PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

End-joining in yeast

ArticleInfo		
ArticleID	:	4271
ArticleDOI	:	10.1186/gb-spotlight-20011206-01
ArticleCitationID	:	spotlight-20011206-01
ArticleSequenceNumber	:	342
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2001–12–06 OnlineDate : 2001–12–06
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

The DNA-repair mechanism referred to as non-homologous end-joining (NHEJ) involves the Ku proteins (Ku70 and Ku80), DNA ligase IV and Lif1/XRCC4. Meiotic cells down-regulate NHEJ, to favour homologous recombination. In the December 6 Nature, Maria Valencia and colleagues describe a mechanism for the down-regulation of NHEJ in meiosis-competent *MAT a /MATα* diploid *Saccharomyces cerevisiae* cells (*Nature* 2001, **414**:666-669). They found that *LIF1* (encoding ligase-interfacing factor 1) expression was decreased in the diploid strain, but *LIF1* overexpression only partially restored NHEJ. Microarray analysis of mating-type mutant strains led them to identify a novel gene, *NEJ1* (non-homologous end-joining defective). Deletion of *NEJ1* reduces NHEJ, and the gene is strongly mating-type-regulated. The promoter regions of both the *LIF1* and *NEJ1* genes contain binding sites for the Mata1-Matα2 repressor. Valencia *et al.* suggest that NEJ1 affects the cellular localization of LIF1 during meoisis. It will be interesting to see whether similar regulation of NHEJ components occurs during meiosis in mammalian cells.

References

- 1. DNA breakage and repair.
- 2. *Nature*, [http://www.nature.com]