PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Architectural role for BCL6

ArticleInfo		
ArticleID	:	3820
ArticleDOI	:	10.1186/gb-spotlight-20001107-02
ArticleCitationID	\Box	spotlight-20001107-02
ArticleSequenceNumber	\Box	257
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–11–07 OnlineDate : 2000–11–07
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Nuclear BTB/POZ proteins are often concentrated into discrete nuclear subdomains, but the role of these nuclear compartments is unclear. The BCL6 proto-oncogene, frequently altered in non-Hodgkin lymphoma, encodes a POZ/zinc finger protein that shows a characteristic localization in nuclear aggregates. In the November Molecular and Cellular Biology Albagli *et al.* used a tetracycline-regulated, epitope-tagged *BCL6* allele to explore the significance of BCL6 aggregates (*Mol Cell Biol* 2000, **20:**8560-8570). They employed pulse-labeling with bromodeoxyuridine (BrdU) together with electron- and laser-scanning confocal microscopy to determine the relationship between BCL6 expression and DNA replication. Electron microscopy showed that BCL6 is associated with early, mid and late replication foci during S phase. Careful ultrastructural analysis revealed that newly synthesised DNA appears wrapped around the BCL aggregates. Albagli *et al.* propose that BCL6 recruits chromatin-regulating proteins to nuclear subdomains, providing an organisation structure for the replication apparatus.

References

- 1. The POZ domain: a conserved protein-protein interaction motif.
- 2. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma.
- 3. Molecular and Cellular Biology, [http://intl-mcb.asm.org]