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Do count-based differential expression
methods perform poorly when genes are
expressed in only one condition?
Xiaobei Zhou1,2 and Mark D. Robinson1,2*

Abstract

A response to ‘Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data’ by
Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND and Betel D in Genome Biology, 2013,
14:R95

Background
Statistical methods for determining transcriptional
changes between (replicated) groups of cell populations
using RNA sequencing (RNA-seq) data are now quite
mature. Several themes that emerged from the past
decade of modeling microarray data apply analogously to
RNA-seq data: parameter moderation is critical, multiple
testing corrections are necessary and flexible frameworks
(e.g., linear models) to account for the effect of covariates
are essential. For RNA-seq data, popular packages such as
edgeR, DESeq and DESeq2 [1–3] perform detailed mod-
eling of the dispersion–mean relationship, with variations
on fitting a dispersion by mean trend and moderating
estimates toward the trend. Likewise, careful modeling of
the mean–variance relationship of transformed data has
been proven effective, essentially ‘unlocking’ the world of
heteroskedastic linear regression [4].
A recent report in Genome Biology from Rapaport and

co-authors claimed that some methods, namely Poisson-
Seq [5] and limma [6], ‘have improved modeling of genes
expressed in one condition’, where they showed a striking
difference in the ability to separate differential expres-
sion (DE) [7]. From a methodological perspective, this
result caught our interest and prompted us to understand
how aspects of the all-zero-in-one-condition manifest
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undesirable properties in count-based models. Briefly, (i)
we found a coding error in the calculation of edgeR’s
signal-to-noise (S/N) metric and (ii) our re-analysis sug-
gests that count-based methods perform as well or better
than other methods, counter to the original conclusion.
The Rapaport manuscript is an excellent model of mod-

ern bioinformatics research, in terms of making processed
data and code available that reproduce figures from their
manuscript. Inmany cases, the small details can be impor-
tant and this open-source model facilitates quick access in
understanding precisely what settings were used. We fully
support this model and by default, also make our code
available. In this correspondence, we investigate the gen-
esis of differences in method performance that Rapaport
and co-authors observed and provide our view of how
performance results can be sensitive to decisions made.

Genes expressed in only one condition
We first briefly summarize the analysis that Rapaport and
colleagues reported, with respect to the all-zero-in-one-
condition case.
Using gene-level read counts, they isolated genes that

exhibit zero-counts across all replicates of a single con-
dition; in general, the number of such genes is related
to the depth of sequencing dedicated to each sample,
with deeper sequencing resulting in fewer such cases. The
dataset in question, comparing GM12892 cells to H1-
hESC cells [8], with three and four replicates, respectively,
had typical read depths for such experiments (16–39 mil-
lion mapped reads). They used the following pipeline: (i)
from the count table, generate DE P values for several
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methods; (ii) calculate S/N using ‘normalized’ data; (iii)
plot negative log P value versus S/N, where they expect
a monotonic positive dependency (correlation); and, (iv)
generate receiver operating characteristic (ROC) curves
with thresholds on the S/N to illustrate the ability to
separate low S/N (<3) from high S/N (>3).
They highlighted that count-based methods such as

DESeq and edgeR, which infer changes in expression via
the negative binomial (NB) model, do not perform very
well in this case. It is worth noting that this is a non-
standard use of ROC curves: here, all genes are strictly
DE, but they vary in their magnitude of change. So, the
ROC curve represents the ability to separate low S/N from
high S/N. Rapaport and colleagues postulated that the
NB model reduces to Poisson (dispersion ≈ 0) and lacks
the ability to handle the ‘wide variations’ in gene counts
among replicate libraries. Our aim with this report is to
understand the origins of this result, whether it is a short-
coming of the dispersion estimation strategy or in the
inference machinery, since parameter estimates are on the
boundary of the parameter space.

Signal-to-noise has some potential limitations
We became interested in the suitability and robustness
of the S/N metric itself, since it forms the basis for the
‘truth’ in Rapaport’s ROC result. In theory, the S/N of
the non-zero observations should accurately reflect the
significance of model-based P values for the expressed-in-
one-condition versus zero differences. In practice, how-
ever, there are some potential difficulties: the sample sizes
are small and therefore, the S/N itself is subject to con-
siderable estimation uncertainty; it is well known that for
count data the variance is intimately tied to the mean, so
it is not clear whether S/N should be calculated on a lin-
ear scale. In addition, a notable aspect of the Rapaport
ROC comparison is that while the same S/N cutoff (= 3)
is used across all methods, different sets of true and false
DE labels are used; this makes the curves difficult to com-
pare, since both the truth and score change by method.
We explore these issues here.
Table 1 and Fig. 1 give illustrative examples of the dif-

ferences in the originally calculated S/N between edgeR
and voom. Figure 1 gives a scatter plot of S/N calculated
on each method’s normalized data, highlighting in some
cases large differences. Table 1 shows the top ten genes
for both edgeR’s (estimated) false discovery rate (FDR)
and calculated S/N. (The full table of zero-counts, dif-
ferential statistics and S/N is given in Additional file 1.)
Here, it is evident that several genes that show little evi-
dence for DE, have very high S/N for edgeR but not for
voom (e.g., C17orf66, TM4SF19 and NPY1R). However,
the P values seem to reflect appropriately the magnitude
of evidence for DE, although they are on drastically differ-
ent scales between edgeR and voom (see ‘Discussion’ for

further commentary on this). In addition, several genes
that show the largest evidence against the null hypothe-
sis (e.g., PLEK, MS4A1, etc.) show relatively low S/N for
edgeR and would be counted as false discoveries (accord-
ing to a S/N = 3 cutoff ), while voom’s higher S/N would
result in these counted as true positives. Therefore, it is
not clear whether the ROC curve reflects the accuracy
of the S/N calculation itself or of the statistical method’s
capabilities. Upon investigation, the differences in S/N
exhibited in Fig. 1 resulted from a code error in the
original report (see Additional file 2: Fig. S1).
Another aspect to understand is the scale on which the

S/N is calculated. As is well known with count data, the
variance is related to the mean. In particular, using the NB
parameterization with mean μ and variance μ(1 + μφ),
the theoretical S/N is then:

S/N = 1√
1/μ + φ

,

which implies S/N → φ−1/2 with sufficiently large μ.
Thus, depending on the mean, the S/N calculation is cap-
turing the (inverse square root of ) dispersion. For the
ENCODE data, this relationship is shown in Additional
file 2: Fig. S2. Since the S/N calculations are most rel-
evant when the variance is independent of the mean,
we explored how transforming the data, which alters the
mean–variance relationship, affects the results of the ROC
comparisons that Rapaport and co-authors performed.
Figure 2a–c show mean–variance relationships for S/N
calculated on different scales and Fig. 2d–f highlight
their corresponding ROC performances. In all cases, the
true/false labels for the ROC curves are the same across
methods; specifically, counts-per-million from edgeR are
used to base the S/N calculation. Since the scale of data
changes the scale of S/N, true genes are selected accord-
ing to S/N > 40th percentile and false as the lowest
20 % of S/N to give a gray zone of uncertainty in the
middle. (Additional file 2: Fig. S3 gives alternative set-
tings for these cutoffs, but the results are unaffected.)
Figure 2d shows similar results to the original Rapaport
study, whereas Fig. 2e, f show a remarkable reversal in per-
formance, giving clear evidence for our earlier concern
regarding the S/N calculation.

Count-basedmethods performwell on
zero-in-one-condition simulation
Given recent efforts in simulating RNA-seq count tables
[9–11], we tried to create a representative simulation for
the zero-in-one-condition situation. The simulation was
designed as follows: (i) generate a dataset with no DE
and (ii) randomly select genes across the spectrum of
expression levels and set counts for one condition (cho-
sen at random) equal to zero to represent ‘true’ DE genes.
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Table 1 Top ten genes originally calculated using S/N (for edgeR-normalized data; first ten rows) and top ten genes calculated using
FDR for DE (edgeR P values; second ten rows). The table includes the counts-per-million table (A = GM12892 and B = H1-hESC), S/N
and estimated false discovery rate (FDR) for edgeR and limma-voom for the ENCODE dataset comparing three replicates of GM12892
to four replicates of H1-hESC

Id A1 A2 A3 B1 B2 B3 B4 edgeR S/N edgeR FDR voom S/N voom FDR

MIPOL1 0.0 0.0 0.0 237.1 232.5 226.0 227.5 45.75 7.47e−31 3.79 3.32e−07

AQP4 0.0 0.0 0.0 46.1 45.0 46.7 44.4 43.87 1.44e−14 3.90 1.99e−06

FAM19A4 0.0 0.0 0.0 142.1 131.1 143.8 131.4 20.21 1.91e−24 4.06 4.72e−07

C17orf66 2.3 2.1 2.1 0.0 0.0 0.0 0.0 16.96 1.89e−02 2.72 7.40e−04

TM4SF19 3.5 3.2 3.2 0.0 0.0 0.0 0.0 16.96 3.00e−03 2.72 2.39e−04

SOX1 0.0 0.0 0.0 7.5 6.7 6.5 6.3 13.02 8.37e−05 4.33 1.27e−04

HPGD 0.0 0.0 0.0 22.6 21.0 19.6 19.0 12.97 5.08e−09 4.56 7.48e−06

LOC100131176 0.0 0.0 0.0 17.9 15.3 18.7 17.2 12.02 5.14e−08 3.51 1.49e−05

ZNF385D 0.0 0.0 0.0 135.5 155.0 155.0 132.3 11.80 2.60e−25 4.67 3.70e−07

NPY1R 0.0 0.0 0.0 209.8 179.9 179.3 208.5 11.38 1.33e−27 2.95 6.77e−07

PLEK 25 082.8 12 622.5 11 394.8 0.0 0.0 0.0 0.0 2.16 1.79e−216 16.11 9.36e−09

MS4A1 25 455.1 14 937.7 12 886.8 0.0 0.0 0.0 0.0 2.63 2.62e−215 7.26 1.60e−08

SLAMF1 7 407.2 4 859.3 4 283.2 0.0 0.0 0.0 0.0 3.32 2.98e−165 5.11 2.53e−08

CCL3 11 057.5 3 413.1 3 544.1 0.0 0.0 0.0 0.0 1.37 4.62e−165 5.13 2.15e−08

FCRLA 7 742.0 2 979.1 3 879.8 0.0 0.0 0.0 0.0 1.92 1.01e−161 6.08 1.84e−08

RGS1 9 939.5 9 967.3 7 741.6 0.0 0.0 0.0 0.0 7.22 4.53e−159 2.66 1.44e−07

DPPA4 0.0 0.0 0.0 14 580.2 15 215.1 14 745.3 10 617.3 6.47 2.37e−158 12.02 1.84e−08

TDGF1 0.0 0.0 0.0 15 699.8 15 481.1 13 374.5 8 522.5 3.98 6.37e−157 15.48 1.84e−08

SFRP2 0.0 0.0 0.0 14 673.3 15 229.5 13 067.2 7 234.4 3.43 1.84e−153 9.87 2.15e−08

BLK 9 943.0 2 954.7 2 351.8 0.0 0.0 0.0 0.0 1.20 2.98e−147 3.28 5.17e−08

Fig. 1 Scatter plot of S/N (signal-to-noise) for limma-voom and edgeR f
or the ENCODE dataset. S/N is calculated fromthenon-all-zero condition.
More information about the colored points is given in Table 1

As previously, we sampled NB mean and dispersion esti-
mates from the joint distribution of estimates using a large
dataset (here, from [12]) and filtered out extreme disper-
sion values. Altogether, 30,000 features were generated
in a 5 versus 5 two-group comparison and zero-counts
were introduced to 5 % of the features. To reflect that
zeros occur somewhat more often at lower expression
across various datasets (see Additional file 2: Fig. S4), we
increased the frequency of zero-counts at low expression
strength.
Based on the results of this simulation (Fig. 3), ROC

curves with the method’s 5 % FDR highlighted (panel
a) and plots of true positive rate versus achieved FDR
(panel b), we again see that count-based models per-
form well in the zero-in-one-condition situation. In addi-
tion, we explored the postulation that the NB model is
reduced to a Poisson in these zero-count situations. By
comparing the dispersion estimates calculated from the
single non-zero condition to the original non-zero-in-
both-conditions data, it does not appear that the dis-
persion estimates are drastically reduced (see Additional
file 2: Fig. S5).



Zhou and Robinson Genome Biology  (2015) 16:222 Page 4 of 5

Fig. 2 The effect of scale that signal-to-noise is calculated on. a–cMean–variance relationships for different scales of the original all-zero-in-one-
condition data. d–f Corresponding ROC curves for the ENCODE dataset (GM12892 cells to H1-hESC), using S/N to set the true labels. Here, the
signal-to-noise (S/N) is calculated from (trimmed mean of M-values-normalized) counts-per-million and used for all methods. Linear is equivalent to
Rapaport’s method, where S/N is calculated on the counts-per-millions. Log represents S/N calculated on log-transformed counts-per-million. vsn
represents S/N calculated on variance-stabilized data [14]. ROC curves employ the same labels across all methods: the top 40 % of S/N are used as
true DE genes whereas the lowest 20 % are false. Each method’s P value is used for ranking the genes. FPR false positive rate, TPR true positive rate

Fig. 3 Performance for zero-in-one-condition simulation. a ROC curves and b true positive rate (TPR) versus ‘achieved’ FDR curves of DE methods for
the simulation dataset with zero-counts introduced as the true DE genes (overall performance of three simulations). The achieved FDR is the actual
rate of false discoveries at the corresponding cutoff and this rate should ideally be controlled at the desired level. For the ROC curves, the cross on
each curve represents the method’s TPR at the (estimated) 5 % FDR cutoff. For the TPR versus achieved FDR curves, points are plotted at the
following cutoffs: 0.01, 0.05 and 0.1. Filled-in points represent that the method has correctly controlled the error rate at the cutoff. FDR false discovery
rate, FPR false positive rate, roc receiver operating characteristic, TPR true positive rate
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Discussion
As developers and users of bioinformatics strategies, we
are particularly interested in the metrics and methods
that differentiate performance between the available tools.
In this paper, we claim that count-based methods per-
form well when genes are only expressed in one condition,
in contrast to an earlier report. We showed that a code
error and the chosen scale of S/N resulted in the earlier
conclusion that count-based methods suffer performance
in this situation. By calculating the S/N on a different
scale and using the same set of labels across methods, a
reversal of method performance was observed. This high-
lights a sensitivity to decisions made in constructing the
benchmark.
Using a customized simulation that introduces zero-

counts in one experimental condition, we demonstrated
that the performance of the count-based method is actu-
ally on a par with or better than other methods. We
also debunked the postulation that poor performance is
related to dispersion estimation in count models.
In the process of seeking the origins of this statistical

performance difference, we discovered another poten-
tially interesting phenomenon that may affect the inter-
pretation of results. Looking at Table 1 and Additional
file 1, it is evident that the scale of P values is drastically
different between edgeR and voom. Although this obser-
vation appears rather unrelated to the ability to separate
true from false DE genes, it is an indication that the scale
of observations modeled affects the magnitude of statis-
tical evidence derived. Not surprisingly, method perfor-
mance is ultimately dependent on the scales, parameters
and datasets used for the evaluation.

Software
R code and data that can be used to reproduce the figures
in the main manuscript and in the supplement are avail-
able online [13].
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