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Abstract

The CRISPR/Cas9 system has been rapidly adopted for genome editing. However, one major issue with this system
is the lack of robust bioinformatics tools for design of single guide RNA (sgRNA), which determines the efficacy and
specificity of genome editing. To address this pressing need, we analyze CRISPR RNA-seq data and identify many
novel features that are characteristic of highly potent sgRNAs. These features are used to develop a bioinformatics
tool for genome-wide design of sgRNAs with improved efficiency. These sgRNAs as well as the design tool are
freely accessible via a web server, WU-CRISPR (http://crispr.wustl.edu).

Background

The CRISPR/Cas9 system has been developed in recent
years for genome editing, and it has been rapidly and
widely adopted by the scientific community [1]. The
RNA-guided enzyme Cas9 originates from the CRISPR-
Cas adaptive bacterial immune system. CRISPRs (clus-
tered regularly interspaced palindromic repeats) are
short repeats interspaced with short sequences in bac-
teria genomes. CRISPR-encoded RNAs have been shown
to serve as guides for the Cas protein complex to defend
against viral infection or other types of horizontal gene
transfer by cleaving foreign DNA [2—4]. Major progress
has been made recently to modify the natural CRISPR/
Cas9 process in bacteria for applications in mammalian
genome editing [5, 6]. Compared with other genome
editing methods, the CRISPR system is simpler and
more efficient, and can be readily applied to a variety of
experimental systems [7-11].

The natural CRISPR/Cas9 system in bacteria has two
essential RNA components, mature CRISPR RNA (crRNA)
and trans-activating crRNA (tracrRNA). These two RNAs
have partial sequence complementarity and together form a
well-defined two-RNA structure that directs Cas9 to target
invading viral or plasmid DNA [2, 12]. Recent work
indicates that it is feasible to engineer a single RNA
chimera (single guide RNA, or sgRNA) by combining the
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sequences of both crRNA and tracrRNA [13]. The sgRNA
is functionally equivalent to the crRNA-tracrRNA com-
plex, but is much simpler as a research tool for mammalian
genome editing. In a typical CRISPR study, an sgRNA is
designed to have a guide sequence domain (designated as
gRNA in our study) at the 5’ end, which is complementary
to the target sequence. The rationally designed sgRNA is
then used to guide the Cas9 protein to specific sites in the
genome for targeted cleavage.

The gRNA domain of the sgRNA determines both the
efficacy and specificity of the genome editing activities
by Cas9. Given the critical roles of gRNA, multiple
bioinformatics tools have been developed for rational
design of gRNAs for the CRISPR/Cas9 system [14—17].
Experimental analysis indicates that Cas9-based genome
editing could have widespread off-target effects, resulting
in a significant level of non-specific editing at other
unintended genomic loci [14, 18-20]. Thus, most exist-
ing design tools have focused primarily on selection of
gRNAs with improved specificity for genome targeting.
However, more recent studies have demonstrated that
the off-target effects of the CRISPR-Cas9 system is not
as extensive as previously speculated, and random tar-
geting of the noncoding regions in the genome has little
functional consequences in general [21, 22]. Further-
more, novel experimental systems have been developed to
improve the targeting specificity of CRISPR/Cas9 [23, 24].
Besides targeting specificity, another important aspect of
bioinformatics design is to select gRNAs with high target-
ing potency. Individual gRNAs vary greatly in their
efficacy to guide Cas9 for genome editing. Thus, the
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design of potent gRNAs is highly desired, as inefficient
genome editing by Cas9 will inevitably lead to signifi-
cant waste of resources at the experimental screening
stage. The importance of gRNA efficacy has only been
appreciated very recently, with multiple studies attempt-
ing to identify sequence features that are relevant to
functionally active sgRNAs [21, 25-28]. For example,
one recent study by Doench and colleagues [21] ana-
lyzed 1841 randomly selected gRNAs and identified
position-specific sequence features that are predictive of
gRNA potency. Similarly, CRISPRseek is a BioConduc-
tor package that also implements the Doench algorithm
for potency prediction [29]. In our study, we reanalyzed
this public dataset and identified many novel features
that are characteristic of functional gRNAs. These se-
lected features have been integrated into a bioinformat-
ics algorithm for the design of gRNAs with high efficacy
and specificity. A web server implementing this design
algorithm has also been established.

Results

In a recent study, Doench and colleagues [21] analyzed
1841 sgRNAs to identify sequence features that are associ-
ated with CRISPR activities. From that analysis, significant
position-specific sequence features have been discovered.
In particular, nucleotides adjacent to the protospacer adja-
cent motif (PAM) NGG in the target site are significantly
depleted of C or T. In our study, this public dataset was
systematically reanalyzed to identify other novel features
that are predictive of CRISPR activity. To this end, we
compared the most potent sgRNAs (top 20 % in ranking)
with the least potent sgRNAs (bottom 20 %). By excluding
sgRNAs with modest activities in this manner, distinct
characteristics of functional sgRNAs can be more readily
identified. The same strategy for feature selection has been
proven to be effective in our previous study to characterize
highly active small interfering RNAs (siRNAs) for target
knockdown [30].

Structural characteristics of functional sgRNAs

Previous studies have shown that structural accessibility
plays an important role in RNA-guided target sequence
recognition, such as by siRNA and microRNA [30-32].
Similarly, we hypothesized that structural characteristics
of the sgRNA are important determinants of CRISPR ac-
tivity. To this end, RNA secondary structures were cal-
culated with RNAfold [33]. Overall secondary structure,
self-folding free energy, and the accessibility of individ-
ual nucleotides in the structure were analyzed for each
sgRNA. The sgRNA consists of two functional domains,
the gRNA sequence and tracrRNA sequence. The gRNA
sequence consists of 20 nucleotides that pair perfectly to
the targeted genomic sequence, thereby guiding the re-
cruitment of the Cas9 protein to the target site; on the
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other hand, tracrRNA binds to Cas9 to form a function-
ally active RNA-protein complex. As shown in Fig. 1a,
the tracrRNA region contains multiple well-defined
structural motifs, which are important for interaction
with Cas9 to form a functional RNA—protein complex.
Compared with non-functional sgRNAs, functional
sgRNAs were significantly more accessible at certain
nucleotide positions (Fig. 1b, c). In particular, the most
significant difference in accessibility involved nucleotides
at positions 18-20, which constitute the 3" end of the
guide sequence (highlighted in Fig. 1a). The 3" end of the
guide sequence, also known as the “seed region”, plays a
critical role in recognition of target sequence. Thus, based
on structural analysis, accessibility of the last three bases
in the seed region was a prominent feature to differentiate
functional sgRNAs from non-functional ones (Fig. 1b). In
addition, base accessibility in positions 51-53 was also sig-
nificantly different. In the predicted structure of the sgRNA,
nucleotides at positions 21-50 form a stable stem-loop
secondary structure. From the survey of non-functional
sgRNAs, nucleotides at positions 51-53 commonly paired
with the end nucleotides of the guide sequence (positions
18-20), resulting in an extended stem-loop structure
encompassing positions 18-53. Thus, decreased base
accessibility at positions 51-53 was generally associated
with decreased accessibility of the end of the seed region.
Furthermore, overall structural stability of the guide se-
quence alone (i.e., the gRNA domain comprising positions
1-20) was evaluated with thermodynamics analysis. Spe-
cifically, the propensity to form secondary structure was
determined by calculating the self-folding free energy of
the guide sequence. On average, non-functional guide se-
quences had significantly higher potential for self-folding
than functional ones, with AG=-3.1 and -1.9, respect-
ively (P = 6.7E-11; Fig. 2a). Thus, the result from thermo-
dynamic analysis also indicated that structural accessibility
of the guide sequence was correlated with sgRNA func-
tionality. In general, structural stability of the RNA can be
approximated by the GC content of the sequence. Con-
sistent with the free energy calculation, the guide se-
quence of non-functional sgRNAs had higher GC content
on average compared with functional sgRNAs (0.61 versus
0.57, P=2.1E-5). Furthermore, thermodynamic stability
of the gRNA/target sequence was evaluated. On average,
non-functional guide sequences were predicted to form
more stable RNA/DNA duplexes with the target sequence
than functional ones, with AG =-17.2 and -15.7, respect-
ively (P=4.9E-10; Fig. 2b). Thus, high duplex stability
was a significant characteristic of non-functional sgRNAs.

Sequence characteristics of functional sgRNAs

In addition to structural features describing the sgRNA,
relevant sequence features of the guide sequence were
also evaluated and are presented below.
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Fig. 1 Structural characteristics of sgRNAs. a Secondary structure of
the sgRNA. The 20-nucleotide guide sequence is complementary to
the target sequence and resides at the 5" end of the sgRNA. The
highlighted nucleotides could potentially base pair, leading to an
extended stem-loop structure. b Statistical significance of
position-specific nucleotide accessibility of functional sgRNAs
compared with non-functional sgRNAs. ¢ Comparison of
position-specific nucleotide accessibilities between functional
and non-functional sgRNAs
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Fig. 2 Thermodynamic properties of the guide sequence (gRNA).
Functional and non-functional gRNAs were compared in the analysis.
a Structural stability of the gRNA as evaluated by self-folding free
energy (AG). b Structural stability of the gRNA/target sequence
duplex as evaluated by free energy calculation

Sequence motifs related to oligo synthesis or transcription

In most CRISPR applications, a 20-mer DNA oligo repre-
senting the guide sequence is cloned into an expression
vector and expressed as the gRNA domain within the
sgRNA. Thus, the efficiencies of both DNA oligo synthesis
and the subsequent transcription process are relevant to
CRISPR activity. Repetitive bases (i.e., a stretch of contigu-
ous same bases) could potentially be correlated with poor
efficiency for DNA oligo synthesis. To assess this possi-
bility, the distributions of repetitive bases in the guide
sequence were compared between functional and non-
functional gRNAs. Repetitive bases are defined as any of
the following: five contiguous adenines, five contiguous
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cytosines, four contiguous guanines, or four contiguous
uracils. Overall, compared with non-functional gRNAs,
functional gRNAs were significantly depleted of repeti-
tive bases (5.4 % versus 22.8 %, P = 1.3E-11). Among the
four bases, four contiguous guanines (GGGG) were espe-
cially correlated with poor CRISPR activity. Previous work
indicates that GGGG not only leads to poor yield for oligo
synthesis, but also has the propensity to form a special
secondary structure called a guanine tetrad, which makes
the guide sequence less accessible for target sequence rec-
ognition. Consistently, much fewer functional gRNAs
were observed to contain the GGGG motif than non-
functional ones (4.9 % versus 17.9 %, P = 2.6E-8).

A stretch of contiguous uracils signals the end of tran-
scription for RNA polymerase III, which recognizes the
U6 promoter. All gRNAs containing UUUU in the guide
sequence had been preselected for exclusion from our
analysis. Furthermore, recent work suggested that three
repetitive uracils (UUU) in the seed region of the guide
sequence could be responsible for decreased CRISPR ac-
tivity [34]. Thus, a more stringent assessment was ap-
plied to evaluate the impact of potential transcription
ending signal by searching for UUU in the last six bases
of the gRNA. UUU was significantly absent in the seed
region of functional gRNAs compared with that in non-
functional gRNAs (0.8 % versus 8.4 %, P = 8.8E-7).

Overall nucleotide usage

Within the 20-nucleotide gRNA sequence, the average
counts for adenine were 4.6 and 3.3 for functional and
non-functional gRNAs, respectively (P=9.3E-18). In
contrast, the usage of the other three bases (U, C, or G)
was only marginally correlated to CRISPR activity
(Table 1; P values in the range 0.055-0.0019). The pref-
erence for adenine in functional gRNAs was not likely a
mere reflection of overall preference for GC content as

Table 1 Significant base counts in functional gRNAs

Mono- or dinucleoside count Enrichment ratio® P value®
A 139 9.3E-18
U 0.89 1.9E-03
G 0.92 6.2E-03
C 0.95 5.5E-02
GG 0.64 23E-11

AG 143 1.3E-09
CA 1.38 6.7E-09
AC 147 1.2E-08
uu 0.59 7.5E-08
UA 1.84 1.1E-07
GC 0.77 32E-06

“The enrichment ratio was determined by comparing the average nucleoside
counts of functional gRNAs to that of non-functional gRNAs. PThe P values
were calculated with Student’s t-test
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the uracil count was even lower in functional gRNAs
than in non-functional ones (4.0 versus 4.4). Overall
usage of dinucleosides and trinucleosides was also exam-
ined and is summarized in Table 1 and Table S1 in Add-
itional file 1, respectively. The most significant dinucleoside
was GG (P=2.3E-11) and the most significant trinucleo-
side was GGG (P = 4.9E-13). Both GG and GGG were sig-
nificantly depleted in functional gRNAs, with enrichment
ratios of 0.64 and 0.39, respectively.

Position-specific nucleotide composition

Base usage at individual positions was summarized and
compared between functional and non-functional gRNAs
(Table S2 in Additional file 1). Consistent with previous
findings [21], there was a strong bias against U and C at
the end of functional gRNAs. Interestingly, a U or C at the
end of the gRNA has a strong propensity to pair with
AAG at positions 51-53 of the sgRNA, resulting in an ex-
tended stem-loop secondary structure (Fig. 1a). Thus, the
bias against U and C here was consistent with the struc-
tural analysis results, indicating the importance of free
accessibility of the seed region for target recognition.

Combining heterogeneous features for genome-wide pre-
diction of sgRNA activity

Identified significant sgRNA features, including both
structural and sequence features described above (summa-
rized in Table S3 in Additional file 1), were combined and
modeled in a support vector machine (SVM) framework.
With these features, a computational algorithm was devel-
oped to predict the CRISPR activities. Similar to the sam-
ple selection strategy adopted in feature analysis, the most
potent sgRNAs (top 20 % in ranking) and the least potent
sgRNAs (bottom 20 %) were included in the SVM training
process. The performance of the SVM model was vali-
dated by receiver operating characteristic (ROC) curve
analysis. To reduce potential risk of overtraining, tenfold
cross-validation was performed in this ROC analysis. As
shown in Fig. 3a, the area under the curve (AUC) was
0.92 for the SVM model. To further evaluate potential
gene-specific bias in model performance, leave-one-gene-
out cross-validation was performed. Specifically, experi-
mental data from eight of the nine genes were used to
train an SVM model while the data from the remaining
gene were used for model testing in each iteration of the
cross-validation process. The result of this gene-based
cross-validation was similar to that of tenfold cross-
validation, with an AUC of 0.91. Thus, our SVM predic-
tion model could be used to differentiate functional
sgRNAs from non-functional ones. In summary, cross-
validation analysis indicated that our SVM model, which
integrated both structural and sequence features, had
robust performance at predicting sgRNA activities.
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Fig. 3 Evaluation of the gRNA prediction model by receiver
operating characteristic (ROC) curves. Two cross-validation strategies
were employed, tenfold cross-validation and gene-based

cross validation

The SVM model was used to select functionally ac-
tive sgRNAs for all known genes in the human and
mouse genomes. To significantly speed up the selec-
tion process, a set of pre-filters were implemented to
first quickly eliminate unpromising sgRNA candidates
before evaluation by the SVM model. These pre-filters
are summarized in Table 2. With these pre-filters,
about 85 % of non-functional sgRNAs were excluded
while about 60 % of functional sgRNAs were retained
for further evaluation. Thus, application of the pre-
filters led to a drastic reduction of non-functional
sgRNAs while accompanied by only a moderate in-
crease in the false negative rate. By implementing these
pre-filters before SVM modeling, a modified prediction
model was constructed for genome-wide sgRNA design
based on pre-screened training data.

Table 2 gRNA feature filters that were applied before the SYM
modeling process

Enrichment ratio for
non-functional gRNA

Filtered features Excluded value

gRNA folding (AG) < —8 kcal/mol 158
Duplex binding (AG) < =22 kcal/mol 35
GC content >80 % 30.7
UUU in the seed region True 10.5
Repetitive bases True 4.2
Position 19 U 26
Position 20 CorVU 25

Free energy (AG) was calculated by RNAfold for gRNA self-folding and by the
nearest neighbor method for binding stability of gRNA-target duplex
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The general applicability of the SVM model, which we
named WU-CRISPR, was evaluated using an independent
experimental dataset generated by Chari et al. [28]. In the
Chari study, the knockout activities of 279 sgRNAs were
determined experimentally by high-throughput sequen-
cing and used to train a novel sgRNA design algorithm,
sgRNAScorer. In our analysis, the activities of these
sgRNAs were predicted with WU-CRISPR and correlated
to experimental data. Furthermore, the performance of
three other design tools, sgRNA Designer [21], SSC [27],
and sgRNAScorer [28], were also evaluated using the
Chari dataset. The Chari dataset was independent from
WU-CRISPR, sgRNA Designer, and SSC, but was used to
train sgRNAScorer. Thus, tenfold cross-validation results
from sgRNAScorer (as presented in the Chari study) were
included in our comparative analysis to reduce potential
training bias. For each algorithm, top ranking sgRNAs
were selected and their knockout activities were checked
against the experimental results. Precision-recall curve
analysis was performed to evaluate the prediction accur-
acy. Precision-recall curves are commonly used to evalu-
ate prediction precision (proportion of true positives
among all predicted positives) in relation to the recall rate
(proportion of true positives among all positive samples).
As shown in Fig. 4, all four algorithms performed signifi-
cantly better than random selection (113 functional
sgRNAs among 279 tested sgRNAs, or 40.5 % precision
background). Among these algorithms, WU-CRISPR had
the best performance at selecting functional sgRNAs. Spe-
cifically, all ten sgRNAs with the highest prediction scores
by WU-CRISPR were experimentally confirmed to have
high knockout activities. Similarly, among all 50 sgRNAs

= WU-CRISPR
= sgRNA Designer
- SSC

= sgRNAScorer

Precision

Recall

Fig. 4 Validation of WU-CRISPR using independent experimental data.
Precision-recall curves were constructed to evaluate the performance
of WU-CRISPR and three other bioinformatics algorithms for

sgRNA design
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with the highest prediction scores by WU-CRISPR, 88 %
were experimentally validated for their high knockout
activities.

Besides knockout efficacy, targeting specificity was also
considered in the design pipeline. Targeting specificity of
sgRNAs has been considered in previously published al-
gorithms. However, existing algorithms search for poten-
tial off-target sites in the entire genome space. As the
genome contains billions of nucleotides, sgRNA off-
targeting is an unavoidable problem when all genomic
regions are considered. Recent studies indicate that
small-scale genomic alterations (insertions or deletions of
less than 20 nucleotides) induced by sgRNA had little
functional consequence if the sites are within non-
coding regions [21, 22]. Therefore, we decided to focus
our off-targeting analysis exclusively on exon regions,
including sequences from both protein-coding genes
and other types of genes such as microRNAs and long
noncoding RNAs. In this way, more stringent off-
target filters could be implemented since a much
smaller sequence space (compared with the entire
genome space) was searched.

Each gRNA candidate was compared with all
known exon sequences in the genome. Recent experi-
mental studies revealed that the 3’ end seed region
of the gRNA is more relevant to off-targeting than
the nucleotides residing in the 5° end. Thus, a more
stringent filter is applied to this PAM-proximal seed
region. In our algorithm, a gRNA candidate was ex-
cluded if its seed sequence (3' end 13 nucleotides)
was found in any other unintended exon sequence
preceding the PAM domain (NGG or NAG). Further-
more, BLAST sequence alignment was performed to
identify and exclude 20-nucleotide gRNA candidates that
have over 85 % similarity to any unintended sequence in
the design space.

Using the established bioinformatics design pipeline
to screen for both CRISPR efficacy and specificity,
gRNA sequences were designed to target most known
protein-coding genes in the genomes, including 18,635
human and 20,354 mouse genes, respectively. These
gRNA sequences are freely accessible via a web server,
WU-CRISPR [35]. In addition, a custom design interface
was established for gRNA selection based on user-
provided sequences.

Discussion

In a short period of time, the CRISPR/Cas9 system
has quickly become a major tool for editing of mam-
malian genomes. However, the rules governing the effi-
cacy of CRISPR have not been well characterized and
most users still design CRISPR assays by trial and
error. This problem resembles a similar efficacy issue
for RNA interference studies ten years ago when the
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characteristics of functional siRNAs had not yet been
well defined. As a result of significant advances in
identifying the features that are characteristic of func-
tional siRNAs, highly active siRNAs can be readily de-
signed with bioinformatics tools, leading to drastic
savings in experimental resources. In the current study,
we focused on identifying significant features that can
be used to predict highly active sgRNAs. Specifically,
we reanalyzed a public CRISPR dataset and discovered
many novel features that are characteristic of func-
tional sgRNAs. Previously, we and others have shown
that both sequence and structural features of the siR-
NAs are important for RNA interference knockdown
activities [30]. Similarly, the knockout activities of
CRISPR/Cas9 are also correlated to both sequence and
structural features of the sgRNAs. By incorporating
heterogeneous features in a prediction model, we have
developed an improved bioinformatics design tool and
implemented a web server, WU-CRISPR, for genome-
wide selection of gRNAs for the CRISPR/Cas9 system.
The availability of this program may help to improve
the efficiency of CRISPR assay design, leading to signifi-
cant savings in experimental resources at subsequent
screening stages.

Materials and methods

Retrieval of public data for algorithm training

All gene sequences, including both exon and intron se-
quences, were downloaded from the UCSC Genome
Browser [36]. Index files mapping transcript accessions to
NCBI Gene IDs were downloaded from the NCBI ftp site
[37]. The Doench dataset for functional sgRNA screening
was downloaded from the journal’s website [21]. In this
published study, functional activities of 1841 sgRNAs were
determined by flow cytometry. The Doench dataset was
reanalyzed to identify novel features that are correlated to
sgRNA efficacy.

Computational tools and data analysis

LIBSVM was used to build computational models for
sgRNA design [38]. For SVM analysis, a radial basis
function (RBF) was used for kernel transformation.
Optimization of the RBF kernel parameters was done
with grid search and cross-validation according to
the recommended protocol by LIBSVM. RNA sec-
ondary structures and folding energies were calcu-
lated with RNAfold [33]. The predicted structures were
examined at single-base resolution to determine whether
individual nucleotides were base-paired or unpaired in the
RNA structures. Statistical computing was performed with
the R package [39]. Statistical significance (P value) for
individual features was calculated by comparing functional
and non-functional gRNAs with Student’s t-test or x> test.
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Validation of WU-CRISPR with independent experimental
data

The Chari dataset [28] was employed to independently
evaluate the performance of WU-CRISPR. In the Chari
study, the knockout activities of 279 sgRNAs designed
for Cas9 (from Streptococcus pyogenes) were determined
experimentally by high-throughput sequencing and used
to train an sgRNA design algorithm, sgRNAScorer. In
our comparative analysis, the Chari dataset was used to
compare the performance of WU-CRISPR with three
other public algorithms, including sgRNA Designer [21],
SSC [27], and sgRNAScorer [28]. Tenfold cross-validation
results from sgRNAScorer were previously presented in
the Chari study and included in this comparative analysis.
The sgRNA Designer program was downloaded at [40];
the SSC program was downloaded at [41]. These stand-
alone tools were used to predict sgRNA activities, and the
prediction results were then compared to experimental
data. Precision-recall curve analysis was done for algo-
rithm comparison in R using the ROCR package, and
plotted using the ggplot and stat_smooth functions in the
ggplot2 package.

Data availability

The web server and stand-alone software package for
gRNA design using the new design algorithm are distrib-
uted under the GNU General Public License and are
available at [35]. All sequencing data from the Doench
study [21] and Chari study [28] can be retrieved from
the NCBI Sequence Read Archive (accessions [SRA:SRP
048540] and [SRA:SRP045596], respectively).

Additional file

[ Additional file 1: Supplementary Tables S1-S3. (PDF 285 kb) ]
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