PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Probing E. coli

ArticleInfo		
ArticleID	:	3852
ArticleDOI	:	10.1186/gb-spotlight-20001205-02
ArticleCitationID	\Box	spotlight-20001205-02
ArticleSequenceNumber	:	289
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–12–05 OnlineDate : 2000–12–05
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

In the December Nature Biotechnology Selinger *et al.* use an *Escherichia coli* oligonucleotide array with 30-base-pair resolution to detect antisense transcripts, new open reading frames (ORFs), and transcription starts and stops (*Nat Biotechnol* 2000, **18:**1262-1268). The 295,936 elements of the array do not come without their problems. The sheer size and complexity of the array means that there is a huge amount of cross hybridization detected by missense probes. But the use of many probes within the same gene allows Selinger *et al.* to identify many genes that are up- or down-regulated in stationary phase. They also confirm transcription stop and start sites for two genes. Scanning for antisense transcripts suggests that there is a low level of transcription throughout the genome, probably from replication-induced and readthrough transcription.

References

1. Nature Biotechnology, [http://www.nature.com/nbt/]

This PDF file was created after publication.