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Abstract

Cancer is a heterogeneous disease with different combinations of genetic alterations driving its development in
different individuals. We introduce CoMEt, an algorithm to identify combinations of alterations that exhibit a pattern
of mutual exclusivity across individuals, often observed for alterations in the same pathway. CoMEt includes an exact
statistical test for mutual exclusivity and techniques to perform simultaneous analysis of multiple sets of mutually
exclusive and subtype-specific alterations. We demonstrate that CoMEt outperforms existing approaches on
simulated and real data. We apply CoMEt to five different cancer types, identifying both known cancer genes and
pathways, and novel putative cancer genes.

Background
Amajor goal of large-scale cancer genomics projects such
as The Cancer Genome Atlas (TCGA) [1–6], the Inter-
national Cancer Genome Consortium (ICGC) [7, 8], and
others is to identify the genetic and epigenetic alter-
ations that drive cancer development. These projects have
generated whole-genome/exome sequencing data mea-
suring the somatic mutations in thousands of tumors in
dozens of cancer types. Interpreting this data requires
one to distinguish the driver mutations that play a role
in cancer development and progression from passenger
mutations that have no consequence for cancer. Identify-
ing driver mutations directly from sequencing data is a
significant challenge since individuals with the same can-
cer type typically harbor different combinations of driver
mutations [9, 10].
The observed mutational heterogeneity in cancer has

motivated the development of methods to examine com-
binations of mutations. Since driver mutations typically
target genes in a small number of key pathways [11], sev-
eral methods have been introduced to examine mutations
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in known pathways or networks (reviewed in [12, 13]).
However, most pathway databases and interaction net-
works are incomplete, lack tissue specificity, and do not
accurately represent the biology of a particular cancer
cell. Thus, de novo methods for examining combinations
of mutations are of particular interest as they require no
prior biological knowledge and enable the discovery of
novel combinations. Unfortunately, the number of pos-
sible combinations is too large to test exhaustively and
achieve statistically significant results. Current de novo
approaches to identify putative combinations of muta-
tions use the observation that mutations in the same
pathway are often mutually exclusive [14]. This obser-
vation follows from the observation that there are rel-
atively few driver mutations in a tumor sample, and
these are distributed over multiple pathways/hallmarks of
cancer [15].
In 2011, three algorithms for identifying sets of genes

with mutually exclusive mutations were introduced simul-
taneously: the De Novo Driver Exclusivity (Dendrix) [16],
Recurrent Mutually Exclusive aberrations (RME) [17],
andMutual ExclusivityModules (MEMo) [18] algorithms.
Dendrix and RME are both de novo algorithms for iden-
tifying gene sets with mutually exclusive mutations, while
MEMo examines mutual exclusivity on a protein-protein
interaction network. The Dendrix algorithm identifies
setsM of k genes with high coverage (many samples have
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a mutation in the set) and approximate exclusivity (few
samples have amutation inmore than one gene in the set).
Dendrix combines these two criteria into a weightW (M),
which is equal to the coverage of M minus the coverage
overlap (co-occurring mutations) of M. Finding the set of
maximum weight is an NP-hard problem [16]. Dendrix
uses a Markov chain Monte Carlo (MCMC) algorithm to
sample high weight gene sets; more recently other opti-
mization methods have been used to find high weight
sets [19, 20]. Leiserson et al. [21] introduced the Multi-
Dendrix algorithm to identify multiple mutually exclusive
gene sets simultaneously using an integer linear program.
In contrast, RME defines the exclusivity weight as the
percentage of covered samples that contain exactly one
mutation within a gene set, and uses an online-learning
linear threshold algorithm to identify groups of genes with
high pairwise exclusivity. However, both the RME and
MEMo algorithms were shown not to scale to reasonably
sized datasets [21], requiring extensive filtering of input
data [17, 22].
One limitation of the combinatorial weight function

used in Dendrix and subsequent algorithms is that genes
with high mutation frequencies (high coverage) can
dominate the mutual exclusivity signal, thus biasing the
algorithms towards identifying gene sets where the major-
ity of the coverage comes from one gene (Fig. 1(a)). These
observations motivated the development of probabilistic
models of mutual exclusivity. These include the Den-
drix++ algorithm (an early version of the approach that
we present in this paper) and the muex algorithm [23].
Dendrix++ uses a statistical score and was used in TCGA
acute myeloid leukemia study [3]. The muex algorithm
[23] uses a generative model of mutual exclusivity and

a likelihood ratio test to score the mutual exclusivity of
combinations of mutations. However, we find that the
muex score is sensitive to high frequency mutations (see
section Comparisons to other methods on real data).
Moreover, both of these approaches exhaustively enu-
merate gene sets to find those with high score, limiting
their applicability to larger datasets. In addition, they
do not identify multiple gene sets simultaneously, a fea-
ture that has proved useful with the Dendrix weight
[21]. The mutex algorithm [24] also uses a probabilistic
model of mutual exclusivity, and was published after this
manuscript was submitted. We provide further details of
mutex below. Finally, no current method identifies over-
lapping gene sets1 — although cancer genes have been
shown to participate inmultiple pathways [1]— or consid-
ers additional sources of mutual exclusivity such as cancer
subtype-specific mutations.
We introduce the Combinations of Mutually Exclusive

Alterations (CoMEt) algorithm to overcome the chal-
lenges outlined above. CoMEt includes the following con-
tributions.

1. We develop an exact statistical test for mutual
exclusivity conditional on the observed frequency of
each alteration. This approach is less biased towards
high frequency alterations, and enables the discovery
of combinations of lower frequency alterations. We
derive a novel tail enumeration procedure to compute
the exact test, as well as a binomial approximation.

2. CoMEt simultaneously identifies collections
consisting of multiple combinations of mutually
exclusive alterations, and samples from such
collections using an MCMC algorithm. We

Fig. 1 a Alteration matrices illustrating differences between the combinatorial weight functionW(M) introduced in Dendrix and the probabilistic
score �(M) used in CoMEt. Both matrices contain 4 mutually exclusive alterations whose alteration frequencies are indicated inside each bar. The
samples without alterations are not shown in either matrix. Since both sets are exclusive and have the same total alteration frequency, the Dendrix
weight function does not distinguish between these sets. Sets likeM (blue) are common in cancer genome studies which often have a small
number of recurrently mutated genes and a long tail of rarely mutated genes. The score used in CoMEt conditions on the observed frequencies of
each alteration, giving more significance to the setM′ (green). b An example of 2 × 2 × 2 contingency table XM for the setM = {m1,m2,m3},
illustrating how samples are cross-classified into exclusive, co-occurring, or absent for each alteration. The test statistic φ(M) used by CoMEt is the
sum of the highlighted exclusive cells
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summarize the resulting distribution by computing
the marginal probability of pairs of alterations in the
same sets. This enables CoMEt to identify sets of any
size, including overlapping sets of alterations,
without testing many parameter settings.

3. Given prior knowledge of cancer-types/subtypes,
CoMEt analyzes alterations and subtypes
simultaneously, allowing the discovery of mutually
exclusive alterations across cancer types, while
avoiding the identification of spurious mutually
exclusive sets of (sub)type-specfic mutations.

We demonstrate that CoMEt outperforms earlier
approaches on simulated and real cancer data. We apply
CoMEt to acute myeloid leukemia (AML), glioblastoma
(GBM), gastric (STAD), and breast cancer (BRCA) data
from TCGA, and to a smaller study of intracranial germ
tumors. In each cancer type, we identify combinations of
mutated genes that overlap known cancer pathways and
also contain potentially novel cancer genes including IL7R
and the EphB receptor EPHB3 in STAD, and the scavenger
receptor SRCRB4D in GBM. On the gastric and breast
cancer data, we demonstrate how CoMEt simultaneously

identifies mutual exclusivity resulting from pathways and
from subtype-specific mutations. CoMEt is available at
[25] and as the cometExactTest R package available in
CRAN [26].

Results and discussion
CoMEt algorithm
We consider that a set E of m alterations have been mea-
sured in n samples. An alteration may be the somatic
mutation of a particular gene, a specific single nucleotide
mutation (for example, V600E mutations in the BRAF
gene), an epigenetic change such as hypermethylation of
a promoter, or a variety of other changes. We assume
that alterations are binary, such that alterations are either
present or absent in each sample. We represent the set
of measured alterations with an m × n binary alteration
matrix A = [

aij
]
, where aij = 1 if alteration i occurs in

sample j, and aij = 0 otherwise. Our goal is to identify one
or more setsM1,M2, . . . ,Mt where the alterations in each
Mi are surprisingly mutually exclusive across the n sam-
ples. We introduce the CoMEt algorithm for this purpose
(see Fig. 2), a preliminary version of which was presented
at the RECOMB conference [27].

Fig. 2 Overview of the CoMEt algorithm. First, we transform alteration data from different measurements into a binary alteration matrix A. Second,
we use a Markov chain Monte Carlo (MCMC) algorithm to sample collectionsM, containing t sets of k alterations, in proportion to the weight
�(M)−α . Here we show a collection containing setsM andM′ with three and two alterations, respectively. We identify all collections whose weight
exceeds the maximum observed in randomly permuted datasets. We summarize the alterations in these significant collections with amarginal
probability graph, whose edge weights indicate the fraction of significant collections with the corresponding pair of alterations. Finally, we remove
low-weight edges in the graph, obtaining the output modules



Leiserson et al. Genome Biology  (2015) 16:160 Page 4 of 20

Wederive a score�(M) for a setM of k alterations using
an exact test of mutual exclusivity. Specifically, we exam-
ine a 2× 2×· · ·× 2 = 2k contingency table XM (Fig. 1(b))
whose entries indicate the number of samples where each
combination of alterations occurs. For example, the entry
x(24) of XM equals the number of samples where the sec-
ond and fourth alterations in M occur, but the first and
third alterations do not occur. The score �(M) is the
P-value of the observedmutual exclusivity in the tableXM,
where the margins of the table (determined by the num-
ber of samples where each alteration occurs) is fixed. That
is, the score�(M) is conditional on the observed frequen-
cies of alterations in M. This statistical score reduces the
effect of the most frequent alterations having an unduly
large contribution to the score. See section Materials and
methods for further details.
CoMEt scores a collectionM = (M1, . . . ,Mt) of t alter-

ation sets by taking the product of the scores of each set
Mi:

�(M) =
t∏

i=1
�(Mi). (1)

This score follows from the null hypothesis that exclu-
sivity is independent across sets.
Since the number of possible collections of alteration

sets grows exponentially with the number of alterations,
it is typically impossible to enumerate and compute the
weight of all alteration sets. We derive a Markov chain
Monte Carlo (MCMC) algorithm to sample collections
M, each consisting of t sets of alterations, in proportion
to their significance. We summarize this distribution by
computing themarginal probability p(e, e′) for each pair of
alterations in A. We summarize these probabilities using
the marginal probability graph, a complete, undirected
weighted graph G = (V ,E) where V = E (the set of
observed alterations) and where each edge e ∈ E con-
nects a pair of vertices u, vwith weight p(u, v). We identify
the most exclusive alteration sets by first removing all
edges from the graph weight below a threshold δ. CoMEt
outputs C(δ), the connected components in the result-
ing graph, which we call modules. The summarization via
the marginal probability graph allows CoMEt to output
collections of alteration sets different in number and size
than specified by the input parameters. Further details are
given in the section Materials and methods.

Visualization of results
We created a web application for interactive visualization
of the CoMEt results ([28]; see Additional file 1: Figure
S1). For each dataset, the website shows the modules in
the CoMEt marginal probability graph. Users can change
the minimum edge weight parameter δ, which dynam-
ically updates the modules. Edges in each module are

labeled with the marginal probability. Users can view the
rows of the alteration matrix that correspond to a given
module, and also view, sort, and search through the col-
lections sampled by CoMEt that include alterations in a
given module.

Comparison to other methods on simulated data
We compared CoMEt on two simulated mutation datasets
to four other published methods for finding mutually
exclusive gene sets: Dendrix [16], Multi-Dendrix [21],
muex [23], and mutex [24]. In addition, we performed
a separate comparison to MEMo [18] (see details in
section Comparison to MEMo).

Benchmarking ofmethods for individual gene sets
We first compared the mutual exclusivity scores used by
each of the methods on single gene sets using simulated
datasets that represent key features of cancer sequencing
data. In particular, each simulated dataset contains: (1)
one implanted pathway P with k = 3 genes that is altered
in a fraction γP samples with highly exclusive mutations;
(2) a set C of 5 highly altered genes whose alterations are
not necessarily exclusive; (3) other genes containing only
passenger mutations that were altered at rate q. The set
C models the highly recurrently altered genes that often
appear in real cancer datasets, and can confound methods
for identifying exclusive mutations. Further details of the
simulation are given in Additional file 1: Section Data.
We compared CoMEt to the other methods on datasets

with n = 500 samples and with implanted pathways with
coverages γ ranging from 0.1 to 1.0. We ran CoMEt with
k = 3 for ten million iterations with 100 permutations,
identifying modules in sets with P < 0.05. We ran mutex
with default parameters except with maximum group size
set to 3 and with 1,000 permutations, and reported the
gene sets above mutex’s suggested cutoff. We ran Den-
drix and muex with k = 3 and reported the highest
scoring significant (P < 0.05) set as neither algorithm out-
puts a consensus. We used coverage (parameter γ in [23])
and the weight W as the score for muex and Dendrix,
respectively.
We computed the precision and recall for each algo-

rithm across 25 simulated datasets for each coverage γ

(Additional file 2: Table S1). Wesummarized the results
across the datasets using the F-measure, which is the
harmonic mean of precision and recall. All the methods
performed poorly (F < 0.1) with coverage γ = 0.1, and all
the methods except mutex performed very well (F > 0.9)
for coverage γ ≥ 0.8 (Fig. 3(a)). However, CoMEt out-
performed the other methods for γ = 0.2 to 0.6. Both
muex and Dendrix struggled to identify the implanted
pathway (F < 0.4) with coverage γ < 0.5. In compar-
ison, CoMEt had F ≥ 0.6 for γ > 0.2. While mutex’s
performance was only slightly below that of CoMEt with
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Fig. 3 Comparison of CoMEt with other methods on simulated data with n = 500 samples. a The average F-measure of each method over 25
simulated datasets with varying coverage of the implanted pathway: CoMEt (blue), mutex (black), muex (brown), and Dendrix (red). b Comparison
of CoMEt and Multi-Dendrix in identifying an implanted collection containing multiple sets of alterations. Bars indicate average of adjusted Rand
index between reported and implanted collection across 25 simulated datasets

γ < 0.5, mutex performed poorly compared to CoMEt
and the other methods with γ ≥ 0.6. Interestingly, the
reason mutex performed poorly is because it identified
many false positives resulting in a low precision (≤ 0.6)
even though its recall was 1.0. These false positive gene
sets often include at least one gene from C (the set of
highly altered genes), indicating a problem with mutex’s
mutual exclusivity score. These simulations demonstrate
the advantages of CoMEt’s mutual exclusivity score in
identifying mutually exclusive sets of genes (even when
rarely mutated) in the presence of highly altered genes.

Benchmarking identification of collections of gene sets
We compared CoMEt to Multi-Dendrix [21], an earlier
method that also simultaneously finds collections con-
taining more than one mutually exclusive set. We com-
pared these two algorithms on two types of simulated
datasets: one containing collections of gene sets with no
overlapping genes, and the other containing overlapping
gene sets. We generated simulated data using a procedure
similar to that above with three important differences.
First, we implanted a collection P = (P1,P2, . . . ,Pt) of t
pathways, each with exclusive mutations with total cover-
age γP. Second, all genes in each implanted pathway are
mutated in the same number of samples. Third, we include
m = 20, 000 genes and remove those mutated in fewer
than 1 % of total samples (Additional file 1: Figure S2).
We generated datasets varying t from 2 to 4 and k from 3
to 5 with coverages γP between 0.40 and 0.70 (Additional
file 2: Table S2). We also generated datasets with overlap-
ping implanted pathways with t = 3, k from 3 to 5, with
γP = (0.75, 0.75, 0.60).
On each dataset, we ran CoMEt using k = 4, t = 3, and

Multi-Dendrix using its default parameters of t ranging

from 2 to 4, and k ranging from 3 to 5. We compared the
consensus sets output by Multi-Dendrix with the mod-
ules output by CoMEt, using the adjusted Rand index
(ARI) [29], to score how well each algorithm identified the
implanted pathways. The ARI measures the agreement
between two partitions, with ARI = 1 indicating that two
partitions are identical and ARI = –1 indicating that two
partitions are maximally dissimilar. CoMEt outperformed
Multi-Dendrix in 11/12 simulated datasets (each contain-
ing 25 replicates) (Fig. 3b and Additional file 2: Table S3).
CoMEt found a much larger fraction of the implanted
pathways (difference in ARI was > 0.2 for 8/12 datasets).
Furthermore, CoMEt had an ARI > 0.5 for all 12 datasets,
and ARI> 0.8 for 7/12 datasets. We emphasize that we
ran CoMEt with a single value of t and a single value of
k over all datasets even though the size and number of
implanted pathways varied across datasets. In contrast,
Multi-Dendrix was run with a range of parameter values.
This demonstrates that CoMEt is much less sensitive to
parameter choices than Multi-Dendrix.
We also compared the output of CoMEt and Multi-

Dendrix using the true values of t and k. We found that
CoMEt outperformed Multi-Dendrix on 11/12 datasets
(Additional file 2: Table S3). This shows that the sta-
tistical score used by CoMEt and the MCMC sampling
are important features, even on simulated datasets where
the implanted collections are fairly strong signals in
the data.

CoMEt results on real cancer datasets
We ran CoMEt on four mutation datasets from TCGA:
glioblastoma (GBM) [1], breast cancer (BRCA) [4], gastric
cancer (STAD) [6], and acutemyeloid leukemia (AML) [3].
We also analyzed the dataset of intracranial germ tumors
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from Wang et al. [30]. Because CoMEt can analyze any
type of binary alterations, we include many types of alter-
ations in these datasets: small indels and single nucleotide
variations, copy number aberrations, aberrant splicing
events, gene fusions, and (for BRCA and STAD) cancer
subtype. See section Somatic mutation datasets for details
on these datasets and Additional file 1: Section Methods
for details on parameters.

Acute myeloid leukemia (AML) We first ran CoMEt
with t = 4 alteration sets, each of size k = 4. The CoMEt
output contains four mutually exclusive modules that
include 18 alterations (Additional file 1: Figure S3). These
four modules are: (1) TP53, RUNX1, NPM1, PML-RARα

(52.5 % of samples); (2) KDM6A, FLT3, tyrosine kinases,
RAS proteins, serine/threonine kinases, DNMT3A,
MLL-X fusions, MYH11-CBFβ , and RUNX1-RUNX1T1
fusion (70 % of samples); (3) cohesin complex, other
myeloid transcription factors, and other epigenetic mod-
ifiers (33 % of samples); (4) TET2 and IDH2 (18.5 % of
samples).
The recent TCGA AML publication [3] reported

strong mutual exclusivity (using an earlier version of
the CoMEt algorithm, called Dendrix++) across several
expert-defined classes. Thus, we increased the value of k
to identify t = 4 gene sets with sizes k = 6, 4, 4, 3. Because
of the larger values of k, we increased the number of

MCMC iterations to 200 million (Additional file 2: Table
S4). The resulting marginal probability graph (δ = 0.179)
contained four mutually exclusive modules with a total of
19 genes (Fig. 4).
The first module contains six perfectly mutually exclu-

sive alterations. These six alterations include: mutations in
TP53, RUNX1, NPM1; PML-RARα, MYH11-CBFβ fusion
genes, and other MLL fusions, which we denote as MLL-
X fusions, following [3]. These six alterations are known
to be drivers in AML, and together are found in 63.5 %
of the samples. These fusion genes are defining aber-
rations for certain subtypes of AML, as PML-RARα,
MYH11-CBFβ , andMLL fusions are associated with acute
promyelocytic leukemia, acute monoblastic or monocytic
leukemia, and acute megakaryoblastic leukemia, respec-
tively. The second module (altered in 63 % of samples)
contains receptor tyrosine kinases (RTKs) and their down-
stream RAS target proteins. These include mutations in
the FLT3 tyrosine kinase, other tyrosine kinases, ser-
ine/threonine kinases, and RAS proteins. Two additional
genes, DNMT3A and KDM6A, are also included in this
set. These genes are involved in DNA/histone methyla-
tion, and their interactions with the other RTK/RAS genes
in the set are less clear. Notably, the marginal proba-
bility graph (Fig. 4) shows that the connection between
DNMT3A and other genes in the set is largely due to
its mutual exclusivity with other tyrosine kinases, and in

Fig. 4 CoMEt results on TCGA AML consisting of four modules. Each circle represents the alterations in a gene or genomic region. The number in
the circle indicates the number of samples in which the alteration occurs. Black lines are edges in the marginal probability graph with indicated
probabilities. Orange polygons indicate the sets in the collectionM with the most significant value �(M). Below each most significant set (orange)
are the corresponding score � and coverage
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fact a number of samples have mutations in both FLT3
and DMNT3A (Additional file 1: Figure S4). Thus, the
patterns of exclusivity/co-occurrence between alterations
may be subtle, demonstrating the advantages of CoMEt’s
approach to simultaneously examine multiple collections
of sets of alterations.
The third module (altered in 35.5 % of samples) contains

genes related to chromatin modification and gene regula-
tion includingASXL1, the cohesin complex, other myeloid
transcription factors, and other epigenetic modifiers.
Finally, the fourth module (altered in 24.5 % of samples)
contains genes related to DNA methylation including
TET2, IDH2, and protein tyrosine phosphatases. Mutual
exclusivity between TET2 and IDH2 in AML has been
previously reported [31–33]. Moreover, recent work pro-
vides a mechanistic explanation for this observed exclu-
sivity: Figeroa et al. [31] show that mutant IDH12 inhibits
TET2’s function in demethylation of 5-methylcytosine.
These results demonstrate that CoMEt is able to extract
multiple functional modules directly from alteration data.

Glioblastomamultiforme (GBM) We ran CoMEt on the
TCGA GBM dataset from Leiserson et al. [21] with t = 4
and k = 4 (Additional file 2: Table S5). While Leiserson
et al. [21] removed amplifications in EGFR because they
were so frequent it confounded their analysis, we added
these amplifications back when running CoMEt, treating
EGFR amplifications and TP53 as subtypes so they could
not be sampled in the same set (see section Simultane-
ous analysis of alterations and cancer subtypes for details).
The resulting marginal probability graph (δ = 0.263)
includes two mutually exclusive modules (Fig. 5(a)).

The first module includes alterations in three genes
in the Rb signaling pathway (CDK4, RB1, CDKN2C)
and in three genes in the p53 signaling pathway (TP53,
MDM2, and MDM4), as annotated by the original TCGA
GBM publication [1]. This module also contains dele-
tions in CDKN2A, which is a member of both the Rb
signaling and p53 signaling pathways. Indeed, it is well
known that different isoforms of the CDKN2A gene
are involved in the Rb and p53 signaling pathways (see
Fig. 5(b) and also [1]) and that the genomic deletion of
CDKN2A affects both isoforms. Moreover, we find that
the pairs CDK4-RB1 and MDM2-TP53 have surprisingly
co-occurring alterations (P = 6 × 10−21; see Fig. 5(b)).
This co-occurrence is stronger than the co-occurrence
of alterations in individual genes. This pattern indicates
that glioblastomas can alter the function of the Rb and
p53 signaling pathways either by deleting CDKN2A, or
by altering one gene in each of the pairs (CDK4, RB1)
and (TP53, MDM2). We emphasize that CoMEt identi-
fied this overlapping module by sampling nonoverlapping
exclusive sets. Finally, this module contains alterations in
three additional genes: NPAS3, VAV2, and MSL3. NPAS3
has been studied as a novel late-stage acting progres-
sion factor in gliomas with tumor suppressive functions
[34, 35]. VAV2 has been reported to regulate EGFR, and
knockdown of VAV2 enhanced EGFR degradation and
further reduced cell proliferation [36]. MSL3 is a mem-
ber of the male-specific lethal (MSL) complex and is
thought to play a role in transcriptional regulation. As
reported in [21], the MSL complex also includes MOF,
which regulates p53 in the cell cycle and may be involved
in cancer [37].

Fig. 5 CoMEt results on TCGA GBM. a Two output modules from CoMEt are shown in the same style as in Fig. 4. Characters in parentheses following
gene name indicate copy number aberrations: (D) is a deletion, and (A) is an amplification. b Different splice variants of CDKN2A are part of both the
Rb signaling (left) and p53 signaling (right) pathways. CoMEt recovers this relationship as two separate mutually exclusive gene sets. The gene sets
{RB1, CDK4} and {MDM2, TP53} have a statistically significant number of co-occurring mutations (P = 6 × 10−21, dotted orange line), which is much
more significant than the co-occurrence between pairs of genes in these sets (dotted red lines with corresponding P-values)
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The second module includes alterations in the PI(3)K
signaling pathway — including PIK3R1, PTEN, deletion of
PTEN and IDH1 — as well as amplifications in the genes
(EGFR, PDGFRA) and in a region containing PRDM2
and PDPN. Additional genes in this module are NF1 and
SRCRB4D. The PI(3)K signaling pathway genes overlap
the results reported by Multi-Dendrix on this dataset in
[21]; the important differences are that CoMEt includes
NF1 and amplifications in EGFR (which were not ana-
lyzed by [21]). In this module, we also found one mutually
exclusive gene set (from the highest weight collection) that
includes EGFR, IDH1, NF1, and PDGFRA. Alterations in
these genes have strong association with individual sub-
types in GBM [38]: EGFR amplification is associated with
the Classical GBM subtype, IDH1 and PDGFRA amplifi-
cation are associated with the Proneural GBM subtype,
and NF1 is associated with the Mesenchymal GBM sub-
type. This shows that mutually exclusive gene sets can
result from subtype-specific mutations.
Finally, SRCRB4D is a scavenger receptor with no

known associations with cancer. However, two other scav-
enger receptor genes have previously reported roles in
glioblastoma. Homozygous deletions of DMBT1 were
reported in glioblastomas and astrocytomas [39, 40].
CD36 was recently reported to be involved in cancer stem
cell maintenance in glioblastoma [41].
These results show that CoMEt can automatically find

large portions of the pathways that were manually curated
in TCGA GBM publication [1], including overlapping
pathways. Moreover, CoMEt identifies additional genes
with putative roles in glioblastoma and significant exclu-
sivity with other known glioblastoma genes.

Gastric cancer (STAD) We performed two runs of
CoMEt on the TCGA gastric cancer (STAD) dataset, and
then merged the runs (described in section Simultaneous
analysis of alterations and cancer subtypes). We first ran
CoMEt with t = 4 and k = 4. We then ran CoMEt on
a STAD dataset that included sample subtype classifica-
tions. TCGA recently classified gastric cancers into four
subtypes based on integration of different molecular data
[6]. To examine the relationships between subtypes and
other alterations, we introduce “subtype alterations” for
the three subtypes from [6] (we did not include the hyper-
mutated samples from the MSI subtype in our analysis).
As described in section Simultaneous analysis of alter-
ations and cancer subtypes, these “subtype alterations” are
marked as altered in samples that are not members of the
subtype, so that mutual exclusivity between a “subtype
alteration” and another alteration indicates that the alter-
ation is enriched in the subtype. We ran CoMEt on the
STAD dataset with subtype alterations using k = 4 and
t = 3 (the number of subtypes).

CoMEt identified five mutually exclusive modules from
the marginal probability graph (δ = 0.132) in the STAD
dataset (Additional file 2: Table S6 and Fig. 6(a)). Each
of these modules includes known cancer genes and novel
candidate genes. Two modules indicate subtype-specific
altered genes and pathways. The first module (altered in
69 % (150/217) of the STAD samples) includes two genes,
TP53 and PIK3CA, that are enriched for alterations in
the CIN and EBV subtypes, respectively. TCGA gastric
study reported that 80 % of EBV tumors contain an alter-
ation in PIK3CA, and suggested that EBV tumors might
respond to PI3-kinase inhibitors [6]. Given this strong sig-
nal, it is not surprising that these two genes appear in
CoMEt results. However, these signals do not dominate
the CoMEt results, and four other interesting modules are
also output. There are six other mutated genes in this first
module including MAP2K7, TLN1, BAT2L1, C12orf63
(recently renamed CFAP54), MYOM3, and PTPRJ. Given
the rarity of these mutations, their significance is unclear.
The second STAD model includes the genomically

stable (GS) subtype, mutations in CDH1, mutations in
PCDHA11, ARHGAP6-CLDN18 fusions, and amplifica-
tion of a region containing EPHB3. CDH1 somatic muta-
tions and ARHGAP6-CLDN18 fusions were reported to
bemutually exclusive and enriched in the genomically sta-
ble subtype in gastric cancer [6], and CoMEt recapitulates
this result. EPHB3 is the member of Eph/ephrin signal-
ing which controls the compartmentalization of cells in
epithelial tissues. A recent study [42] demonstrated EphB
receptors (for example, EPHB1 and EPHB3) interacting
with CDH1 in epithelial intestinal cells which regulates
the formation of E-cadherin-based adhesions. This inter-
action explains the perfect mutual exclusivity between
CDH1 and EPHB3, which to our knowledge is the first
report of this relationship. This demonstrates that mutual
exclusivity between pairs of alterations/subtypesmay have
subtle explanations, further underscoring the need for
analysis of collections of multiple alterations.
The third module (altered in 95/217 of samples)

includes amplifications of KRAS and ERBB2, and muta-
tions in BTBD11. KRAS and ERBB2 are members of the
RTK/RAS signaling pathway, and their role in cancer is
well-documented. Little is known about the function of
BTBD11, and thus the significance of the mutations is
unclear.
The fourth STADmodule (115/217 of samples) contains

three altered genes, including amplifications of CCNE1,
mutations in SMAD4 and splice-site mutations in MET.
CCNE1 is a well-known cell cycle mediator, SMAD4 is a
member of the TGF-β pathway, and MET participates in
the RTK/RAS signaling pathway [6].
The fifth STAD module (79/217 of samples) contains

four altered genes, including amplifications in a region
with IL7R and LIFR, deletions in a region with HDAC10
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Fig. 6 CoMEt results on (a) TCGA STAD subtypes, (b) TCGA BRCA subtypes. Style is the same as in Fig. 5, except for the addition of subtype
alterations (brown) and additional characters in parentheses following gene name: (AS) is an alternative splicing event, and (F) is a fusion gene.
Note that an edge between a subtype (brown vertex) and an alteration indicates that the alteration occurs frequently in the subtype

and BRD1, mutations in ARID1A, and mutations in
CNBD1.ARID1A is a well-known cancer gene shown to be
significantly mutated in gastric cancer [6]. Moreover, inhi-
bition ofHDAC10 has been reported to be associated with
human gastric cancer cells [43]. Gain-of-function muta-
tions in IL7R have been reported to be associated with
childhood acute lymphoblastic leukemia [44]. Our CoMEt
results suggest that IL7R mutations may have a role in
gastric cancer as well.

Breast cancer (BRCA) We performed two runs of
CoMEt on the TCGA breast cancer (BRCA) dataset, and
then merged the runs. We first ran CoMEt with k = 4
and t = 3. We then introduced subtype alterations for
four subtypes from [4] (as described in section Simulta-
neous analysis of alterations and cancer subtypes). Breast
cancers are traditionally classified into multiple sub-
types based on mRNA expression. Here we analyze four
subtypes: luminal A, luminal B, basal-like, and HER2-
enriched.We ran CoMEt on a BRCA dataset that included

sample subtype classifications with k = 4 and t = 4 (the
number of subtypes).
CoMEt identified three subtype-specific modules and

three modules with mutated genes (Additional file 2:
Table S7 and Fig. 6(b)) in the marginal probability
graph (δ = 0.287). The first module shows the strong
association between amplification of CCND1 and the
luminal B subtype as previously reported [45]. Similarly,
the third module shows the strong association between
ERBB2 amplification and the HER2 (ERRB2)-enriched
subtype.
The second module shows a complicated relationship

between: (1) subtype-associated alterations in the lumi-
nal A and basal-like subtypes, and (2) mutual exclusivity
resulting from alterations in the same pathway(s). This
module contains five sets of genes (highlighted in orange
in Fig. 6(b)) in the highest scoring collection M output
by CoMEt. Consistent with TCGA study [4], we find that
CDH1, AKT1, and PIK3CA are associated with the lumi-
nal A subtype, and they form a set in the CoMEt output.
Similarly, TP53 and amplification of chromosome region
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4q13.3 are associated with the basal-like subtype, and they
also form a set in the CoMEt output. Two of the other
sets contains genes in the same pathway. PTEN is a known
inhibitor of PIK3CA, explaining the observed exclusivity
between PTEN deletion and PIK3CA mutation. More-
over,MCL1,MAP3K1,AKT1 are all part of the PI(3)K/Akt
signaling pathway. Together, these sets contain five genes
that are annotated as part of the PI(3)K/Akt signaling
pathway in TCGA study [4] (red circles in Fig. 6(b)).
The final set in this module includes mutations in the

genes TP53, CDH1, GATA3, and CTCF. These four genes
are altered in 54.83 % (278/507) of the BRCA samples.
TP53 is a member of the p53 signaling pathway, while
CDH1, GATA3, and CTCF all have been reported as
potential driver genes in breast cancer. CDH1 is a tumor
supressor that is well-known to play multiple roles in can-
cer [46], including invasion and proliferation in breast
cancer [47]. GATA3 is a transcription factor that has long
been known to be involved in breast cancer tumorigene-
sis [48]. Recently, GATA3 has been reported to promote
differentiation, suppress metastasis, and alter the tumor
microenvironment in breast cancer [49]. As noted by
Leiserson et al. [21], GATA3 has also been reported to
suppress tumor metastases through inhibition of CDH1
promoters [50], which suggests that the mutations in
GATA3 are an alternate way to downregulate CDH1 and
may explain the exclusivity of the mutations in GATA3
and CDH1. Moreover, GATA3 is enriched for mutations
in both luminal A and luminal B; that is, 32 of the 54
mutations in GATA3 occur in luminal A (P = 0.0207)
and 19 of the 54 mutations in GATA3 occur in luminal B
(P = 0.065). This might suggest that GATA3 mutations
mainly occur in patients with luminal breast cancer.CTCF
neighbors CDH1 on chromosome 16q22.1 and has been
reported with CDH1 to be a tumor suppressor in breast
cancer [51, 52]. Interestingly, both CDH1 and CTCF have
most of their mutations in samples of the luminal A sub-
type. CDH1 is enriched for mutations in luminal A (as
reported in [4]) and 9 of the 13 mutations in CTCF occur
in luminal A (P = 0.0891), suggesting that these two genes
are in a pathway specifically targeted in luminal A. Fur-
thermore, 4 of the 9 mutations in CTCF in luminal A are
missense mutations in zinc finger domains, suggesting a
possible functional role for these mutations [53].
Together, these results demonstrate CoMEt’s ability

to simultaneously identify alterations that are mutually
exclusive due to interactions between genes in pathways
or due to subtype-specific alterations. This allows a more
refined interpretation of mutually exclusive alterations
than simple pairwise analyses.

Intracranial germ tumors To investigate CoMEt’s per-
formance on a smaller dataset that is less intensively
studied than TCGA datasets, we ran CoMEt on a dataset

of somatic and germline mutations in intracranial germ
cell tumors (IGCTs) from [30]. This dataset consists of
somatic single nucleotide variants and indels in 163 genes
from 53 patients (combining both the discovery and val-
idation cohorts). Given the small size of this dataset,
we first ran CoMEt to identify t = 1 set of k = 3
genes (Additional file 2: Table S8). CoMEt found that the
alterations in the set of k = 3 genes KIT (16 muta-
tions), KRAS (9), and NRAS (3) were the most exclusive
(� = 0.002). Wang et al. [30] identified this triple using
Fisher’s exact test comparing mutations KIT with the
union of mutations in KRAS and NRAS (P = 0.018).
Notably, the exact test gives the triple a more significant
P-value. Mutual exclusivity between these three genes is
consistent with the RAS genes being downstream of KIT
in the signaling receptor tyrosine kinase (RTK) signaling
pathway.
The top-rankedKRAS,NRAS,KIT triple was closely fol-

lowed by several other gene sets including KIT, KRAS,
and a third gene (FLT3, � = 0.004; KDM2A, � =
0.004; LAMA4, � = 0.004; SPRY4, � = 0.004). Notably,
KIT and FLT3 (2 mutations) are both receptor tyrosine
kinases (RTKs); the mutual exclusivity of their muta-
tions suggests that FLT3mutations may substitute for KIT
mutations in some samples. In addition, SPRY4 is a neg-
ative regulator of RAS signaling and was recently shown
to inhibit RAS signaling in AML [54]. SPRY4 was not
discussed in the Wang et al. study, and thus is a novel
discovery by CoMEt. Intriguingly, the observed mutual
exclusivity that we see in the high-scoring gene triples
from CoMEt (Additional file 2: Table S8) are similar to
relationships seen between RTK and RAS signaling in
AML [3, 54].
CoMEt summarized the mutually exclusive sets into

two statistically significant modules (P < 0.01). The first
module includes KIT, KRAS, NRAS, TP53, and LAMA4
(Additional file 1: Figure S5), which are collectively
mutated in 62 % (33) of the 53 patients. All five of these
genes were identified as containing significantly recur-
rent mutations by Wang et al. The second module con-
tains perfectly exclusive mutations in JMJD1C and CBL,
which are mutated in 30 % (16) of the 53 patients. CBL
is the third most somatically mutated gene in the Wang
et al. study, and Wang et al. described a role for CBL
as a negative regulator of RTKs, including KIT. However,
mutations in CBL and KIT are not significantly exclusive
(P = � = 0.253). This is because CBL is mutated in only
six samples, one of which also has a mutation in KIT. Fur-
thermore, the exclusivity between mutations in the gene
triple, KIT, KRAS, and CBL, is less significant (� = 0.023)
than the mutations in the gene triple, KIT, KRAS, and
NRAS (� = 0.002). Interestingly, all the mutations in
JMJD1C are germline variants (Wang et al. noted a signifi-
cant enrichment of germline variants in JMJD1C). Thus,
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CoMEt identified mutual exclusivity between germline
mutations in JMJD1C and somatic mutations in CBL.
We further investigated these modules by running

CoMEt with parameters α = 3, t = 2, k = 3 in
order to to identify multiple gene sets simultaneously
(Additional file 2: Table S9). The highest scoring col-
lections included KIT and KRAS in one gene set, and
JMJD1C and CBL in the other. This suggests that the
mutations in these two pairs of genes co-occur, and indeed
6 samples have a mutation in either JMJD1C or CBL and
either KIT or KRAS (co-occurrence P = 0.28 by Fisher’s
exact test). With only 53 samples in this dataset, it is dif-
ficult to identify all of the subtle relationships between
mutual exclusivity and co-occurrence in larger sets of
genes. Nevertheless, these results show the advantages of
CoMEt analysis over pairwise tests of mutual exclusivity.

Comparisons to other methods on real data
We compared CoMEt to the Multi-Dendrix [21] and
mutex [24] algorithms on the TCGA GBM dataset from
Leiserson et al. [21] and the TCGA AML [3] dataset.
We did not compare on the TCGA BRCA or STAD
datasets because CoMEt analyzes subtype-specific muta-
tions, while Multi-Dendrix and mutex do not. We also
provide a separate comparison to the muex algorithm [23]
on GBM data in Additional file 1: Results, as muex does
not identify multiple sets of alterations simultaneously.
We ran Multi-Dendrix and mutex with default parame-
ters, except that we set the maximum size of the mutex
result groups to 4. We compared the modules output by
CoMEt with the consensus output by Multi-Dendrix and
the default output of mutex.We list themodules identified
by Multi-Dendrix and mutex in Additional file 2: Tables
S10 and S11.

Glioblastoma multiforme (GBM) We compared Co-
MEt’s results to the consensus modules reported by
Leiserson et al. with Multi-Dendrix [21] on the TCGA
GBM dataset [1] from Leiserson et al. (Additional file
2: Table S10(a)). Both CoMEt and Multi-Dendrix iden-
tify modules overlapping the Rb, p53, and PI(3)K signal-
ing pathways. However, there are several key differences.
First, CoMEt correctly places CDKN2A in a module with
both the Rb and p53 signaling pathways, consistent with
the figure in the TCGAGBM publication [1], while Multi-
Dendrix does not. Second, in the module overlapping
the PI(3)K pathway, CoMEt includes NF1 and amplifica-
tions in EGFR, the latter alteration not analyzed in the
Multi-Dendrix publication [21].
We performed two comparisons with mutex. First, we

ran mutex without an input signaling network. Mutex
reported a single connected component with 125 genes
(Additional file 1: Figure S6 and Additional file 2: Table

S11(a)). Although this component overlaps the four sig-
naling pathways mentioned in the TCGA GBM paper
[1], too many genes are included due to pairwise exclu-
sivity with individual genes in the well-known signaling
pathways. This makes it difficult to interpret the results.
Next, we ran mutex with its default input signaling net-
work to see whether limiting the search space would
improve the mutex results (Additional file 1: Figure S7 and
Additional file 2: Table S11(b)). Again, mutex reported a
single connected component, this time with 16 genes. The
component contains multiple mutually exclusive relation-
ships also reported by CoMEt (for example, exclusivity
between mutations in CDK4, RB1, and CDKN2A), but
the CoMEt results are much easier to interpret because
they include multiple modules. Even without the prior
knowledge of protein interactions, the CoMEt results are
arguably superior to those of mutex.
The comparison between CoMEt and mutex demon-

strates several key advantages of our approach. First,
although mutex’s results were indeed improved when
using the signaling network, the massive differences
between mutex’s results with and without the network
indicates that mutex relies heavily on the network for
prior knowledge. By not using prior knowledge, CoMEt
can identify more novel combinations of mutations. Sec-
ond, mutex’s reliance on the signaling network makes it
more difficult for it to handle different types of aberrations
compared to CoMEt. This is because when using a signal-
ing network, aberrations must be mapped to single genes.
But this is typically difficult for copy number aberrations
that span a large region containing many genes. Map-
ping these aberrations to a signaling network is a difficult
computational problem, and may obscure the underlying
exclusivity between these copy number aberrations and
other alterations. In contrast, CoMEt handles any types of
aberrations as separate entries in the alteration matrix.

Acute myeloid leukemia (AML) We ran Multi-Dendrix
and mutex on the TCGA AML dataset [3]. We did not
run mutex with a signaling network because many of the
alterations in the AML dataset are for groups of genes (for
example, protein tyrosine phosphotases; see [3]). Multi-
Dendrix reports a single consensus module that includes
19 genes (Additional file 1: Figure S8 and Additional file 2:
Table S10(b)), and mutex identifies a connected com-
ponent with 17 genes (Additional file 1: Figure S9 and
Additional file 2: Table S11(c)). The size and complicated
topology of these results make them difficult to inter-
pret, especially compared to the CoMEt results, which
include four different modules with 3 to 7 alterations
each (Fig. 4). However, it is clear that while both Multi-
Dendrix and mutex identify mutually exclusive mutations
also identified by CoMEt (for example, mutual exclusivity
between mutations in PML-RARα, NPM1, and RUNX1),
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they also miss key relationships (for example, exclusiv-
ity of mutations between TET2, IDH2, and the protein
tyrosine phosphatase group).

Robustness of CoMEt results on real data
Bootstrapping We used a bootstrapping approach to
determine the robustness of the results from CoMEt. We
sampled with replacement from the TCGA GBM dataset
from Leiserson et al. [21] to generate resampled datasets.
For each resampled dataset, we ran CoMEt and compared
the output modules to the modules obtained on the whole
dataset. We recorded the number of genes in common
and the number of additional genes found by CoMEt in
the resampled datasets (Additional file 1: Figure S10(a)).
CoMEt recovered an average of 11 from the 17 genes in
the modules from the whole dataset, and found an aver-
age of 8 additional genes. The genes in the most exclusive
triples were recovered the most often (Additional file 1:
Figure S11(a)): CDKN2A(D)-TP53-MDM2(A) (at least
68 % of datasets), CDKN2A(D)-CDK4(A)-RB1 (84 %), and
PTEN-PTEN(D)-IDH1 (88 %).

Downsampling We also compared the CoMEt results
on TCGA GBM dataset from Leiserson et al. [21] to
the results obtained with only half the samples from this
dataset. We created 25 datasets, each containing a ran-
dom selection of 131 (50 %) of the samples. For each
50 % dataset, we ran CoMEt and compared the output
modules to the modules obtained on the whole dataset.
We recorded the number of genes in common and the
number of additional genes found by CoMEt in the resam-
pled datasets (Additional file 1: Figure S10(b)). Across
the 25 datasets, CoMEt recovered an average of 11 from
the 17 genes in the modules from the whole dataset, and
found an average of 7 additional genes. We also com-
puted how often each of the genes and relationships found
by CoMEt on the whole dataset were found in the 50 %
down-sampled datasets. CoMEt recovered the pairs in
the CDK4-RB1-CDKN2A triple 84 % of the time, and
the pairs in the TP53-MDM2-CDKN2A and the PTEN-
PTEN(D)-IDH1 triples 48 % of the time (Additional file 1:
Figure S11(b)). This demonstrates that the results of
CoMEt are fairly robust to changes in the number of
samples. However, the well-known cancer pathways are
found less frequently than in the bootstrapping results
above, demonstrating that robust detection of mutual
exclusivity does require a sufficient number of samples.
Further theoretical analyses of the number of samples
required to detect mutually exclusive sets are reported
in [55].

Conclusions
We introduce the CoMEt algorithm for identifying col-
lections of mutually exclusive alterations in cancer de

novo, that is, with no prior biological knowledge. CoMEt
uses a novel statistical score for exclusive alterations that
conditions on the frequency of each alteration and thus
can detect exclusivity of rare mutations. CoMEt over-
comes large computational challenges in computing the
score using a new algorithm for contingency table anal-
ysis, and in optimizing the score in genome-scale data
using the first Markov chain Monte Carlo (MCMC)
algorithm for identifying collections of multiple sets of
exclusive alterations.
We demonstrate that CoMEt is superior to earlier de

novomethods — Dendrix [16], muex [23], Multi-Dendrix
[21], and mutex [24] — on simulated and real data. We
then apply CoMEt to large mutation datasets from mul-
tiple TCGA cancer types [1, 3, 4, 6]. On each dataset,
CoMEt identifies significantly exclusive collections of
alterations that overlap well-known cancer pathways and
also implicates novel cancer genes. In addition, CoMEt
illustrates subtle relationships between mutual exclusivity
resulting from cancer subtypes and exclusivity resulting
from pathways or protein interactions. These findings
provide testable hypotheses for further downstream anal-
ysis or experimental validation.
The input to CoMEt is a matrix of binary alterations,

and thus can be used to analyze a variety of alter-
ations including point mutations and indels, copy number
aberrations (amplifications and deletions) and complex
rearrangements, splice-site mutations, gene fusions, and
subtype annotations. CoMEt may be useful in the analysis
of other types of alterations, such as germline variants.
Another application for CoMEt is pan-cancer

analysis, such as the recently published TCGA study
[5] and the upcoming ICGC Pan-Cancer Project. Since
pan-cancer datasets have many cancer-type-specific
alterations, CoMEt’s ability to simultaneously analyze
type-specific and other types of exclusive alterations
should prove useful for this analysis. Finally, we anticipate
that the novel tail enumeration strategy used in CoMEt
may be of broader interest, both for examining mutual
exclusivity in other datasets, including non-biological
data, as well as for adapting for other types of exact
statistics.

Materials andmethods
CoMEt algorithm
We consider a set ofm alterationsmeasured in n samples.
An alteration can be a variety of different genomic, tran-
scriptomic, or epigenomic changes measured in a cancer
sample; e.g. the somatic mutation of gene, a mutation in
a particular amino acid residue (such as the V600E muta-
tions in the BRAF gene that are common in colorectal and
other cancers [56]), or an epigenetic change such as hyper-
methylation of a promoter. We assume that alterations
are binary: in each sample, an alteration either occurs or



Leiserson et al. Genome Biology  (2015) 16:160 Page 13 of 20

does not occur. We represent the status of m measured
alterations in n samples with an m × n binary alteration
matrix A = [

aij
]
, where aij = 1 if alteration i occurs

in sample j, and aij = 0 otherwise. We define a set of k
measured alterations as an n × k submatrix M. Our goal
is to identify a collection M = (M1,M2, . . . ,Mt) of one
or more sets of mutually exclusive alterations across the
n samples. We introduce the Combinations of Mutually
Exclusive Alterations (CoMEt) algorithm for this purpose
(see Fig. 2).

Scoring mutual exclusivity CoMEt uses a novel statis-
tical score based on an exact test for mutual exclusivity.
Figure 1 motivates the development of the new score,
showing two sets M and M′, each with four alterations.
The alterations in both sets are perfectly exclusive (no
sample has more than one alteration), and the total num-
ber of altered samples is the same. The Dendrix weight
functionW (M) introduced in [16] (and used in later pub-
lications [19–21]) is defined as the coverage, the number
of samples with at least one mutation in M, minus the
coverage overlap, the number of samples with more than
one mutation in M. In this case, W (M) = W (M′). How-
ever, given the frequencies of each alteration, we are more
surprised to observe mutual exclusivity among alterations
in the set M′, which are each altered in 7 % of sam-
ples, than we are to observe mutual exclusivity among the
alterations in set M, where a single alteration has very
high frequency (25 %) and three alterations have rela-
tively low frequency (< 2 %). Sets like M are common in
many cancer datasets where highly recurrent alterations
(such as mutations in TP53 or amplification of EGFR)
occur and can be combined with low frequency, spurious
alterations.
We first describe a statistical score �(M) for a tuple

M = (m1, . . . ,mk) of alterations. The score measures the
surprise of the observed exclusivity of these alterations
conditional on the rate of occurrence of each alteration.
Since these rates are generally unknown (for example,
the background mutation rate for single nucleotide muta-
tions varies greatly across genes and samples [57]), we
use the exact distribution obtained from the observed
data as the null distribution. Under this distribution, the
status of the k alterations in n samples is described by
selecting uniformly a k × m binary alteration matrix B
with the constraint that the number of 1’s in row i of
B equals the number of 1’s in row mi of the alteration
matrix A. This distribution is equivalent to the sampling
distribution on 2 × 2 × · · · × 2 = 2k contingency tables
under the hypergeometric distribution, where dimension
i of the table gives the cross-classification of the number
of samples where alteration i occurs or not. For exam-
ple, three alterations are described by a 2 × 2 × 2 table

with margins equal to the frequency of each alteration
(Fig. 1(b)).
We introduce notation to describe the statistical test.

Given a setM of alterations, let x+
(j) be the number of sam-

ples where alteration mj occurs. It follows that n − x+
(j) is

the number of samples wheremj does not occur. Similarly,
for v ⊆ [k]= {1, . . . , k}, let xv denote the number of sam-
ples where alterations only occur in mv. The values xv for
all v ⊆ [k] give the entries of a 2k contingency table XM

with fixed margins x+ =
(
x+
(1), . . . , x

+
(k)

)
. Thus, the prob-

ability of observing a 2k contingency table XM with fixed
margins x+ and whose sum of entries equals n follows the
multivariate hypergeometric distribution

pXM = Pr(XM|x+, k, n) =
∏k

j=1 x
+
(j)!

(
n − x+

(j)

)
!

(n! )k−1 ∏
v⊆[k] xv!

. (2)

To characterize the mutual exclusivity of alterations in a
contingency table, we define the test statistic as the sum
of the entries in the contingency table where exactly one
alteration occurs, that is, T(XM) = ∑k

j=1 x{j}, where x{j} is
the number of samples where alterations occur only inmj.
We compute a P-value for the observed value T(XM) of
the test statistic as the tail probability of observing tables
with the samemargins whose exclusivity is at least as large
as observed:

Pr
(
T ≥ T(XM)|x+, k, n

) =
∑

Y∈T (x+):
T(Y)≥T(XM)

Pr
(
Y|x+, k, n

)
,

(3)

where T (x+) is the set of 2k contingency tables with
margins x+. Note that for k = 2, the test statistic
T(XM) is equivalent to a one-sided Fisher’s exact test.
2 × 2 contingency tables have only one degree of free-
dom, and thus there are essentially only two ways in
which the corresponding pair of random variables can
be non-independent: having too many co-occurrences or
too much exclusivity (Fig. 1(b)). However, 2k tables have
2k − k − 1 degrees of freedom and there are many ways
in which the corresponding random variables can be non-
independent. The T(XM) test statistic measures whether
the alterations are surprisingly mutually exclusive, rather
than non-independent in some other way.
We define the score �(M) using the mid P-value [58],

which is the the average of the probability of observing
a value at least as extreme as the observed value and
observing a value more extreme than observed:

�(M) = 1
2
(Pr(T ≥ T(XM)|x+, k, n) (4)

+Pr(T > T(XM)|x+, k, n)).
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We use the mid P-value because the tail probability
from exact tests is typically overly conservative, due to
the discreteness of the exact distribution [58]. Finally,
since cancer is driven by mutations in multiple path-
ways [15], we define a score �(M) for a collection M =
(M1,M2, . . . ,Mt) of t gene sets as �(M) = ∏t

i=1 �(Mi).
The product results from our assumption that under the
null hypothesis mutations in different setsMi are independent.

Computing the mutual exclusivity score�(M)

To compute the mutual exclusivity score �(M), one must
compute (3). This requires computing the probability of
all tables Y with the same margins as XM and with exclu-
sivity statistic T(Y) at least as large as the observed value
T(XM). Unfortunately, no algorithm is known to enu-
merate such tables. In general the problem of counting
contingency tables with fixedmargins is #P-complete [59],
and thus it is unlikely they can be enumerated efficiently.
Several methods have been proposed to solve the prob-
lem of counting contingency tables, including using the
network algorithm [60, 61] for Fisher’s exact test in r × c
contingency tables, or extensions to consider the joint
effect of two contingency tables (that is, 2 × r × c) [62].
Branch and bound heuristics have also been used in some
specialized cases [63]. However, these approaches still
consider at most three-dimensional contingency tables,
and the problem of enumerating 2k tables does not seem
to have been considered. Even for small k the enumera-
tion problem is intractable: the number of 2k tables with
fixedmargins grows exponentially in k. The work [64] pre-
sented an exhaustive algorithm to enumerate all 23 and
24 contingency tables with fixed margins, demonstrating
for example that for n = 36, there are > 100 million
24 tables. Randomized and approximate counting meth-
ods for contingency tables have been developed (see, for
example, [65, 66] and references therein), although these
generally do not provide a rigorous guarantee on the error
in the approximation.
We derive a novel tail enumeration algorithm to effi-

ciently compute the tail probability in Eq. (3) for tables
with high values of the exclusivity statistic T. The moti-
vation for our approach is that the sets M of interest will
have extremely high values of T(XM), near the maximum
possible value. For example, in the degenerate case of per-
fect exclusivity (no sample with more than one alteration
in M) there are no more extreme tables to enumerate,
and the algorithm needs only to evaluate the hypergeo-
metric probability of Eq. (2) for this single table. Thus,
if we enumerate tables starting from the highest possi-
ble values for T, we can obtain highly accurate P-values
for the most interesting cases. Furthermore, we can stop
the enumeration procedure when the P-value becomes
sufficiently large and use approximations for these larger
P-values (see below).

Algorithm 1 is the tail enumeration strategy to enumer-
ate contingency tables in approximate order from most
to least exclusive. Briefly, let C = (v ⊆ [k] : |v| ≥ 2) be
the vector of co-occurring (not exclusive) cells. The basic
strategy employed by Algorithm 1 is to generate a table Y
that is more exclusive than XM (that is, T(Y) > T(XM)

by iterating through the possible values of each cell in C,
using the following facts:

• When all values in C are fixed, the other values in the
contingency table are uniquely determined (see
Procedure COMPLETECONTTBL in Algorithm 1).

• We can set and update exact upper and lower bounds
for each cell in C. The values of each cell are bounded
by two values (lines 10–11 in TAILENUMERATION):
the first is how many more co-occurrences are
allowed in the current table (TREM) before Y is less
exclusive than XM ; the second is given by the
constrained marginal (MarRem) for that variable in
XM .

We find that Algorithm 1 performs well on real data,
evaluating the test statistic T(XM) in a few seconds for
sets with k ≤ 7 that have a small number of co-
occurrences.

Binomial approximation. We can approximate the dis-
tribution of the exclusivity statistic using the binomial
distribution, which is a well-known approximation of the
hypergeometric distribution. Under the null hypothesis
that alterations occur independently in the samples, let
pe = ∑k

j=1
x(j)
n be the probability of an exclusive alter-

ation; that is, a sample contains exactly one alteration
in M. Given a set M of alterations M, then the proba-
bility of observing T(XM) or more exclusive alterations
in n samples is given by the binomial tail probability
1 − ∑T(X)−1

i=0
(n
i
)
pie(1 − pe)n−i.

We find that the binomial provides a good approxima-
tion of the exact test P-value for setsM with a large num-
ber of co-occurring mutations, and consequently a higher
P-value (see Additional file 1: Figure S12). Conveniently,
these are precisely the cases where the tail enumeration
algorithm is slow.

Permutation approximation. Another approximation
to the exact test is obtained using a permutation test. We
sample L tables with fixed margins uniformly from the
space of all tables and compute the proportion of such
tables whose exclusivity value T exceeds the observed
value T(XM). Of course, sampling uniformly from the set
of tables with fixed margins is not straightforward. We
use anMCMC approach as described in [18], although we
do not fix the number of alterations per sample. Interest-
ingly, while the MEMo algorithm [18] uses a permutation
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Algorithm 1 Tail enumeration for any k > 1
Input: 2k contingency table X.
Output: Set S of contingency tables at least as exclusive as X: S = Y ∈ T (x+) : T(Y) ≥ T(X).
1: S ← {}
2: N ← 2k
3: C ←SORTED({v ⊆ [k] : |v| ≥ 2}) � Sorted descending vector of co-occurring cells
4: yv ← 0, ∀v ⊆ [k]
5: Tmax ← ∑k

i=1 x
+
(i) � Sum of alteration frequencies

6: TAILENUMERATION(Y,C,Tmax − T(X))
7: procedure TAILENUMERATION(Y,C,TREM) � TREM : count of allowed co-occurrences remaining
8: v ← HEAD(C)
9: if v 
= NULL then

10: MarRem ← min
i∈v

{
y+
i
} � Minimum margin remaining

11: for
(
i ← L, . . . , min

{
MarRem, �TREM|v| �

})
do

12: Y′ ← COPY(Y)

13: y′
v ← i � Set value of cell v of Y′ to i

14: TAILENUMERATION(Y′,TAIL(C),TREM − |v| × i)
15: else � If all “co-occurring” cells have been set
16: S = S ∪ {COMPLETECONTTBL(Y)}
17: procedure COMPLETECONTTBL(Y) � Fill in remainder of contingency table x′
18: for v ⊆ [k] : |v| = 1 do � Iterate over exclusive cells
19: yv ← x+

v − y+
v

20: Y(0,0,...,0) ← n − ∑
y∈Y y � Fill in cell with no alterations

21: return Y

test, the test statistic is the coverage �(M), rather than the
exclusivity T(M) used in CoMEt. While these are equiv-
alent when k = 2 (since there is only one degree of
freedom), they produce different results for k > 2. See
further discussion in the section Comparison to MEMo.
In our implementation, we use the exact test, binomial

approximation, or permutation approximation to com-
pute �(M) according to the following procedure. First,
we calculate the P-value from the binomial approxima-
tion and compute the number of co-occurring alterations
in M. If the number of co-occurring alterations is higher
than a fixed threshold κ or the binomial P-value is larger
than a fixed value ψ , we set �(M) to be the binomial
P-value. Otherwise, we perform the tail enumeration pro-
cedure to compute the exact test P-value, stopping the
enumeration if the accumulated tail probability becomes
larger than a threshold ε. If we stop, then we compute the
permutation approximation with � 1

ε
� samples, such that

we expect to sample at least one table with T > T(XM).
This procedure focuses the time to perform tail enumer-
ation in those cases where high accuracy is needed for
small P-values.

Sampling collections of mutually exclusive alterations with
MCMC
Our goal is to identify a collection M of t alteration sets
with low (highly significant) values of �(M). Since it is
typically not possible to enumerate all such collections

(except for test datasets with small m, n, t, and k), we
derive a Markov Chain Monte Carlo (MCMC) approach
to sample from the space of possible collections. We
use the Metropolis-Hastings algorithm [67, 68] to derive
an MCMC algorithm to sample collections M in pro-
portion to the weight �(M)−α , where higher values of
α increase the sampling frequency of the most mutu-
ally exclusive sets (see Additional file 1: Section Methods
for additional details). We use α = 2 except where
noted.

Choosing values for t and k
Ideally, CoMEt should be run with the largest values of
k and t that are biologically meaningful for a particular
dataset. If smaller values of k and t are best supported
by the data, the summarization procedure will demon-
strate this. We see examples of this in glioblastoma, where
the ten most significant collections identified by CoMEt
include a set with TP53, MDM2, MDM4, and one of five
other alterations (Additional file 2: Table S5).
In practice, using large values of k and t might lead to

long run times and slow convergence of the MCMC algo-
rithm, since the space of possible collections will be very
large. Thus, an alternative approach that we use to gen-
erate results is to run with small values of t and k (for
example, t = 3, 4 and k = 3, 4) and examine the resulting
marginal probability graph. If there are t or more cliques
or approximate cliques in the graph, this suggests the use
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of larger values of t and k. We used this approach to
find larger collections in the AML dataset (see details in
section CoMEt results on real cancer datasets).

Marginal probability graph
We now present a method to extract a collection of highly
exclusive alteration sets (with no prescribed size) from the
posterior distribution obtained from the MCMC algo-
rithm. Typically, there are multiple collections with sig-
nificant scores. This might occur for interesting reasons
such as different sets of alterations with similar scores or
alterations that appear in multiple mutually exclusive sets.
However, the reason might also be suboptimal parameter
selection; for example, there may be a significant set of
k = 3 alterations in the data, but running the algorithm
with k = 4 will returnmany sets with the same three genes
and a fourth “spurious” gene. To distinguish such cases, we
summarize the posterior distribution on collections using
a marginal probability graph G. For a pair (i, j) of alter-
ations, let p(i, j) denote the posterior probability that i and
j are found in the same set. We compute p(i, j) using the
samples from the MCMC algorithm (see Additional file 1:
Section Methods).
Let G = (V ,E) be a complete, undirected weighted

graph whose vertices are the alterations and where each
edge e ∈ E connects a pair of vertices u, v with weight
p(u, v). Connected subgraphs ofG with many high-weight
edges are the most exclusive alteration sets in A. We iden-
tify these most exclusive alteration sets by first removing
all edges with weight below a threshold δ (see Additional
file 1: Section Methods). Let C(δ) be the connected com-
ponents of size ≥ 2 in the resulting graph. The output of
CoMEt is the C(δ) alteration sets. We choose connected
components as the output — as opposed to some other
partition of the graph such as cliques — in order to be
able to identify other topologies such as overlapping path-
ways (alteration sets), where two sets of alterations are
connected by a cut node.

Statistical significance
While the score �(M) measures our surprise of observ-
ing exclusivity within each of the sets in M conditional
on the observed frequencies of each alteration, there is a
large number of possible collections, and thus we might
observe a high score by chance. We evaluate the statisti-
cal significance of the collectionM by comparing to a null
distribution of scores obtained on permuted alteration
matrices A with the sample and alteration frequencies
(sums of rows and columns of A) fixed [18, 69]. Let �∗
be the minimum score obtained overN permutations. We
use the collections M satisfying �(M) ≤ �∗ (thus each
such collection has P-value< 1

N ) to compute the marginal
probability graph except where noted.

Simultaneous analysis of alterations and cancer subtypes
An important confounding factor in identifying cancer
pathways de novo by analyzing exclusive alterations is that
certain alterations primarily occur in particular cancer
subtypes [38]. If we analyze a mixed set of samples with
multiple subtypes, these subtype-specific alterations will
bemutually exclusive in the data, even if they are not in the
same biological pathway. When the subtypes are known
in advance, one solution is to analyze subtypes separately;
unfortunately, this reduces sample numbers, thus reduc-
ing power to identify combinations of alterations that are
shared across subtypes. CoMEt addresses this problem by
adding one new “subtype row” to the alteration matrix
A for each subtype. This subtype row contains an alter-
ation in all samples excluding those of the given subtype.
Thus, the sets of alterations that are surprisingly exclusive
with these subtype rows are the ones primarily altered in
that subtype. Note that when running CoMEt with sub-
type rows, we do not allow multiple subtypes to be placed
in the same set. Because CoMEt simultaneously analyzes
multiple alteration sets, it can identify exclusive sets con-
taining subtype-specific alterations, general alterations, or
any combination of these.
When analyzing the cancer dataset that included sample

subtype classifications, we perform two runs of CoMEt.
First we run CoMEt on the alteration matrix A. Then
we run CoMEt on the alteration matrix with “subtype
rows” as we described. We summarize the ensemble of
statistically significant collections sampled by the MCMC
algorithm in the two CoMEt runs by normalizing and
combining the sampling frequencies of each collection
across the two runs, and then computing the marginal
probability graph on the merged collection.

Somatic mutation datasets
Acute myeloid leukemia (AML) The AML dataset con-
tains whole-exome and copy number array data in 200
AML patients from The Cancer Genome Atlas (TCGA)
[3]. Using the annotations in [3], we have categorizedmul-
tiple genes together based on expert knowledge, which
results in 9 categories including spliceosome, cohesin
complex, MLL-X fusions, other myeloid transcription fac-
tors, other epigeneticmodifiers, other tyrosine kinase, ser-
ine/threonine kinase, protein tyrosine phosphatase, and
RAS protein. More details are given in [3]. This results in
51 genes and 200 patients.

Glioblastoma multiforme (GBM) We analyzed three
GBM datasets:

1. TCGA GBM dataset from Leiserson et al. [21]. This
dataset contains whole-exome and copy number
array data in 261 GBM patients and 398 genes from
TCGA [1]. Data preparation for GBM can be found
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in [21]. Note that in section Glioblastoma
multiforme (GBM) we included amplifications in
EGFR which were not considered in [21]. Also, we
mapped deletions in FAF1 to CDKN2C, since these
genes are adjacent on chromosome 1, and CDKN2C
is the likely target of the aberration.

2. TCGA GBM dataset from Szczurek et al. [23]. This
dataset contains 83 alterations in 236 samples from
[1], including single nucleotide variants in genes
identified as significantly mutated by MutSigCV [9]
and copy number aberrations caelled by GISTIC2
[70] then restricted to those with significantly
concordant gene expression (higher for
amplifications, lower for deletions).

3. TCGA GBM dataset from the TCGA Pan-Cancer
project [5]. We analyzed the non-silent mutations
(single nucleotide variants and small indels) from the
mutation annotation format (MAF) file and focal
copy number aberrations from GISTIC2 output. This
dataset contains 509 genes in 291 samples. Moreover,
we removed genes with non-silent mutations in
< 1 % of samples and with mutations in > 2.5 % of
samples with MutSigCV [9] q-value > 0.1. This
dataset contains 406 genes in 291 samples.

Gastric cancer (STAD) We analyzed the non-silent
mutations (single nucleotide variants and small indels)
from the MAF file in 289 gastric cancer samples. We also
included focal driver copy number aberrations from GIS-
TIC2 output via Firehose, fusion genes, rearrangements
and splicing events [6]. We removed 74 hypermutators
and genes with non-silent mutations in< 2.5 % of samples
and with mutations in > 3 % of samples with MutSigCV
[9] q-value > 0.25. This process results in 217 STAD
patients and 397 genes with mutations. We considered
four subtypes identified by TCGA [6], including tumors
positive for the Epstein-Barr virus (EBV), tumors with
high microsatellite instability (MSI), genomically stable
(GS) tumors with a low level of somatic copy number aber-
rations, and chromosomally unstable (CIN) tumors with a
high level of somatic copy number aberrations that were
called. We do not analyze the MSI subtype since samples
in MSI are hypermutated.

Breast cancer (BRCA) The BRCA dataset contains
whole-exome and copy number array data in 507 BRCA
patients and 375 genes from TCGA [4]. Data preparation
for BRCA can be found in [21]. We downloaded subtype
information of BRCA fromTCGA [4].We considered four
subtypes — basal-like, HER2-enriched, luminal A, and
luminal B — that each contain at least 10 % of the total
samples.
We list the barcodes of the TCGA samples in each of the

datasets in Additional file 2: Table S12.

Comparison to MEMo
The MEMo algorithm [18] uses a permutation test to
approximate the probability of observing exclusive muta-
tions in a gene set M with contingency table X. The
permutation test works by permuting the rows in A cor-
responding to the genes inM, and then determining if the
permutation has a higher test statistic thanM. This is then
repeated N times to obtain an empirical P-value.
The crucial difference between MEMo and CoMEt is

that MEMo uses the coverage �(M) as the test statis-
tic, while CoMEt uses the test statistic T(X). (For ease of
exposition, let �(X) also be defined as the coverage for
a contingency table X). The reasoning behind using the
coverage as the test statistic is the idea that a gene set
with mutually exclusive alterations will also have the high-
est coverage possible, for fixed frequencies of individual
alterations. While this is true for pairs of genes (which
follows from the fact that 2 × 2 contingency tables have
only one degree of freedom), when one examines three
or more genes, maximizing coverage is not the same as
maximizing exclusivity. In fact, we can see that for a given
contingency table X it is possible to find another contin-
gency table X′ with the same margins (gene frequencies)
as X, but that has:

1. Higher exclusivity (T(X′) > T(X)) and lower
coverage (�(X′) < �(X)), which could result in a
deflated P-value for MEMo.

2. Lower exclusivity (T(X′) < T(X)) but the same
coverage (�(X′) = �(X)), which would result in an
inflated P-value for MEMo.2

See examples of both cases in Additional file 1: Figure S13.

Comparison of CoMEt andmutex methods
The recently introduced mutex [24] algorithm uses an
iterative version of the one-sided Fisher’s exact test to
evaluate combinations of mutually exclusive alterations.
Thus, the tests used in mutex and CoMEt are identical
when evaluating the exclusivity of a pair of alterations.
However, for k > 2 alterations, mutex and CoMEt are
quite different. CoMEt directly assesses the exclusivity of a
2k contingency table. In contrast, mutex computes a series
of 2 × 2 tests examining the exclusivity of alterations in
one gene compared to the alterations in all k − 1 other
genes in the set. For a set with k > 2 genes, mutex returns
the least significant (highest) P-value of these 2 × 2 tests.
While mutex’s method is faster to compute than CoMEt,
it is not as powerful at detecting mutual exclusivity in
sets of k > 2 alterations, as shown in in section Bench-
marking ofmethods for individual gene sets. Furthermore,
while mutex searches for sets with k > 2 genes using a
greedy approach to gradually expand mutually exclusive
pairs, CoMEt uses anMCMC algorithm to simultaneously
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sample a collection of mutually exclusive sets. Searching
formultiple sets simultaneously was shown to have advan-
tages over the greedy approach in [21]. Finally, CoMEt
summarizes the posterior distribution of the significant
collections. Typically, CoMEt output contains multiple
distinct modules. In contrast, mutex tends to produce
results with many more genes, requiring prior knowledge
in the form of an interaction network to reduce the search
space.

Comparison of methods with and without mutation
filtering
Because CoMEt conditions on the observed alteration fre-
quencies, we argue that it is less biased towards genes
that have high frequencies of passengermutations, such as
long genes. To illustrate this point, we compared CoMEt,
Multi-Dendrix, and mutex on glioblastoma (GBM) data
with and without the MutSigCV [9] filter that requires
that frequently mutated genes have low MutSigCV
q-values (see section Somatic mutation datasets for
details). We ran CoMEt with k = 4 and t = 4, ran
Multi-Dendrix with its default parameters of t ranging
from 2 to 4 and k ranging from 3 to 5, and ran mutex
with default parameters except that we set the maxi-
mum size of a result group to 4 and did not include
a signaling network. We used mutation data from the
TCGA Pan-Cancer dataset [5] which contains whole-
exome and copy number array data, and downloaded
MutSigCV output from the corresponding Synapse repos-
itory (syn2812925). We used different TCGA GBM
datasets here than in section Glioblastoma multiforme
(GBM) because of the availability of MutSigCV results on

the Pan-Cancer dataset. For each cancer, we generated
two datasets. In one dataset, we applied a MutSigCV filter
to remove highly altered genes (altered in > 2.5 % of sam-
ples) but insignificant by MutSigCV (q-value < 0.1). The
second dataset did not include any MutSigCV filter.
We found that CoMEt identifies the key combinations

of mutated genes with or without the mutation filtering
on the GBM dataset (Table 1 and Additional file 1: Figure
S14(a)). These key combinations include genes from the
Rb signaling (CDK4, RB1,CDKN2A), p53 signaling (TP53,
MDM2), and PI(3)K signaling (PIK3CA, PTEN, IDH1)
pathways, as well as EGFR and NF1. The CoMEt results
were also largely stable: the core members of each module
were unchanged, while four genes with less clear roles
in GBM were lost and four genes were gained when we
removed the mutation filtering.
In contrast, Multi-Dendrix and mutex results change

more substantially, with and without mutation filtering.
The Multi-Dendrix modules are shuffled considerably,
including the group of key GBM cancer genes (Table 1 and
Additional file 1: Figure S14(b)). In addition, six genes are
lost and seven genes are gained after we remove muta-
tion filtering. Furthermore, many of the genes that are
added without mutation filtering are known to have ele-
vated mutation rates, including TTN,MUC16, andMUC4
[9]. This demonstrates a deficiency of the Dendrix weight
function, also used by Multi-Dendrix, in that high cover-
age (frequently altered genes) may dominate over mutual
exclusivity. The modules output by mutex also change
considerably with and without mutation filtering (Table 1
and Additional file 1: Figure S14(c)). Without mutation
filtering, the number and composition of each module

Table 1 Comparison of CoMEt, Multi-Dendrix, and mutex on the TCGA GBM dataset from the TCGA Pan-Cancer project [5] with and
without mutation filtering. The consensus modules output by each algorithm are shown for the dataset with and without mutation
filtering. The (A) and (D) following the gene names indicate amplifications and deletions, respectively

Algorithm Without filtering With filtering

CoMEt

1. IDH1, PIK3CA, PTEN, KSR2 1. IDH1, PIK3CA, PTEN,DNAH11

2.MDM2(A), RPL5, STAG2, TP53 2.MDM2(A), RPL5, STAG2, TP53, SEMA3E

3. EGFR, NF1, CALCR, PCDHA3, PPP1R3A 3. EGFR, NF1, PKHD1, THSD7B

4. CDK4(A), CDKN2A(D), PTPN11, RB1, ZNF407 4. CDK4(A), CDKN2A(D), PTPN11, RB1, ZNF407

Multi-Dendrix

1. CNTNAP2, CDKN2A(D), CDK4(A), EGFR, IDH1, MDM2(A),
MDM4(A), NF1, PIK3CA, PTEN, RB1, COL6A3, MAST4,
PCDHA3, PCLO, PDGFRA(A), PIK3R1

1. CNTNAP2, EGFR, IDH1, MDM2(A),MDM4(A), PTEN, TP53,
ATRX, CHD9, HRNR,MUC4,MUC16, TTN

2. CDKN2A(D), CDK4(A), NF1, RB1, FRG1B

mutex 1. CDK4(A), CDKN2A(D), EHD3, MAST4, NF1, PTPN11, RB1 1. CDK4(A), CDKN2A(D), EHD3, MAST4, MDM2(A), NF1,
PTPN11, RB1, STAG2, TP53, CACNA1S, CALCR, DGKD,
EGFR, FRG1B, PKHD1, THSD7B, ZNF407

2.MDM2(A), STAG2, TP53

Bolded genes indicate differences in output with and without mutation filtering
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change, and eight genes are added. Moreover, mutex
did not report the strong exclusive set from the PI(3)K
signaling pathway (PTEN, PIK3CA, IDH1) found by
CoMEt.

Endnotes
1We note that while Multi-Dendrix [21] and mutex

[24] can identify overlapping gene sets, this feature was
not explored in the corresponding publications.

2We have not found a case where T(X′) < T(X) and
�(X′) > �(X), and conjecture that such a case does not
exist.
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