the average AUCs being 0.873. Results from most cancer
types are fairly accurate, for example, BLCA, BRCA,
COAD, LUAD, PRAD, and UCEC all have AUC over
0.9. Results from KIRC and KIRP (kidney renal papillary
cell carcinoma) are relatively worse with AUCs around
0.75. Another possible solution in DM calling when
matched control samples are unavailable is to use a uni-
versal set of normal samples. We conducted such ana-
lysis and found that it produces slightly worse results
than the control-free method. The detailed analysis is
provided in Additional file 1: Materials Section S3.
We further looked at the accuracies of control-free

DM calling from top ranked DMCs. This is sometimes
more important than all the ROC curves for many high-
throughput experiments, since the top ranked features
are often of more interests and have undergone more in-
vestigation. Additional file 2: Figure S16 shows the true
discovery rates (TDRs) for the top 50,000 CpG sites for
a number of cancers. The accuracies are very high: on
average about 95%. Even for KIRC and KIRP which have
poor AUCs, the accuracies are fairly high at 87% and
83%, respectively.
We further performed pan-cancer analysis on the

DMCs. Figure 5c shows the overlaps of top 50,000
DMCs across all cancer types. Generally, we found that
the tumors originating from the same and nearby organs
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(such as lung, kidney, and uterine tumors) or originating
from similar tissue/cell type (such as adenocarcinoma
and sarcoma) share similar DMCs. For instance, the tu-
mors originating from the upper respiratory tract form a
clear differential methylation cluster, including ESCA
(esophageal carcinoma), HNSC, LUSC, and LUAD. Two
kidney cancers, KIRC and KIRP share a lot of DMCs.
For the glioma, although GBM (glioblastoma multi-
forme) is clustered far from LGG (brain lower grade gli-
oma), it shares the highest DMCs with the latter.
Interestingly, UCS (uterine carcinosarcoma) shares more
DMCs with the same organ as the tumor UCEC and also
shares DMCs with SARC (sarcoma) and both originate
from similar cell types. Note that such analysis is not
feasible using the traditional method because many can-
cers do not have data from corresponding control sam-
ples. With our proposed method, more biological results
can be obtained.
It is important to point out that the proposed control-

free DM calling method requires relatively larger sample
size (e.g. >20) and that the purities among samples need
to be dispersed enough. The results could also be af-
fected by the signal-to-noise ratios in the data (the ratios
of inter-group and intra-group variations). For some
cancer types, control-free DM calling could provide un-
desirable results. Nevertheless, the control-free DM

calling results are satisfactory overall. We want to
emphasize that one should profile the normal controls
whenever possible if differential methylation is a major
research interest. However, when normal control data
are absent due to clinical or economic reasons, we pro-
vide a viable solution for DM calling.

Discussion
Existing methods for tumor purify estimation are mainly
based on gene expression or copy number data from ei-
ther SNP array or high-throughput DNA sequencing.
InfiniumPurify is the first method to provide purity esti-
mation from DNA methylation microarray data. We
want to emphasize that in cancer studies, the genetic or
epigenetic data (genetic variants, gene expression, DNA
methylation, etc.) are not specifically generated to meas-
ure cancer purity: those experiments are performed to
study different aspects of cancer. Thus, it is important to
be able to estimate purity from all types of data. If the
purity could only be estimated from copy number data,
then in an EWAS study where only DNA methylation
data are available, one would not be able to estimate
purity. From this perspective, it is equally important and
useful to have purity estimation methods from different
data types. In addition, DNA methylation is deemed to
be more stable than gene expression, so it is potentially
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Fig. 5 Differential methylation analysis, without normal control. a Examples of ROC curves from InfiniumPurify control-free DMC calling model,
where results from tumor-normal comparison are treated as gold standard. b AUCs for selected cancer types in TCGA. c Heatmap showing
overlaps of the top 50,000 DMCs among different cancer types
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more accurate in purity estimation problem. Although
copy number alteration is a characteristic of cancer cells
and is also less variable than gene expression, cancer
cells often have aberrant overall ploidy number com-
pared with normal cells, which greatly affects copy
number-based purity estimates. For example, ABSO-
LUTE needs a user selected tumor ploidy in determin-
ation of the optimal likelihood. Due to these reasons,
tumor purity estimated from DNA methylation data
could be more stable or at least plays a complementary
role to exiting tumor estimation approaches.
There are some reports about the intermediate methyl-

ated (IM) sites and the methylation heterogeneity in can-
cer [53–57]. We want to emphasize that in spite of the
existence of IM in normal samples, there are many more
IM CpG sites in cancer (Fig. 1a and b in [18]). The enrich-
ment of these types of CpG sites is a result of sample mix-
ing. In iDMC selection, we attempt to pick CpG sites that
contain information for cancer purity. Even though there
might be some iDMCs that are results of IM and methyla-
tion heterogeneity, a majority of them are results of
cancer-normal mixing, evidenced by the strong bimodality
in the histogram of the beta values for iDMCs (Fig. 1e in
[18]). Thus, we are able to estimate purity with good ac-
curacy from the mode of the distribution. In spite of that,
we want to point out that the level of heterogeneity de-
pends on cancer type. Cancers with higher heterogeneity
levels could have more “wrong” iDMCs selected and thus
have biased purity estimation. In real data application, we
recommend trying different numbers of iDMCs and
examining the consistence in purity estimation.
It is important to note that in our purity estimation

procedure, combining normal samples from different tis-
sue types might increase the variation within the normal
group and it was the reason why in the earlier version of
InfiniumPurify we used matched controls in each cancer
type to identify iDMCs. However, through comprehen-
sive data analysis we notice that combining normal sam-
ples in fact produces comparable results. We believe this
is a better approach and will have a wider application,
for example, purity estimation can be performed for can-
cer types not included in TCGA. For any cancer type, as
long as the sample size is reasonably large (e.g. ≥20), the
iDMCs can be reliably detected by comparing the cancer
to the universal normal controls and the purity can be
estimated. We also want to point out that our DM call-
ing (especially control-free DM calling) methods require
relatively larger samples size compared with minfi,
limma, or related tools. Thus, we envision that Infinium-
Purify will be mostly applied to population level studies.
Control-free DM calling also requires that the purities
among samples are dispersed enough so that the statis-
tical test can be reliably performed. To this end, we want
to emphasize that the control-free DM calling method

should be used with caution and normal controls should
be profiled whenever possible.
Beyond differential methylation, analysis of other types

of genomics data analysis such as differential expression
between cancer and normal also suffer the complication
of tumor purity. We believe similar principals proposed
in this work can be applied to analyze the gene expres-
sion data, even though the detailed data modeling is dif-
ferent. This is also a research area we will explore in the
near future.

Conclusion
Tumor purity is an important factor of clinical tumor
tissues reflecting both intrinsic property of a cancer type
and how accurate these samples are collected. It could
have a great impact on many cancer data analyses in-
cluding differential expression, copy number alteration,
differential methylation, genome-wide association stud-
ies, and EWAS. It is important to be able to estimate
and adjust for tumor purities in these analyses. In this
work, we develop a series of statistical methods for DNA
methylation microarray data analysis in cancer, including
purity estimation and DM calling with and without nor-
mal controls. The newly designed purity estimation pro-
cedure has greatly enhanced the application of
InfiniumPurify for many cancer types with few or no
normal samples. We estimate tumor purities of all
tumor samples with 450 k data and show that our esti-
mated purities are highly consistent with those from
other popular tools. With consideration of purity, the
DM calling results from cancer-normal comparison are
shown to be more sensitive, accurate, and biologically
meaningful. The control-free DM calling method pro-
vides a solution for data without normal control and
provides new biological insights for more cancer types.

Methods
Purity estimation algorithm
The purity estimation algorithm by InfiniumPurify is il-
lustrated in the purity estimation module in Fig. 1. For a
given cancer type, we first collect all tumor samples and
a set of normal samples to detect the informative differ-
entially methylated CpG sites (iDMCs) and use those for
purity estimation. A previous version of InfiniumPurify
simply collects available normal samples of the corre-
sponding cancer types to get iDMCs. However, for most
cancer types in TCGA, there are not enough (or no)
normal samples to obtain reliable iDMCs. In this up-
dated version, we create a panel of the normal samples
by taking two normal samples for each cancer type (one
if there is only one normal sample for a cancer type). In
total, we obtain 43 normal samples from 22 cancer types
having normal samples and use them as the universal
normal set for all cancer types (Additional file 3: Table
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S2). With these, we select DMCs between tumor and
normal samples by rank-sum test and require that their
variances of beta values are greater than 0.005 in tumor
samples. Besides the rank-sum test, we also tried to use
minfi in iDMC selection. The iDMCs selected from
minfi are highly overlapped with those from rank-sum
test and the estimated tumor purities are also highly cor-
related from procedures. In detail, the average overlap of
top 1000 iDMCs by rank-sum test and minfi is 569 for
all 32 cancer types (Additional file 3: Table S3) and the
average purity correlation is over 0.9 (Additional file 2:
Figure S17).
We then keep the top 1000 DMCs (based on p values

from the rank-sum test) as iDMCs and used them for
purity estimation (list of iDMCs are provided in
Additional file 1: Material Section S4). Real data results
show that the number of selected iDMCs has very little
effect on the result. With this set of universal normal
samples, iDMCs selection can be performed for data
without normal controls. Moreover, the iDMCs selected
for different cancer types based on TCGA data can be
used for estimating purity for a single cancer dataset. In
this case, users only need to provide a cancer type and
the purity will be estimated based on the pre-
determined iDMCs from TCGA data.
To estimate purity, iDMCs are first divided into hyper-

methylated and hypo-methylated groups according to
their mean beta values in tumor and normal samples. In
detail, if an iDMC has higher mean methylation level
tumor samples than normal, it will be assigned as a
hyper-methylated group, and vice versa. Beta values of
iDMCs in tumor samples are transformed according to
the following procedure: hyper-methylated iDMCs re-
main unchanged and hypo-methylated iDMCs are chan-
ged to 1-beta values. Note that there is a small
proportion of hyper-methylated iDMCs with beta values
less than 0.5 and hypo-methylated iDMCs with beta
values greater than 0.5. However, this transformation is
performed regardless of the methylation level itself. We
then apply density estimation with Gaussian kernel to
the transformed methylation levels of the iDMCs. The
mode of the density function is taken as the estimated
purity. The estimated purities are then taken as known
constants for downstream DM calling.
In the above procedure, iDMC selection is a key step

for reliable purity estimation. However, iDMC selection
could be affected by many factors including sample size,
tumor stage, and heterogeneity. In particular, tumor het-
erogeneity is an intrinsic and commonly observed prop-
erty of tumor samples and the level of heterogeneity
depends on cancer type. Heterogeneous sites are more
likely to be selected as iDMCs due to their high variance
in tumor and difference between tumor and normal
samples, which could bias the purity estimation. In this

case, one can use different numbers of iDMCs in purity
estimation and examine the stability of the results and
then choose a proper number of iDMCs which gives the
most stable result.

Differential methylation analysis with normal control
The proposed DMC calling method works for data from
one cancer type. The input raw data are beta values for M
CpG sites from n1 cancer and n0 normal samples. We first
transform the beta values using an arcsine transformation:
f(x) = arcsin (2x− 1). The transformation is necessary be-
cause the transformed data follow Gaussian distribution
much better compared to the raw data, especially at the
boundaries (0 and 1). This allows us to use a linear model
with Gaussian noise in following method. The arcsine is a
“variance stabilization transformation” for random variables
from a beta distribution. Such transformation possesses sev-
eral advantages over more commonly used logistic (logit)
transformation. First, it stabilizes variance, e.g. the variance
does not depend on the mean anymore. This greatly re-
duces the heteroscedasticity problem in regression. Second,
it is more linear than logit. The methylation level from
mixed cancer-normal samples is assumed to be a weighted
average of those from the pure samples and the signal mix-
ing is at the original scale. Having a more linear transform-
ation allows us to use a linear model for transformed data
with better approximation. Previous work on differential
methylation analysis from bisulfite sequencing uses the arc-
sine transformation and obtains good results [58].
For CpG site i, denote the transformed beta values

from normal samples as Xi, and assume Xi ∼N(mi, σi
2).

Denote the transformed beta values from “pure” cancer
samples as Yi and assume Yi = Xi + δi. δi is a random
variable representing the difference between cancer and
normal samples. It is assumed that δi ∼N(μi, τi

2). With Xi

and Yi from a number of samples, the differential methy-
lation detection is achieved by hypothesis testing: H0 : μi
= 0. However, in practice, the data from pure cancer
sample Yi is not observed. Instead, we observed the sig-
nal from mixed cancer-normal samples, denoted by
Yi '. For cancer sample s with known purity λs, we have
Yis ' = (1 − λs)Xis+ λsYis = (1 − λs)Xis + λs(Xis + δis) =Xis + λsδis,
so Yis ' ∼N(mi + λsμi, σi

'2). Here, σi'
2 is the variance for Yis' ,

and σi'
2 ≠ σi

2. It is worth mentioning that Xi and δi have
moderate negative correlation in real data (Additional
file 2: Figure S18). This is expected because lowly
methylated CpG sites in normal samples tend to be
hyper-methylated and highly methylated CpG sites in
normal samples tend to be hypo-methylated. The
negative correlation, however, does not affect the gen-
eral design of our model. This derivation shows that
because of the presence of λs, directly testing the
mean differences between Xis and Yis' is not equiva-
lent to testing H0 : μi = 0. This also shows that the
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tumor purity has multiplicative effect on differential
methylation (the same applies to different expression),
instead of additive. Therefore, the existing model for
differential methylation or differential expression with
the consideration of tumor purity by using purity as
an additive covariate [46] is incorrect statistically. We
designed the following method based on a simple lin-
ear model and the generalized least square procedure
to take Xis and Yis' as input data and test μi = 0.
For CpG site i, we denote all input data by a vector

Zi ¼ Xi1;Xi2;…;Xin0 ;Y i1′; Y i2′;…; Y in1′½ � T . The first
n0 items are numbers from normal samples and the next
n1 items are from cancer samples. The input data can be
represented by following the linear model: Zis =mi + asμi
+ ϵs, s = 1, 2, …, n0 + n1, where as = 0 when s ≤ n0 and as
= λs when n0 < s ≤ n1. In this model, μi is the parameter of
interest that will be tested. The residual variances are σi

2

and σi'
2, respectively, for normal and cancer groups. This

method essentially uses tumor purity as an experimental
design factor in a linear model, so that the correct infer-
ence on differential methylation can be obtained.
The parameter estimation can be performed by following

the generalized least square method. For a CpG site, let

Z ¼

X1

X2

⋮
Xn0
Y 1

0

Y 2
0

⋮
Yn1

0

2
66666666664

3
77777777775

; W ¼

1
1
⋮
1

0
0
⋮
0

1
1
⋮
1

λ1
λ2
⋮
λn1

2
666666664

3
777777775
;

β ¼ m
μ

� �
; and �¼

�1
�2
⋮
�n0
�n0þ1

�n0þ2

⋮
�n0þn1

2
6666666664

3
7777777775

;

where Z is a vector for transformed methylation levels in
n0 normal and n1 tumor samples, W is a n0 + n1 by 2 de-
sign matrix with n0 0’s and tumor purities in the second
column, β is the linear model parameter to be deter-
mined, and ϵ is the error term. The linear regression
model can be formulized as Z =Wβ + ϵ, and the model
parameters can be solved by the following normal
equation,

β̂¼ WTW
� ��1

WTZ≜HZ , where H = (WTW)−1WT, and

var β̂
� �

¼ Hvar Zð ÞHT .

var(Z) is in the form of
P

0
0

P′

� �
, where

P

¼
σ2 0 0
0 ⋱ 0
0 0 σ2

2
4

3
5
n0�n0

,
P

′ ¼
σ′2 0 0
0 ⋱ 0
0 0 σ′2

2
4

3
5
n1�n1

.

So var β̂
� �

¼ Hvar Zð ÞHT ¼ H1 H2½ �
P

0
0

P
′

� �

HT
1

HT
2

� �
¼ H1

P
HT

1 þ H2
P

′HT
2 , and var β̂

� �
can be ob-

tained with σ2 and σ'2, the residual variances from nor-
mal and cancer groups. To estimate σ2 and σ'2, once we

have β̂, regression residuals are ∈̂¼ Z �W β̂, then,

σ2 ¼
X

i¼1

n0 ∈̂i
2

n0−2
; σ02 ¼

Xn0þn1

i¼n0þ1
∈̂i
2

n1−2
:

We applied a shrinkage estimator, similar to the one
proposed in [59], on the estimated cancer/normal vari-

ances and obtained σe2 and σe′2 . The procedure shrinks
all residual variances to the geometric mean and stabi-
lizes the estimates.

After getting β̂ and var β̂
� �

, the Wald test statistics for

testing H0 : μ = 0 is

t ¼ β̂ 2½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var β̂

� �r

2;2½ �

;

where β̂ 2½ � is the second item of β̂ ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var β̂

� �r

2;2½ �
is the

[2, 2] element of the matrix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var β̂

� �r
.

Finally, we assume the Wald test follow a t distribution
with n0 + n1 − 2 degrees of freedom to obtain nominal p
values. Adjustment of multiple testing can be done by
applying canonical procedure to compute FDRs [60].

Control-free differential methylation detection
Following the notations in the cancer-normal DM calling
method, we have Yis ' ∼N(mi + λs μi, σi'

2) and wish to test
the difference in average methylation levels between can-
cer and normal, e.g. μi = 0, without control data. With
known tumor purities λs, the hypothesis testing can be
performed even without control data. Through a simple
linear regression using the data from tumor samples (Yis ')
as response and tumor purities (λs) as independent vari-
ables, the difference in means (μi) is the slope in the re-
gression and can be tested. We want to note that the test
statistics from such regression is equivalent to the Pear-
son’s correlation between Yis ' and λs, but the regression
procedure offers some flexibility to incorporate other cri-
teria. We find that sometimes a CpG site has large test sta-
tistics but relatively small effect size, due to small standard
error. To limit such effect, we use the posterior probability

Zheng et al. Genome Biology  (2017) 18:17 Page 12 of 14



Pr(|μi| > c) to rank the CpG sites, where c is a user defined
quantity to require the difference between cancer and nor-
mal to be larger than a threshold. Using the test statistics
(or correlation between Yis ' and λs is equivalent to setting
c = 0). In practice, we used c = 0.1 and found that it pro-
vides better performance than using c = 0.
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