
Flores et al. Genome Biology 2014, 15:531
http://genomebiology.com/2014/15/12/531
RESEARCH Open Access
Temporal variability is a personalized feature of
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Abstract

Background: It is now apparent that the complex microbial communities found on and in the human body vary
across individuals. What has largely been missing from previous studies is an understanding of how these
communities vary over time within individuals. To the extent to which it has been considered, it is often assumed
that temporal variability is negligible for healthy adults. Here we address this gap in understanding by profiling the
forehead, gut (fecal), palm, and tongue microbial communities in 85 adults, weekly over 3 months.

Results: We found that skin (forehead and palm) varied most in the number of taxa present, whereas gut and
tongue communities varied more in the relative abundances of taxa. Within each body habitat, there was a wide
range of temporal variability across the study population, with some individuals harboring more variable
communities than others. The best predictor of these differences in variability across individuals was microbial
diversity; individuals with more diverse gut or tongue communities were more stable in composition than
individuals with less diverse communities.

Conclusions: Longitudinal sampling of a relatively large number of individuals allowed us to observe high levels of
temporal variability in both diversity and community structure in all body habitats studied. These findings suggest
that temporal dynamics may need to be considered when attempting to link changes in microbiome structure to
changes in health status. Furthermore, our findings show that, not only is the composition of an individual’s
microbiome highly personalized, but their degree of temporal variability is also a personalized feature.
Background
The increasing recognition that commensal and mutualistic
microorganisms are necessary for many aspects of normal
human physiology has altered the traditional pathogen-
dominated view of human-bacterial interactions [1,2]. As a
result of this paradigm shift, there is a tremendous amount
of interest in understanding the factors that influence the
diversity, composition, dynamics, and function of human-
associated microbial communities. One of the primary
objectives is to leverage this understanding in order to
manage, restore, and/or exploit our microbial partners in
ways that promote human health. However, our current
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understanding of how and why these communities vary
through time is limited. Previous studies that have charac-
terized human associated microbial communities over time
have been based on relatively few individuals [3,4], intermit-
tent sampling intervals [2,5,6], single body habitats [4,7-10],
or focused on disease states [11], leaving us with an incom-
plete picture of the range of normal variability in the hu-
man microbiome. Only by conducting longitudinal studies
of large cohorts of both healthy and diseased hosts can we
begin to identify the ecological factors structuring the diver-
sity, composition, and dynamics of the human microbiome.
Here, we investigated the temporal dynamics of forehead,

gut (feces), palm, and tongue microbial communities of 85
college-age adults (Table 1) from three U.S. universities.
Samples were self-collected weekly over a 3-month period
beginning in January 2012. Bacterial and archaeal commu-
nities were characterized using high-throughput sequencing
of the variable region 4 (V4) of the 16S rRNA gene [12]. In
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Table 1 Demographic summary of study participants

Subject IDa Age (years) Gender BMI Ethnicity Samples (forehead/gut/palm/tongue) (n)

A000 21 Female 19.94 Caucasian 9/9/10/10

A003 21 Female 18.56 Caucasian 10/10/10/10

A004 22 Female 25.85 Caucasian 8/10/10/10

A007 22 Female 19.97 Caucasian/Asian 9/9/8/9

A008 20 Male 20.67 Caucasian 10/10/9/-

A009 20 Female 22.31 Caucasian 9/9/9/10

A010 20 Female ? Caucasian 10/10/8/10

A011 29 Female 19.46 Hispanic 7/8/7/8

A012 21 Female 26.61 Caucasian 10/9/10/10

A015 20 Female 24.13 Caucasian 9/9/9/9

A016 22 Female 25.75 Caucasian 8/-/7/9

A017 21 Female 33.84 Caucasian 9/9/9/9

A019 22 Female 18.29 Caucasian 9/9/9/9

A026 21 Male 22.24 Caucasian 8/8/8/8

A027 20 Female 21.79 Other 9/9/9/9

A028 23 Male 23.06 Asian/Pacific island 8/8/7/8

A029 21 Male 25.83 Caucasian 7/9/9/9

A032 21 Female 18.88 Caucasian 8/8/-/8

A033 21 Female 27.44 Caucasian 10/9/10/10

A036 20 Female 21.29 Caucasian 8/8/-/8

A037 20 Female 20.80 Hispanic 9/8/9/10

A038 21 Female ? Hispanic 8/8/8/9

A040 22 Male 23.09 Caucasian 10/9/10/10

A042 36 Male 25.40 Caucasian 9/10/10/10

A044 21 Male 26.58 Caucasian 10/10/9/9

A048 22 Female 22.14 Caucasian 10/10/10/10

A049 20 Female ? Caucasian 7/8/-/10

A050 41 Female 22.86 Caucasian 9/9/9/9

A051 20 Male 22.47 Caucasian 7/-/7/-

A052 32 Male 31.84 Hispanic 10/10/10/10

A053 23 Female 21.14 Caucasian 10/10/9/10

A056 23 Male 23.73 Caucasian 8/8/8/8

A061 ? Male ? ? 7/-/-/7

B101 24 Male 18.31 Caucasian 9/9/9/9

B102 32 ? ? caucasian 7/-/-/7

B105 ? ? ? caucasian 7/7/7/7

B106 21 Female 21.95 Caucasian 8/9/8/9

B107 19 Female 20.37 Caucasian 9/8/-/9

B108 30 Female 24.80 Asian/Pacific island 7/7/-/7

B109 24 Male 23.67 Caucasian 9/9/8/9

B110 20 Female 20.36 Caucasian 9/9/9/9

B114 21 Female 17.54 Caucasian 8/9/-/9

B117 ? Female ? Caucasian 8/7/-/8

B119 20 Male ? Caucasian -/8/-/8
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Table 1 Demographic summary of study participants (Continued)

B121 20 Female 22.86 Caucasian 9/9/8/9

B123 20 Male 25.07 Caucasian 9/8/9/9

B124 21 Female 22.15 Caucasian 9/9/-/9

B129 21 Female 18.40 Caucasian 9/8/-/9

B130 22 Female 22.67 Caucasian 8/9/-/9

B132 22 Female 16.82 Hispanic 9/9/9/9

B133 22 Male 27.89 Caucasian 9/9/8/7

B134 ? Male 21.91 Caucasian 7/-/7/7

B136 22 Female 19.22 Caucasian 8/9/7/8

B137 22 Female ? Hispanic -/7/-/7

B139 20 Female 17.75 Caucasian 9/9/-/9

B144 33 Male 25.10 Caucasian 8/8/-/8

B146 26 Female 20.60 Caucasian -/7/-/-

B147 51 Female ? Caucasian 7/7/7/-

B148 37 Male 20.08 ? 8/8/7/8

B149 55 Male 25.10 Caucasian 9/9/9/9

B150 32 Female 20.05 Caucasian/Hispanic 8/9/9/9

B153 21 Female 21.93 Caucasian 8/8/-/8

B154 21 Female 23.40 Caucasian 9/9/7/9

B155 30 Female 23.62 Caucasian 9/9/9/9

B156 ? Female ? Hispanic -/7/-/7

B157 25 Male 21.86 Caucasian 10/9/9/9

B159 21 Male 25.10 Caucasian 7/8/-/9

B160 22 Female 17.75 Asian/Pacific island 8/8/7/8

B161 21 Male 26.58 Caucasian 7/-/-/7

B164 22 Male 22.96 Caucasian 7/7/7/7

C203 23 Female 21.74 Caucasian 9/7/9/9

C204 25 Male 22.31 Caucasian 9/9/7/9

C210 20 Female 24.03 Caucasian 8/-/8/8

C212 22 Female 24.30 Caucasian 8/8/8/8

C213 18 Female 22.71 Caucasian 8/8/7/8

C214 27 Male 27.71 Caucasian 7/7/8/8

C233 19 Male 22.96 Caucasian/Hispanic 9/7/9/8

C234 18 Female 32.10 Caucasian 9/-/8/9

C236 18 Female 18.09 Caucasian -/-/-/9

C237 19 Male 18.65 Caucasian 7/7/-/-

C243 23 Male 23.63 Caucasian 8/-/8/8

C248 21 Male 20.71 Caucasian 9/8/9/8

C253 27 Female 23.21 Caucasian 8/9/9/9

C255 22 Female 27.46 Caucasian 8/9/-/9

C263 20 Male 20.09 Caucasian 7/8/8/7
aSingle-letter prefix represents the university of attendance.
Question marks denote data not provided by study participants. The last column shows the number of samples used in the time series analysis for each body
habitat from each subject. Dashes indicate that samples from that individual were not including in the analysis for that particular body habitat. For full metadata,
the reader is referred to Additional file 3.
BMI = body mass index.
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total, we generated 170,563,932 quality-filtered sequences
from 3,655 samples, with all analyses conducted on samples
rarefied to exactly 10,000 sequences per sample. To identify
potential drivers of variability, we collected demographic,
lifestyle, and hygiene data at the initiation of the sampling
period using a standardized 49-question survey (Additional
file 1). Weekly questionnaires were used to track changes
in health status, medication use, menstrual cycle for
women, and other dramatic changes in routine behavior
(Additional file 2). De-identified responses to all questions
are provided in Additional file 3.

Results and discussion
To quantify the amount of temporal variability in diversity
of each body habitat, we calculated the coefficient of vari-
ation (CV = standard deviation/mean) for three alpha di-
versity metrics (phylogenetic diversity, phylotype richness,
and Shannon index [13]) for each individual [14]. Low CV
values indicate that an individual had relatively stable
alpha diversity levels, whereas high CV values indicate
than an individual had variable levels of alpha diversity
over the 3-month study period. As evident in Figure 1a,
there was a wide range of variability within each body
habitat indicating that some individuals varied more than
others. When we compare values across body habitats, we
see that skin surfaces, particularly the palm, exhibited
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(See figure on previous page.)
Figure 2 Boxplots of unweighted (A) and weighted (B) intra-individual UniFrac distances for each body habitat. A broad range of
temporal variability in microbial community membership (A) and structure (B) was observed across body habitats and within body habitats across
individuals. Individuals are sorted by median in each plot. Green bars depict individuals who did not report antibiotic use during the study period
while blue bars indicate individuals who took antibiotics. The median values for each body habitat are shown with vertical red lines. Dotted
horizontal lines in each plot divide the study population into first and fourth quartiles and depict ‘stable’ and ‘variable’ individuals, respectively.
Non-parametric Mann-Whitney U-tests were used to determine the affect of antibiotic use on temporal variability within each body habitat.
P values are shown in each panel. Note that statistical differences were observed for each metric across body habitats (Kruskal-Wallis, P ≤0.01).
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abundance (median weighted UniFrac), was lower on the
forehead than the other body habitats (Figure 2b and
Additional file 5b), suggesting that the nature of variability
differs depending on the body habitat in question. On the
tongue and in the gut, changes in the relative abundance of
persistent taxa (that is, those taxa that are consistently
present over time) drive the temporal dynamics, whereas
temporal variability in forehead communities appears to be
driven more by the presence or absence of transient taxa
on the skin surface. For the palm, both membership and
structure appear highly dynamic, likely due to frequent
hand washing and exchange of microbes with the numer-
ous surfaces we touch on a daily basis, including our other
body parts.
Using median UniFrac values for each individual as

our metric of temporal variability in community mem-
bership (unweighted) and structure (weighted), we found
that individuals differed dramatically not only in the
composition of their microbial communities (Additional
file 6), as has been observed previously [2,5,17,18], but
also in the degree of temporal variability observed in
their microbial communities (Figure 2 and Additional
file 7). This has been previously shown in vaginal com-
munities [8], but we show here that this is a general
characteristic of microbial communities across human
body habitats. The variability of microbial communities
in one body habitat, in general, did not predict the vari-
ability of microbial communities of other body habitats.
The exception was the two skin habitats, where individ-
uals that had more variable forehead communities also
had more variable palm communities (Additional files 8
and 9). This finding suggests that the factors that con-
tribute to intra-personal temporal variability in micro-
biome composition are shared across skin habitats, but
not necessarily across other body habitats. Furthermore,
relatively few individuals exhibited a significant time-
decay relationship [19]; in general, samples collected
closer together in time did not harbor more similar
communities than those collected further apart in time
(Additional file 10). These results highlight that attempts
to predict what type of communities to expect in a given
body habitat based on data collected during the previous
week (or weeks) may be difficult for most individuals.
However, it is important to note that if we had sampled
more frequently (for example, on a daily basis [3]) or for
a longer period of time, we may have been able to iden-
tify a stronger relationship between elapsed time and the
composition of the communities within body habitats.
Having established that the degree and nature of vari-

ability was specific to each body site and was in itself an
important parameter that distinguished individuals from
one another, we next sought to identify factors associ-
ated with this variation across individuals. Based on pre-
vious work [4,20], we expected that antibiotic usage
would lead to profound shifts in the structure of an indi-
vidual’s microbiome. Indeed, within a given individual,
the largest shifts observed in community membership
coincided with the time points that the individual re-
ported having taken oral antibiotics (P <0.001 for both
unweighted and weighted UniFrac, Monte Carlo t-test
with 1,000 iterations). Across the study population, how-
ever, with the exception of palm communities, we did
not find a significant effect of antibiotics on variability in
community membership and structure; individuals who
took antibiotics did not, on average, have more variable
communities than those that did not take antibiotics
over the time period of this experiment (Figure 2). Our
observation that antibiotic use was not associated with
increased temporal variability in microbial communities
across the study population could be due to the fact that
we did not control for the timing of sampling relative to
antibiotic use, dosage, or type of antibiotics used by the
individuals sampled here, or it may be because microbial
community responses to antibiotics are highly individu-
alized, as suggested by recent work [4,21].
We next used generalized linear models (GLMs) to iden-

tify which other factors or combination of factors best pre-
dicted why some individuals harbored more variable
microbial communities than others. For these models, we
again used median weighted or unweighted UniFrac values
of each individual as our response variables for each body
habitat. Potential predictive factors were compiled from the
initial survey responses (Additional file 2) and we only in-
cluded factors for which we had sufficient replication in
survey responses (Additional file 3). Presented models in-
cluded factors with a significance value <0.05. As shown in
Table 2, our models were often able to explain much of the
variability in the temporal stability of microbial communi-
ties across individuals, but the strength of the models was
dependent on the body habitat in question or the distance



Table 2 Measured factors that influenced the temporal variability of the human microbiome

Parameter estimate Sum of squares F statistic P value BIC R2

Forehead - unweighted

Antibiotic use 0.015 0.010 8.76 0.004 -262.21 0.175

University 0.119 0.006 5.41 0.023 -263.38

Forehead - weighted

Median Shannon 0.038 0.090 32.2 3.61 e -7 -190.67 0.580

Gender 0.023 0.027 9.54 0.003 -193.54

Roommates (n) 0.039 0.016 5.70 0.02 -196.16

Gut - unweighted

Median Shannon 0.063 0.081 73.24 4.3 e -12 -240.90 0.570

Over-the-counter acne product 0.014 0.013 11.18 0.001 -249.97

University 0.014 0.007 6.64 0.012 -254.34

Gut - weighted

Median Shannon 0.107 0.238 20.64 2.61 e -5 -85.83 0.319

Over-the-counter acne product 0.034 0.065 5.65 0.021 -90.53

University 0.028 0.047 4.08 0.047 -90.55

Palm - unweighted

Exercise frequency 0.033 0.022 15.74 2.00 e -4 -188.6 0.310

Lives with dogs 0.014 0.010 7.18 0.009 -189.9

Roommates (n) 0.016 0.008 5.77 0.019 -191.8

Palm - weighted

Antibiotic use 0.026 0.024 4.97 0.029 -129.8 0.080

Tongue - unweighted

Antibiotic use 0.018 0.015 7.75 0.007 -217.82 0.215

Median Shannon 0.038 0.010 5.5 0.022 -220.12

Tongue - weighted

No good model

Generalized linear models (GLMs) were used to determine which of the measured factors or combination of factors best predicted variability in microbiome
membership (unweighted UniFrac) and structure (weighted UniFrac). Unweighted UniFrac distances are a metric of the phylogenetic dissimilarity of samples
through time. Weighted UniFrac distances weight dissimilarity both as a function of the phylogenetic dissimilarity and the relative abundance of taxa (such that
two samples with the same phylogenetic dissimilarity are considered more different if one is dominated by a particular taxon).
BIC = Bayesian Information Criterion.
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metric used. Common predictive factors observed in mul-
tiple body habitats included median alpha diversity values
(Shannon Index), university affiliation, and antibiotic use
(Table 2). However, the strongest predictive variable for
most body habitats was median diversity, measured using
the Shannon index, suggesting an overall relationship be-
tween diversity and variability. Other factors appeared to
have a body site-specific affect. For example, the number of
roommates helped explain a significant amount of variabil-
ity in the structure (weighted) of forehead microbial com-
munities, a pattern that may driven by the exchange of skin
bacteria between individuals sharing a common living area.
To explore the relationship between diversity and tem-

poral variability in greater detail, we generated single-
factor linear models using median Shannon index values
as our metric of diversity and either median weighted or
unweighted UniFrac values as our metric of stability
(Figure 3). With these models, we observed statistically
significant negative correlations between diversity and
compositional variability for the gut and tongue commu-
nities; individuals with more diverse communities were
less variable (more stable) than individuals with less
diverse communities. In contrast, a positive relationship
was observed between forehead community diversity
and structural variability while no relationship was
evident for palm communities. Similar directional pat-
terns were observed with the other diversity metrics
(Additional file 11). Our finding that microbial commu-
nities which likely experience lower rates of colonization
from external environments (the gut and tongue) exhibit a
positive diversity-stability relationship parallels patterns
observed in many plant and animal communities where
increases in species diversity often result in more stable
communities and communities that are more resistant to
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invasions (that is, the portfolio effect) [22]. Although the
health implications of the diversity-stability relationships
observed here remain undetermined, recent work has
shown that gut communities of lower diversity are often
associated with disease phenotypes in humans [23].
Individuals that had more stable communities harbored

taxonomically distinct communities compared with those
found in more variable individuals (Figure 4). For ex-
ample, individuals with stable forehead communities had
a greater relative abundance of Staphylococcaceae and
Corynebacteriaceae, whereas individuals with highly vari-
able forehead communities were enriched in Streptococca-
ceae and Lactobacillaceae (Figure 4a). The trade-off
between Staphylococcaceae and Lactobacillaceae is intri-
guing because several Lactobacillaceae species inhibit at-
tachment of Staphylococcaceae to epithelial cells [24,25].
In the gut, two of the dominant groups of Firmicutes,
Clostridiaceae and Lactobacillaceae, were more abundant
in variable individuals, whereas the Bacteroidaceae (the
dominant family within the Bacteroidetes phylum) were
most abundant in stable individuals (Figure 4b). A higher
Firmicutes:Bacteriodetes ratio has been observed in guts
of obese individuals [26,27], but we did not have enough
diversity in body mass index (BMI) to formally test if tem-
poral variability may also be associated with obesity. Al-
though the mechanisms underlying these patterns remain
unclear, these observations highlight the likely importance
of bacterial interactions in determining the stability of
human-associated microbial communities.

Conclusions
Our findings suggest that the high degree of temporal
variability in alpha diversity levels, community member-
ship, and community structure observed across the sam-
pled body habitats and across study participants is
important to consider when designing studies to assess
linkages between the human microbiome and health. Al-
though the variability in community composition among
healthy individuals exceeds the variability within individ-
uals over time (Additional file 6, [3,5,8]), the intra-
individual temporal variability is considerable and the
degree of variability that an individual experiences over
time may be a factor in determining disease state or dif-
ferential treatment success. Further, because variability
through time can be high, samples collected at one point
in time may not adequately characterize an individual's
microbiome, even if focusing on only the more abundant
phylotypes (Figure 1b, dark shades). If the effect size of a
change in disease state on the human microbiome is suf-
ficiently large (for example, the loss of a major lineage),
this intra-individual temporal variability may be irrele-
vant. However, if changes in disease state are associated
with more subtle shifts in microbial community compos-
ition, it would be important to control for this temporal



0 

0.1 

0.2 

0.3 

0.4 

Bac
te

ro
ida

ce
ae

 

La
ch

no
sp

ira
ce

ae
 

Rum
ino

co
cc

ac
ea

e 

Clos
tri

dia
ce

ae
 

Pre
vo

te
lla

ce
ae

 

Por
ph

yr
om

on
ad

ac
ea

e 

La
cto

ba
cil

lac
ea

e 

Veil
lon

ell
ac

ea
e 

Rike
ne

lla
ce

ae
 

Clos
tri

dia
 (o

rd
er

) 

0 

0.1 

0.2 

0.3 

0.4 

Stre
pt

oc
oc

ca
ce

ae
 

Pre
vo

te
lla

ce
ae

 

Veil
lon

ell
ac

ea
e 

Pas
te

ur
ell

ac
ea

e 

Neis
se

ria
ce

ae
 

M
icr

oc
oc

ca
ce

ae
 

Acti
no

m
yc

et
ac

ea
e 

Bac
illa

ce
ae

 

Pse
ud

om
on

ad
ac

ea
e 

Por
ph

yr
om

on
ad

ac
ea

e 

0 

0.1 

0.2 

0.3 

0.4 

Sta
ph

ylo
co

cc
ac

ea
e 

Cor
yn

eb
ac

te
ria

ce
ae

 

Stre
pt

oc
oc

ca
ce

ae
 

Neis
se

ria
ce

ae
 

La
cto

ba
cil

lac
ea

e 

Pas
te

ur
ell

ac
ea

e 

M
or

ax
ell

ac
ea

e 

Clos
tri

dia
ce

ae
 

M
icr

oc
oc

ca
ce

ae
 

Pse
ud

om
on

ad
ac

ea
e 

0 

0.1 

0.2 

0.3 

0.4 

Stre
pt

oc
oc

ca
ce

ae
 

Sta
ph

ylo
co

cc
ac

ea
e 

Cor
yn

eb
ac

te
ria

ce
ae

 

M
or

ax
ell

ac
ea

e 

La
cto

ba
cil

lac
ea

e 

Pse
ud

om
on

ad
ac

ea
e 

Pas
te

ur
ell

ac
ea

e 

Clos
tri

dia
ce

ae
 

M
icr

oc
oc

ca
ce

ae
 

Pre
vo

te
lla

ce
ae

 

R
el

at
iv

e
A

bu
nd

an
ce

 
R

el
at

iv
e

A
bu

nd
an

ce
 

** 

** 

** 

* 

** 
** ** 

* ** 

** 

* 

* 

Stable individuals Average individuals Variable individuals 

A B

C D

Figure 4 Average taxonomic composition was different among stability classes across individuals. Individuals were assigned to stability classes
based on quartiles (first = stable (blue), second and third = average (red), fourth = variable (green)) of median weighted UniFrac distances for each body
habitat. Significant differences were observed across forehead (A) and gut (B) communities but not in palm (C) or tongue (D) communities as determined
by rank transforming the most abundant bacterial families (>1% in any group) for each body habitat and testing for differences between stability classes
using the nonparametric Kruskal-Wallis analysis of variance. Significance is denoted with asterisks (* = corrected P ≤0.05, ** = corrected P ≤0.01).

Flores et al. Genome Biology 2014, 15:531 Page 9 of 13
http://genomebiology.com/2014/15/12/531
variability before one could establish causal linkages be-
tween changes in the microbiome and changes in health
status. It is now well established that there is considerable
inter-individual variability in the composition of the human
microbiome [5,18], leading to the concept of a ‘personal
microbiome’, and we are beginning to establish causal rela-
tionships between composition of the microbiome and dis-
ease [28]. Here we show that there is also a high-degree of
inter-individual variability in the stability of the human gut,
tongue, forehead, and palm microbiome. As a result, we
suggest that the ‘personal microbiome’ concept should be
extended to incorporate the rate of change of an individual’s
microbiome, in addition to its composition (a feature which
distinguishes the ‘personal microbiome’ from the ‘personal
genome’) and that future investigations into associations
between features of the microbiome and host phenotype
may want to consider temporal variability as a potential ex-
planatory factor.

Methods
Subject recruitment and sample collection
Volunteers were recruited from three Universities
(University of Colorado, Boulder (UCB), Northern Arizona
University (NAU), and North Carolina State University
(NCSU)) in January/February of 2012 and asked to donate
weekly self-collected samples for a minimum of 10 weeks
using sterile, pre-labeled, double-tipped swabs (Becton,
Dickinson and Company, Sparks, MD, USA.). Participants
were instructed to sample two skin habitats (foreheads
and palms) and the surface of their tongue by swabbing
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for 10 to 15 s. Gut (fecal) samples were collected by
touching cotton swabs to used toilet paper so that a small
amount of fecal material was transferred to each pair of
swabs. Volunteers were asked to collect samples before
showering and as close to drop-off times as possible with-
out placing samples in freezers to avoid freeze-thaw cycles.
One representative at each University collected samples
from students and placed them in a -20°C freezer until
shipping on dry ice to the UCB where all sample processing
occurred. Volunteers were also asked to provide a variety of
demographic and behavioral metadata at the initiation of
the project using a scantron-based survey (Additional file 1).
Weekly questionnaires (Additional file 2) were also provided
with sampling kits to collect information on changes in
health status, medication use, and menstruation for women.
At the conclusion of the study prior to publication, study
participants were provided their personalized results via a
password-protected website [29]. All volunteers were made
aware of the nature of this project and gave written consent
in accordance with protocols approved by each University's
Institutional Review Board (IRB) (UCB 409.13; NAU
12.0169; NCSU 2443). Per IRB regulations, volunteers were
able to drop out of the study at any time and were not re-
quired to answer any or all survey questions.

Sample processing
Samples from NAU and NCSU were shipped on dry ice
to UCB at the conclusion of sampling. Upon arrival, in-
dividual swabs were linked with Personal IDs using
digital barcodes and logged into an Excel worksheet.
Swabs were then sorted by body habitat and the tip of
one duplicate swab was aseptically cut into single wells
in 2 mL 96-well deep-well plates (Axygen Inc., Union
City, CA, USA). Plates were sealed with silicone Axymat
sealing mats (Axygen Inc., Union City, CA, USA). Each
plate contained negative control samples that included
swab blanks (sterile swabs), extraction blanks (reagents),
and a PCR control. Forehead, gut, and tongue plates also
included positive controls that were collected from one
individual at the initiation of the project and stored/
shipped with samples at each university. No differences
were observed in community membership or structure
in positive control samples.

DNA extraction, PCR amplification, and sequencing
DNA extraction and PCR amplification of the variable re-
gion 4 (V4) of the 16S rRNA gene using Illumina adapted
universal primers 515 F/806R [12,30] was conducted using
the direct PCR protocol as previously described [31].
Aliquots (4 μL) from the fecal and tongue extracts

were transferred into 384-well plates for triplicate PCR
reactions, while skin aliquots (forehead and palm, 4 μL)
were transferred into 96-well plates. PCRs were con-
ducted in triplicate 20 μL reactions and thermal cycling
conditions for the 384-well plates were: initial denatur-
ation for 3 min at 94°C; 35 cycles (94°C, 60 s; 50°C, 60 s;
72°C, 105 s) followed by a final elongation for 10 min at
72°C. Conditions for the 96-well plates were identical ex-
cept for shorter denaturation (94°C, 45 s) and elongation
(72°C, 90 s) steps. PCR products from triplicate reac-
tions of each sample were pooled, visualized on an agar-
ose gel, and quantified using the PicoGreen dsDNA
assay (Invitrogen, Carlsbad, CA, USA). Positive ampli-
cons from each body habitat (forehead, gut, palm, and
tongue) were then pooled in equimolar concentrations
into composite samples that were cleaned using a single-
tube MoBio Ultraclean PCR Clean-up Kit (MoBio La-
boratories, Carlsbad, CA, USA). Each body habitat was
sequenced on an individual lane (4 lanes total) of an Illu-
mina HiSeq2000 instrument at the University of Color-
ado BioFrontiers Institute Advanced Genomics Facility.

Data processing
All data processing was performed using QIIME 1.6.0-dev
unless otherwise noted. The specific processing steps were
as follows. Raw fastq data were demultiplexed and quality
filtered as described previously [32]. Sequences that
passed quality filtering were clustered into phylotypes
(Operational Taxonomic Units, OTUs) at 97% sequence
identity using a uclust-based [33] closed-reference proto-
col against the 12_10 revision of the Greengenes database
[34], where reads that did not match a sequence in the ref-
erence set at least 97% identity were excluded from subse-
quent analyses. The taxonomy of each phylotype was
assigned as the taxonomy associated with the Greengenes
sequence defining that OTU. The Greengenes phylogen-
etic tree was used for phylogenetic diversity calculations.
A median of 49,242.0 sequences was collected per sample.
After removing phylotypes appearing in negative controls
at high abundance (≥0.5% across all controls) [31], all
samples were rarefied to 10,000 sequences for all down-
stream analyses unless otherwise noted.
Potentially mislabeled samples were detected using the

random forest classification approach described previously
[35]. Briefly, the full sample-by-phylotype abundance matrix
(that is, OTU table) was filtered to exclude phylotypes that
were observed in fewer than 10 samples. The OTU table
was then randomly subsampled to exactly 1,000 sequences
per sample. Three samples achieved a probability of being
mislabeled greater than 90%, and were excluded from all
downstream analyses.
Alpha diversity metrics (phylogenetic diversity (PD),

phylotype richness, and Shannon Index [13]) were com-
puted as implemented in QIIME. Comparisons of alpha
diversity presented in this study are computed at exactly
10,000 sequences per sample. Beta diversity was com-
puted using the weighted and unweighted UniFrac met-
rics [16] at exactly 10,000 sequences per sample.
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The time series samples were defined as the set of sam-
ples that came from an individual’s body site where at least
seven samples were collected and successfully sequenced
from that individual’s body site over a 10-week sampling
period. For example, if six fecal samples and seven forehead
samples were sequenced from an individual, their fecal
samples would not be included in any time series analyses,
but their forehead samples would be included. This resulted
in 80 individuals for which we had a forehead time series
(48 women, 30 men, 2 unknown), 75 individuals with a gut
time series (48 women, 26 men, 1 unknown), 61 individuals
with a palm time series (35 women, 25 men, 1 unknown),
and 80 individuals with a tongue time series (50 women, 28
men, 2 unknown) from 85 subjects (Table 1).
All QIIME commands for performing these processing

steps can be found in Additional file 12.

Statistical analysis
To assess the temporal variability of within sample diver-
sity (alpha diversity), we calculated the coefficient of
variation (CV) for three diversity metrics (phylogenetic di-
versity - PD, OTU richness, and Shannon index) for each
body habitat of each individual through time. Individual
values were used to determine the per body site median
across the study population, with higher values indicative
of more variable communities.
Variability in community composition (beta diversity)

was determined per body habitat by calculating the me-
dian weighted and unweighted UniFrac distances for each
individual over time. With this metric, communities with
a higher median value are more variable whereas a lower
value indicates more stable communities. (Note that be-
cause we summarize temporal data in a single measure-
ment, we do not need to account for lack of independence
of temporal samples from a single individual in evalua-
tions based on this metric.) Differences across body sites
for both alpha- and beta-diversity were assessed using the
non-parametric Kruskal-Wallis one-way analysis of vari-
ance with pairwise comparisons made using the Mann-
Whitney U-test, as implemented in R.
To determine the number of phylotypes shared by an

individual over different windows of time, we converted
the OTU tables of each body habitat to a presence/ab-
sence matrix, split it by individual, filtered out singletons,
and determined the number of OTUs found in exactly
two samples, three samples, four samples, and so on up to
seven samples using a custom R script. Samples did not
have to be from consecutive weeks. We repeated this ana-
lysis on only the top 10% most abundant OTUs per indi-
vidual. The numbers of phylotypes shared per individual
were then averaged across individuals for each window of
time and each body habitat.
For each body habitat, the study population was divided

into quartiles based on median intra-individual UniFrac
values where the first quartile was defined as ‘stable’, the
second and third quartiles as ‘average’, and the fourth quar-
tile as ‘variable.’ To determine if certain taxa were more or
less abundant in the different quartiles (that is, stability
classes), we rank transformed the most abundant bacterial
families (>1% across individuals) for each body habitat and
tested for differences between the groups using the non-
parametric Kruskal-Wallis analysis of variance.
adonis [36], ANOSIM [37], and PERMDISP [36] (using

999 permutations) were used to test for differences in com-
munity composition between individuals at each body site.
The statistical methods were used to analyze both weighted
and unweighted UniFrac distance matrices, with only the
time series samples being included in the analyses.
To determine the affect of antibiotic use on community

variability, we grouped individuals based on their usage (yes
or no) and used the non-parametric Mann-Whitney U-test
to test for differences between the two groups. Spearman
rank correlations were used to determine if community
variability as measured using median UniFrac distances was
correlated across pairs of body habitats. To assess if pat-
terns in community composition could be related to time
between sampling events, Mantel tests (Spearman-rank
correlations on 999 permutations) were conducted for each
individual using both weighted and unweighted UniFrac
values and Manhattan time-distance matrices calculated in
R using the VEGAN package [35]. Using the mean of the
different alpha diversity metrics (PD, phylotype richness,
and Shannon index [13]) as our metrics of diversity and
median UniFrac distances (both weighted and unweighted)
as our metric of community variability on a per individual
basis, we constructed linear models for each body habitat
across individuals to examine the relationship between di-
versity and stability.
We identified key predictors of the variability in com-

position of bacterial assemblages using generalized linear
models. We used a model simplification procedure, re-
moving non-significant terms (α =0.05) in a stepwise
fashion [38], to explore the relative contributions of the
various terms included in the start model. Model simpli-
fication approaches have been criticized [39], but in the
absence of strong a priori information on the drivers of
variability of bacterial assemblages, this approach is a
useful first step [40]. The final models we present are
those that exclusively include variables that explain sig-
nificant variation in our dependent variables. We also
used model simplification in which final models were
those in which Bayesian information criterion (BIC) was
minimized. However, these ‘best’ models ended up in-
cluding all variables we tested and so here we focus on
those variables with significant explanatory power.
To determine if the weeks where individuals reported

taking antibiotics were the weeks where they experience
the largest changes in their gut community compositions,
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we ran per-body-site one-tailed, rank-based Monte Carlo
t-tests. The adjacent-week UniFrac distances were com-
piled for each individual on a per-body-site basis (that is,
the distance between their gut samples on week 1 and
week 2, week 2 and week 3, and so on). Each individual’s
UniFrac distances were ranked from smallest to largest,
and assigned their rank value. Across individual ranks
were grouped into distributions based on whether they oc-
curred in a week where the individual reported taking an-
tibiotics or not. Those distributions were then compared
with a one-tailed Monte Carlo t-test with 1,000 iterations.

Data availability
Sequence data and accompanying de-identified metadata
have been deposited in the EMBL under accession num-
ber (ERP005150-ERP005153).

Additional files

Additional file 1: The pre-study questionnaire used to collect
demographic, lifestyle, and hygiene data on study participants.

Additional file 2: The weekly questionnaire used to collect
information about changes in health status, medication use, stage
of menstrual cycle for women, and any other dramatic changes in
the routine of study participants.

Additional file 3: A list of all samples collected in this study with
corresponding de-identified personal IDs of study subjects and
answers to survey questions.

Additional file 4: A figure showing the amount of microbial
diversity observed in each sample.

Additional file 5: A figure depicting the temporal variability
observed in microbial community membership and structure for
each body habitat of each individual.

Additional file 6: A table showing that the composition of each
individual’s microbiome is personalized through time.

Additional file 7: A figure showing how the microbial communities
of selected individuals vary through time.

Additional file 8: A table showing the results of Spearman rank
correlation of community membership across different body
habitats.

Additional file 9: A table showing the results of Spearman rank
correlation of community structure across different body habitats.

Additional file 10: A table of Mantel test results correlating
microbial community membership and structure with time between
samples (time distance-decay).

Additional file 11: A table of results correlating microbial diversity
with temporal variability in community membership and structure
for each body habitat.

Additional file 12: A list of all QIIME commands used in data
processing.
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