PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Timing development

ArticleInfo		
ArticleID	:	3818
ArticleDOI	:	10.1186/gb-spotlight-20001102-02
ArticleCitationID	:	spotlight-20001102-02
ArticleSequenceNumber	:	255
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–11–02 OnlineDate : 2000–11–02
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

The Caenorhabditis elegans lin-4 and let-7 genes encode small RNAs that bind to complementary sequences in the 3' untranslated region of various developmental genes. Both genes control developmental timing, with *let-7* driving a transition from late larval to adult cell fates. In the 2 November Nature, Pasquinelli *et al.* report that homologs of *let-7* (but not *lin-4*) are found in a wide range of bilaterian animals, including flies, abalone, sea urchins, sea squirts, zebrafish, frog and human (*Nature* 2000, **408:**86-89). The timing of *let-7*'s appearance suggests it may share a developmental function in these other organisms. In flies the *let-7* RNA appears at the late third instar, just before metamorphosis, and in the zebrafish it appears between 24 and 48 hours after fertilization. The *let-7* sequence is not evident in unicellular organisms or plants.

References

- 1. The *C. elegans* heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.
- 2. The 21-nucleotide let-7 RNA regulates developmental timing in *Caenorhabditis elegans*.
- 3. *Nature*, [http://www.nature.com/nature/]

This PDF file was created after publication.